Supplementary Information

A fluorogenic C4N4 probe for azide-based labelling

Hidetoshi Noda, Yasuko Asada, Masakatsu Shibasaki,* Naoya Kumagai*

Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan

mshibasa@bikaken.or.jp; nkumagai@bikaken.or.jp

Table of Contents

1. General methods	S2
1–1. Reactions and purifications	
1–2 Chracterisations	S2
1-3 Solvents and reagents	S2
1–4. Computations	
2. Preparation of substrates	
3 Absorption/emission spectra	\$4
3–1 Spectra in FtOH	S4
3–2. Spectra in aqueous buffer	
4. Computational investigations	
4–1. Computational details	
4–2. Sumarry of TD–DFT calculations	
5. References	
6. Optimized coordinates	
7. Spectra	

1. General methods

1-1. Reactions and purifications

Unless otherwise noted, all reactions were carried out in an oven-dried glassware fitted with a 3-way glass stopcock under an argon atmosphere and were stirred with Teflon-coated magnetically stirred bars. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere. Thin layer chromatography (TLC) was performed on Merck TLC plates (0.25 mm) pre-coated with silica gel 60 F254 and visualized by UV quenching and staining with ninhydrin, KMnO₄, anisaldehyde or ceric ammonium molybdate solution. Flash column chromatography was performed on a Teledyne CombiFlash Rf 200 or a Biotage Isolera Spektra One.

1-2. Chracterisations

Infrared (IR) spectra were recorded on a HORIBA FT210 Fourier transform infrared spectrophotometer. NMR spectra were recorded on a JEOL ECS-400, a Bruker AVANCE III HD400 or a Bruker AVANCE III 500. Chemical shifts (δ) are given in ppm relative to residual solvent peaks.¹ Data for ¹H NMR are reported as follows: chemical shift (multiplicity, coupling constants where applicable, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), ddd (doublet of doublet of doublet), q (quartet), m (multiplet), br (broad). UV-Visible absorption spectra were recorded using a 0.1 dm cell on a Jasco V-670 spectrophotometer. Fluorecent emission spectra were recorded using a 0.1 dm cell on a Jasco FP-8600 spectrofluorometer, with which absolute fluorecent quatmn yields were also measured with a Jasco ILF-835 unit (100 mm integrating sphere). High-resolution mass spectra (ESI TOF (+)) were measured on a Thermo Fisher Scientific LTQ Orbitrap XL.

1-3. Solvents and reagents

THF was purified by passing through a solvent purification system (Glass Contour). (1*R*,8*S*,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethanol was purchased from TCI. All other starting materials were used as supplied by commercial vendors or prepared by the method described in the corresponding reference.

1-4. Computations

All quantum chemical calculations were performed using the Gaussian 16 program.² Structural optimizations were conducted with tight optimization parameters, and density functional theory (DFT) calculations employed an ultrafine integration grid (99 radial shells, 590 angular points). Frequency calculations confirmed the identity of geometry minima (no imaginary frequencies).

2. Preparation of substrates

(E)-4-Phenyl-6-(4-(pyrrolidin-1-yldiazenyl)phenyl)pyrimidine-2,5-diamine То (2): а suspension of 4-chloro-6-phenylpyrimidine-2,5-diamine (300 mg, 1.36 mmol, 1.0 equiv), boronic ester 1³ (429 mg, 1.49 mmol, 1.1 equiv), Na₂CO₃ (721 mg, 6.80 mmol, 5.0 equiv), and Pd(PPh₃)₄ (78.5 mg, 0.068 mmol, 5 mol%) in toluene (0.1M) were added EtOH (0.4 M) and H2O (0.4 M). The solution was stirred under reflux for 14 h, and cooled to RT. After the addition of H2O, aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with

brine, dried over Na₂SO₄, filtered, and removed under reduced pressure. The obtained material was purified by silica gel column chromatography (n-hexane/EtOAc), and isolated as a yellow solid (510 mg, 99%). m.p. 180–182 °C; IR (thin film) 3309, 3186, 2970, 2870, 1602, 1552, 1436, 1419, 1315, 1208, 1155, 1049, 1026 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.72 (m, 4H), 7.56–7.43 (m, 5H), 4.70 (s, 2H), 3.82 (s, 2H), 3.52–3.50 (m, 2H), 2.07–2.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) & 156.9, 154.2, 154.0, 152.4, 137.3, 133.5, 129.4, 129.4, 129.0, 128.7, 128.2, 120.9, 72.0, 24.0; HRMS (ESI): *m/z* calc'd for C₂₀H₂₂N₇ [M + H]⁺ 360.1931, found 360.1932.

4-(4-Azidophenyl)-6-phenylpyrimidine-2,5-diamine (3): To a solution of 2 (100 mg, 0.278 mmol, 1.0 equiv) in CH2Cl2

(280 μL, 1.0 M) were added BF3•Et2O (280 μL, 2.22 mmol, 8.0 equiv) and TFA (170 μL, 2.22 mmol, 8.0 equiv) at RT. After it was stirred at RT for 3 h, sat aq NaHCO₃ was added. The aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and removed under reduced pressure. The crude material was purified by flash column

chromatography eluting n-hexane/EtOAc to afford the title compound as a red amorphous (76.9 mg, 91%). IR (thin film) 3326, 3198, 2359, 2113, 1671, 1602, 1281, 1202, 1185, 1132 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 7.85–7.79 (m, 2H), 7.77-7.72 (m, 2H), 7.56-7.42 (m, 3H), 7.19-7.12 (m, 2H), 4.80 (s, 2H), 3.47 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 154.6, 153.0, 141.3, 136.9, 133.7, 130.4, 129.6, 129.1, 128.6, 128.0, 119.5; HRMS (ESI): m/z calc'd for C16H14N7 [M + H]⁺ 304.1305, found 304.1313.

4-(4-(4-Butyl-1H-1,2,3-triazol-1-yl)phenyl)-6-phenylpyrimidine-2,5-diamine (4): In a 2 mL vial [Cu(CH₃CN)₄]PF₆ (1.3

mg, 0.033 mmol, 10 mol%) and TBTA⁴ (2.1 mg, 0.040 mmol, 12 mol%) were dissolved in THF (200 µL) at RT and were allowed to stir for 30 min. To this a solution of azide 3 (10 mg, 0.33 mmol, 1.0 equiv) and 1-hexyne (15 µL, 0.40 mmol, 1.2 equiv) in THF (460 µL) was added at RT. The mixture was stirred at RT for 14 h. All volatiles were removed under

reduced pressure to give a crude material, which was purified by flash column chromatography (*n*-hexane/EtOAc) to give 4 (7.4 mg, 59%) as an amorphous solid. IR (thin film) 3316, 3196, 2956, 2928, 2857, 1609, 1553, 1518, 1453, 1431, 1377, 1209, 1042 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.95 (m, 2H), 7.90–7.84 (m, 2H), 7.79–7.73 (m, 3H), 7.57–7.43 (m, 3H), 4.75 (s, 2H), 3.51 (s, 2H), 2.82 (t, J = 7.7 Hz, 2H), 1.80–1.68 (m, 2H), 1.45 (tq, J = 7.3, 7.4 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 155.0, 152.3, 149.6, 137.8, 137.3, 136.9, 130.3, 129.7, 129.1, 128.6, 128.1, 120.7, 118.8, 31.6, 25.5, 22.5, 14.0; HRMS (ESI): *m/z* calc'd for C₂₂H₂₄N₇ [M + H]+ 386.2088, found 386.2088.

((5aR,6S,6aS)-1-(4-(2,5-Diamino-6-phenylpyrimidin-4-yl)phenyl)-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[

1,2-d][1,2,3]triazol-6-yl)methanol (5): To a solution of azide 3 (10 mg, 0.33 mmol, 1.0 equiv) in THF (330 µL, 0.1 M) was added (1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (5.0 mg, 0.33 mmol, 1.0 equiv) at RT. After the solution was stirred for 8 h at RT, the solvent was removed under reduced pressure. The crude material was purified by flash column

chromatography (n-hexane/EtOAc) to give 5 (9.1 mg, 61%) as a yellow solid. m.p. 237–240 °C; IR (thin film) 3316, 3204, 2923, 2862, 2080, 1907, 1607, 1552, 1454, 1435, 1378, 1208, 1025 cm⁻¹; ¹H NMR (400 MHz, THF-d₈) & 7.36–7.25 (m, 2H), 7.12-7.02 (m, 2H), 6.80-6.72 (m, 2H), 6.72-6.65 (m, 2H), 6.65-6.57 (m, 1H), 4.58 (s, 2H), 3.19 (s, 2H), 2.92-2.83 (m, 2H), 2.52 (t, J = 3.5 Hz, 1H), 2.38 (ddd, J = 3.4, 7.9, 15.5 Hz, 1H), 2.25 (ddd, J = 3.1, 6.9, 16.1 Hz, 1H), 2.11 (ddd, J = 3.4, 9.3, 15.5 Hz, 1H), 1.95 (ddd, J = 3.1, 10.2, 16.1 Hz, 1H), 1.53–1.33 (m, 2H), 0.93–0.78 (m, 2H), 0.39–0.28 (m, 1H), 0.28–0.14 (m, 2H); ¹³C NMR (100 MHz, THF-d₈) δ 158.9, 155.2, 152.9, 145.7, 140.2, 139.3, 138.4, 134.9, 130.8, 129.8, 129.6, 129.2, 129.0, 126.4, 67.1, 59.3, 27.1, 24.8, 24.0, 23.6, 22.7, 21.0, 20.6; HRMS (ESI): m/z calc'd for C26H28ON7 [M + H]+ 454.2350, found 454.2348.

N-(4-(2,5-Diamino-6-phenylpyrimidin-4-yl)phenyl)-2-(diphenylphosphoryl)benzamide (6): To a solution of azide 3

(8.8 mg, 0.029 mmol, 1.0 equiv) in 19:1 CH₃CN/H₂O (145 μ L, 0.2 M) was added methyl 2-(diphenylphosphino)benzoate (10.2 mg, 0.032 mmol, 1.1 equiv) at RT. After the solution was stirred for 20 h at RT, the solvent was removed under reduced pressure. The crude material was purified by flash column chromatography (*n*-hexane/EtOAc) to give **6** (6.8 mg, 40%) as a yellow solid. **m.p.** 284–287 °C (decomp.); **IR** (thin film) 3305, 3178, 3055, 2926, 1671,

1600, 1531, 1436, 1379, 1322, 1208, 1181, 1118 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 10.92 (s, 1H), 8.12 (ddd, J = 1.3, 4.0, 7.7 Hz, 1H), 7.76–7.72 (m, 2H), 7.71–7.59 (m, 9H), 7.57–7.49 (m, 3H), 7.48–7.41 (m, 7H), 7.12 (ddd, J = 1.3, 7.7, 14.5 Hz, 1H), 4.74 (s, 2H), 3.49 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.7 (d, *J* = 4.0 Hz), 156.9, 153.9 (d, *J* = 42.4 Hz), 141.3, 141.2, 139.1, 137.2, 133.4 (d, *J* = 11.8 Hz), 133.1 (d, *J* = 2.5 Hz), 132.7 (d, *J* = 2.9 Hz), 132.6, 131.8 (d, *J* = 10.0 Hz), 131.0, 130.5 (d, *J* = 12.0 Hz), 130.2, 130.0, 129.4, 129.1 (d, *J* = 13.4 Hz), 129.0, 128.9, 128.6, 128.1, 12f0.5; ³¹**P NMR** (162 MHz, CDCl₃) δ 36.0; **HRMS** (ESI): *m/z* calc'd for C₃₅H₂₉O₂N₅P [M + H]⁺ 582.2053, found 582.2054.

4-(4-Aminophenyl)-6-phenylpyrimidine-2,5-diamine (7): To a solution of azide 3 (12.1 mg, 39.9 µmol, 1.0 equiv) in 1:1

THF/EtOH (527 μ L, 0.075 M) was added 10% Pd/C (5.3 mg). The suspension was stirred under a hydrogen atmosphere for 2 h. After Ar was flushed into the flask, the mixture was filtered through a pad of Celite, washed with THF, and removed under reduced pressure. The crude material was purified by flash column chromatography (CHCl₃/MeOH) to give 7 (6.4 mg, 58%) as an orange

solid. **m.p.** 209–211 °C; **IR** (thin film) 3320, 3200, 1608, 1550, 1517, 1449, 1380, 1293, 1208, 1178 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.79–7.72 (m, 2H), 7.68–7.61 (m, 2H), 7.54–7.46 (m, 2H), 7.46–7.39 (m, 1H), 6.83–6.71 (m, 2H), 4.69 (s, 2H), 3.88 (s, 2H), 3.49 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.9, 154.5, 153.6, 147.7, 137.4, 130.1, 129.3, 129.0, 128.7, 127.9, 127.0, 115.0; **HRMS** (ESI): *m/z* calc'd for C₁₆H₁₆N₅ [M + H]⁺ 278.1400, found 278.1399.

3. Absorption/emission spectra

3-1. Spectra in EtOH

All spectra were recorded in EtOH using 0.2 mM solution for absorption, and 0.02 mM for emission with excitation at 375 nm.

3-2. Spectra in aqueous buffer

For prospective applications, absorption and emission spectra of azide **3** and triazole **5** were recorded in pH 7.4 buffer containing 20% DMSO.

Photophysical properties are summarized below. An enhancement in fluorescence intensity was also observed in the aqueous buffer.

4. Computational investigations

4-1. Computational details

The ground state geometries were optimized at the B3LYP/6-31+G(d) level of theory. Vertical transition energies were analyzed by TD/CAM-B3LYP/6-311++G(2d,p) level on the above optimized structure either in the gas phase or EtOH using the polarizable continuum model (IEFPCM) without explicit solvent molecules.

4-2. Sumarry of TD–DFT calculations

Table S1. Summary of TD–DFT calculation of 3 in the gas phase

		Excitation	Transition	Oscillator				
_	State	energy (eV)	wavelength (nm)	strength	Main tra	nsition	orbital(s)	Contribution
	S_1	3.5595	348.32	0.3826	HOMO	\rightarrow	LUMO	0.90
	S ₂	3.9081	317.25	0.0003	HOMO-1	\rightarrow	LUMO+1	0.61
					HOMO	\rightarrow	LUMO+1	0.14
	S ₃	4.3484	285.13	0.0088	HOMO-4	\rightarrow	LUMO	0.35
					HOMO-2	\rightarrow	LUMO	0.23
					HOMO-3	\rightarrow	LUMO	0.12

Table S2. Summary of TD–DFT calculation of 3 in EtOH

	Excita	ation Transit	ion Oscillato	r				
Sta	ate energy	y (eV) wavelengt	h (nm) strength	n Main	transition	orbital(s)	Contribution	_
S	3.39	972 364.9	6 0.5976	HOMO	\rightarrow	LUMO	0.92	
S	3.90	020 317.7	4 0.0005	HOMO-2	1 →	LUMO+1	0.62	
				HOMO	\rightarrow	LUMO+1	0.15	
S	4.3 6	508 284.3	0.1631	HOMO-2	1 →	LUMO	0.36	
				HOMO	\rightarrow	LUMO+2	0.30	

Table S3. Summary of TD–DFT calculation of 8 in the gas phase

	Excitation	Transition	Oscillator				
State	energy (eV)	wavelength (nm)	strength	Main tra	nsition	orbital(s)	Contribution
S 1	3.5461	349.64	0.3725	HOMO	\rightarrow	LUMO	0.90
S ₂	4.3410	285.61	0.0057	HOMO-4	\rightarrow	LUMO	0.42
				HOMO-2	\rightarrow	LUMO	0.17
				HOMO-3	\rightarrow	LUMO	0.09
S ₃	4.5696	271.33	0.0267	HOMO	\rightarrow	LUMO+1	0.76

Table S4. Summary of TD-DFT calculation of 8 in EtOH

	Excitation	Transition	Oscillator				
State	energy (eV)	wavelength (nm)	strength	Main tra	nsition	orbital(s)	Contribution
 S_1	3.3846	366.32	0.5368	HOMO	\rightarrow	LUMO	0.90
S ₂	4.3920	282.29	0.0248	HOMO-4	\rightarrow	LUMO	0.25
				HOMO-1	\rightarrow	LUMO	0.17
				HOMO	\rightarrow	LUMO+1	0.13
S ₃	4.4778	276.89	0.0350	HOMO	\rightarrow	LUMO+1	0.58
				HOMO-4	\rightarrow	LUMO	0.11

	Excitation	Iransition	Oscillator				
State	energy (eV)	wavelength (nm)	strength	Main tra	nsition	orbital(s)	Contribution
S1	3.5813	346.20	0.2890	HOMO	\rightarrow	LUMO	0.95
S_2	4.2424	292.25	0.0000	HOMO-6	\rightarrow	LUMO+1	0.17
				HOMO-6	\rightarrow	LUMO	0.15
				HOMO-2	\rightarrow	LUMO+2	0.08
S ₃	4.3501	285.01	0.0040	HOMO-5	\rightarrow	LUMO	0.23
				HOMO-2	\rightarrow	LUMO	0.21
				HOMO-4	\rightarrow	LUMO	0.19
				HOMO-1	\rightarrow	LUMO	0.19

Table S5. Summary of TD–DFT calculation of **S1** in the gas phaseExcitationTransitionOscillator

Table S6. Summary of TD–DFT calculation of S1 in EtOH

	Excitation	Transition	Oscillator				
State	energy (eV)	wavelength (nm)	strength	Main tra	nsition	orbital(s)	Contribution
S 1	3.4321	361.25	0.4489	HOMO	\rightarrow	LUMO	0.95
S ₂	4.2103	294.48	0.0001	HOMO-6	\rightarrow	LUMO+1	0.31
				HOMO-6	\rightarrow	LUMO+2	0.18
				HOMO-2	\rightarrow	LUMO+1	0.09
				HOMO-3	\rightarrow	LUMO+1	0.08
S ₃	4.4273	280.05	0.0086	HOMO-5	\rightarrow	LUMO	0.51
				HOMO-1	\rightarrow	LUMO	0.15
				HOMO-2	\rightarrow	LUMO	0.13
				HOMO-4	\rightarrow	LUMO	0.07

5. References

- 1. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, **2010**, *29*, 2176.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 3. Liu, C.-Y.; Knochel, P. J. Org. Chem. 2007, 72, 7106.
- 4. T. R. Chan, R. Hilgraf, K. B. Sharpless, V. V. Fokin, Org. Lett. 2004, 6, 2853.

6. Optimized coordinates

Optimized structure of **3** at the ground state B3LYP/6-31+G(d)

Charge = 0 Multiplicity = 1

С	-1.16261	2.46035	-0.33032
Ν	-2.2963	1.75615	-0.23409
С	-2.19103	0.43191	-0.04847
С	-0.92944	-0.20093	0.06367
С	0.20092	0.62808	-0.13252
Ν	0.07409	1.95215	-0.31556
Ν	-0.8063	-1.57785	0.34217
Н	0.04953	-1.81098	0.83666
Н	-1.60798	-1.95781	0.83604
Ν	-1.28043	3.83519	-0.42598
Н	-0.47649	4.30976	-0.81578
Н	-2.17804	4.16717	-0.75404
С	-3.481	-0.30654	0.06438
С	-3.68574	-1.5519	-0.55578
С	-4.54789	0.27933	0.76849
С	-4.9229	-2.19538	-0.46669
Н	-2.88529	-2.0066	-1.13235
С	-5.77747	-0.37113	0.86793
Н	-4.39968	1.25122	1.22867
С	-5.96991	-1.61181	0.25098
Н	-5.06835	-3.15067	-0.96484
Н	-6.58854	0.09231	1.42408
Н	-6.92994	-2.1164	0.32482
С	1.59846	0.1163	-0.11917
С	1.96343	-1.10693	-0.71167
С	2.61423	0.90519	0.45
С	3.2901	-1.53008	-0.72771
Н	1.20815	-1.72342	-1.18918
С	3.94102	0.48589	0.45232
Н	2.34937	1.86187	0.88839
С	4.28479	-0.73951	-0.13934
Н	3.56993	-2.46722	-1.19928
Н	4.70344	1.11196	0.90912
Ν	5.60611	-1.25431	-0.19192
Ν	6.52079	-0.58784	0.30893
Ν	7.45404	-0.08323	0.72948

		Supplem	entary Inform
Optimized structu	re of 8 at the gro	und state	
B3LYP/6-31+G(d)	ie of o at the gro	und state	
Charge = 0 Multi	plicity = 1		
C	-2.39288	2.5123	-0.31296
N	-3.44862	1.69333	-0.23747
C	-3.21073	0.38728	-0.04961
С	-1.89189	-0.11193	0.08713
С	-0.85168	0.83127	-0.08617
Ν	-1.11071	2.13551	-0.27252
Ν	-1.6329	-1.46873	0.36513
Н	-0.76612	-1.6191	0.8722
Н	-2.40041	-1.93421	0.83937
Ν	-2.65207	3.86723	-0.41335
Н	-1.89521	4.42354	-0.78901
Н	-3.57321	4.10338	-0.75874
С	-4.41874	-0.48149	0.03811
С	-4.48197	-1.73856	-0.58898
С	-5.55267	-0.01252	0.72474
С	-5.64702	-2.50726	-0.52367
Н	-3.62871	-2.10527	-1.15232
С	-6.70946	-0.78766	0.8008
Н	-5.51423	0.96731	1.19032
С	-6.76118	-2.03872	0.177
Н	-5.68372	-3.47026	-1.02675
Н	-7.57374	-0.41364	1.34393
Н	-7.66465	-2.64066	0.23257
С	0.59194	0.46845	-0.04219
С	1.09502	-0.70671	-0.62903
С	1.50437	1.35304	0.55822
C	2.45916	-0.99179	-0.62018
Н	0.41945	-1.39335	-1.12953
С	2.8657	1.06558	0.59702
Н	1.13112	2.26953	1.00304
С	3.34603	-0.10623	0.00017
Н	2.84267	-1.8893	-1.09192
Н	3.54577	1.74279	1.10475
Ν	4.73479	-0.40444	0.02296
С	5.80125	0.44469	0.09914
С	6.90952	-0.37348	0.0866
H	5.69305	1.51788	0.12197
N	5.16936	-1.69153	-0.03224
N	6.47003	-1.66914	0.00609
C	8.36491	-0.03174	0.13707
Н	8.88627	-0.41339	-0.74821

8.51333 1.05182 0.18206

8.84117 -0.47972 1.01689

Η

Η

Optimized structure of **S1** at the ground state B3LYP/6-31+G(d) Charge = 0 Multiplicity = 1

_narge =	0 Multiplicity	= 1		
С		-1.75539	2.58771	0.01528
Ν		-2.76138	1.70563	0.03696
С		-2.44762	0.40247	-0.00327
С		-1.1001	-0.03225	-0.04525
С		-0.12329	0.98695	-0.13801
Ν		-0.45729	2.28614	-0.09581
Ν		-0.75464	-1.39801	-0.01061
Н		0.16264	-1.57155	0.38877
Н		-1.45121	-1.97586	0.44947
Ν		-2.08531	3.9242	0.14859
Н		-1.38663	4.57558	-0.18448
Н		-3.04085	4.15689	-0.08855
С		-3.60258	-0.53911	0.03498
С		-3.65705	-1.6887	-0.77307
С		-4.69868	-0.24654	0.86582
С		-4.77589	-2.52529	-0.74398
Н		-2.8351	-1.91587	-1.44581
С		-5.80813	-1.09061	0.9039
Н		-4.6689	0.65229	1.47369
С		-5.85113	-2.23404	0.09914
Н		-4.80759	-3.40194	-1.38613
Н		-6.64258	-0.8541	1.55939
Н		-6.71801	-2.88942	0.12578
С		1.33576	0.70566	-0.25321
С		1.84075	-0.31259	-1.07767
С		2.25053	1.51984	0.44042
С		3.21834	-0.51397	-1.19641
Н		1.15924	-0.93514	-1.64954
С		3.62097	1.30671	0.32921
Н		1.86871	2.32573	1.05896
С		4.12545	0.28554	-0.49146
Η		3.587	-1.29744	-1.85552
Н		4.31082	1.93826	0.8848
Ν		6.18919	-0.64269	0.60733
Ν		5.76062	-1.78026	0.82731
Ν		5.44135	-2.83335	1.13588
С		5.61435	0.04129	-0.59041
Н		5.85216	-0.54029	-1.49075
Н		6.16467	0.98277	-0.6438

7. Spectra (E)-4-Phenyl-6-(4-(pyrrolidin-1-yldiazenyl)phenyl)pyrimidine-2,5-diamine (2): ¹H NMR (400MHz, CDCl₃)

4-(4-Azidophenyl)-6-phenylpyrimidine-2,5-diamine (3):

¹**H NMR** (400MHz, CDCl₃)

888 888 887 887 887 887 887 887 887 887	`	,	,					
8883 8887 8887 88888 8887 7747 7747 7734 8888 8887 7734 7734				m				
112 282525 112 382525 112 38252555555555555555555555555555555555				H 1				
8888 8888 8888 8897 7551 7551 7551 7551 7551 7551 7551 75				Q				
112 112 112 112 112 112 112 112								
11 288888888888888888888888888888888888				0				
2000 111 111 111 111 111 111 111 111 111			$m \neq b = m \cap m \cap m$			~	~ -	(0
	2000 - COL + 4 0 0				00007740	×	81 -	8
	000000000000000000000000000000000000000					ĸ	<u> </u>	4
$\cdots \cdots $						12		~
						N	44	
	the standard barrier barrier barrier barrier barrier	the lot be been to be						

4-(4-(4-Butyl-1*H*-1,2,3-triazol-1-yl)phenyl)-6-phenylpyrimidine-2,5-diamine (4):

¹H NMR (400MHz, CDCl₃)

((5aR,6S,6aS)-1-(4-(2,5-Diamino-6-phenylpyrimidin-4-yl)phenyl)-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methanol (5): ¹H NMR (400MHz, THF-d₈)

N-(4-(2,5-Diamino-6-phenyl pyrimidin-4-yl) phenyl)-2-(diphenyl phosphoryl) benzamide (6):

¹H NMR (400MHz, CDCl₃)

---36.030

0 -80 140 120 100 80 60 40 20 -20 -40 -60 f1 (ppm) -100 -120 -140 -160 -180 -200 -220 -240

4-(4-Aminophenyl)-6-phenylpyrimidine-2,5-diamine (7):

