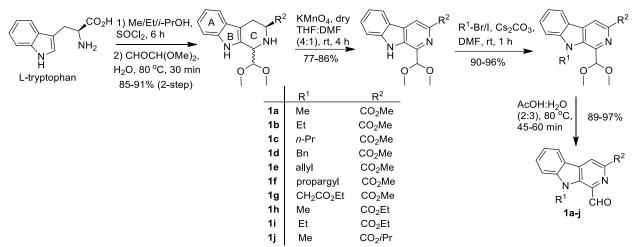
AcOH-Mediated Metal Free Approach towards Synthesis of Bis β-Carbolines and Imidazopyridoindole Derivatives and Assessment of their Photophysical Properties

Dharmender Singh,^a Shubham Sharma,^a Mukesh Kumar,^a Inderpreet Kaur,^a Ravi Shankar^b and Satyendra Kumar Pandey^c and Virender Singh^a*

^aDepartment of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India.

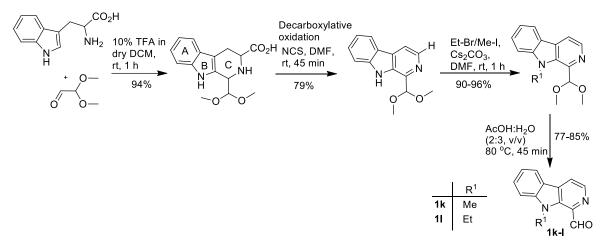
^bBio-Organic Chemistry Division, CSIR - Indian Institute of Integrative Medicine (IIIM), Jammu, 180 001, India.


^cDepartment of Chemistry, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India.

E mail:- <u>singhv@nitj.ac.in</u>; Fax: (91) 172-2214692

Supporting Information

Table of Contents


1.	Experimental procedures and spectral data	2-13
2.	¹ H-NMR, ¹³ C- NMR and HRMS spectra of the new products	14-61
3.	Photophysical studies of synthesised compounds	62-68

Synthesis of 1-formyl-9H-pyrido[3,4-b]indole derivatives (1a-j)

Scheme 1. Synthesis of 1-formyl-9H-pyrido[3,4-b]indole derivatives^[1]

Synthesis of N-alkylated Kumujian C (1k-l)

Scheme 1. Synthesis of 1-formyl-9H-pyrido[3,4-b]indole derivatives^[2]

Experimental Section

General Methods. Chemicals and reagents were purchased from Sigma Aldrich, Acros, Spectrochem Ltd., and Avera Synthesis, and used without further purification. Commercially available anhydrous solvents (MeOH, toluene, ACN, diethylether, and DMF) were used as received without further distillation. Thin layer chromatography (TLC) was performed on precoated aluminum plates (E. Merck; silica gel 60 PF254, 0.25 mm). Column chromatography was performed on silica gel (SRL; 60–120 mesh). Melting points were determined in openended capillary tubes on a Precision Digital melting-point apparatus (LABCO) that contained silicon oil and are uncorrected. IR spectra were recorded on an Agilent FTIR spectrophotometer. ¹H and ¹³C NMR spectra were recorded on an Avance III Bruker spectrometer at operating frequencies of 400 MHz, 500MHz, 600MHz (¹H) or 100 MHz, 125 MHz, 150 MHz (¹³C), as shown

in the individual spectrum, by using tetramethylsilane (TMS) as an internal standard. HRMS spectra were recorded on 6200 series TOF/6500 series QTOF B.05.01 (B5125). Elemental analysis was performed on a Carlo–Erba 108 or an Elementar Vario EL III microanalyzer. Room temperature varied between 25–40 °C. The multiplicity in the ¹H NMR spectra is as follows: s for singlet, d for doublet, t for triplet, q for quartet, dd for doublet of doublet and m for multiplet.

Procedure for the synthesis of methyl 1-(4,5-diphenyl-1*H***-imidazol-2-yl)-9-methyl-9***H***-pyrido[3,4-b]indole-3-carboxylate (3a).** To a stirred suspension of **2** (0.078 g, 0.37 mmol) and ammonium acetate (0.143 g, 1.86 mmol) in 3 mL of acetic acid; **1a** (0.10 g, 0.37 mmol) was added and the reaction content was heated to 100 °C for 1 h. After completion of reaction as examined by TLC, the reaction content was poured into ice cold water, yellow precipitates were formed which were filtered through sintered funnel and dried under vacuum. The crude product was purified through silica gel (60-120 mesh size) column chromatography using hexane : EtOAc (80:20, v/v) to obtain the pure product (**3a**) as pale yellow solid (0.024 g, 14%; R_f = 0.70 (hexane/EtOAc, 60:40, v/v).

Methyl 1-(4,5-diphenyl-1*H*-imidazol-2-yl)-9-methyl-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (3a). Yield: 14% (0.024 g from 0.10 g) as a pale yellow solid; m.p. 246-248 °C; R_f = 0.70 (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 3407 (NH), 1705 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) δ = 4.03 (s, 3 H, NCH₃), 4.59 (s, 3 H, CO₂CH₃), 7.30–7.42 (m, 7 H, ArH), 7.61 (d, *J* = 8.1 Hz, 3 H, ArH), 7.68–7.73 (m, 3 H, ArH), 8.21 (d, *J* = 7.8 Hz, 1 H, ArH), 8.82 (s, 1 H, ArH), 11.51 (s, 1 H, NH) ppm; ¹³C NMR (125 MHz, CDCl₃) δ = 34.6, 52.4, 110.8, 117.1, 121.0, 121.3, 121.5, 126.9, 127.7, 128.0, 128.2, 128.4, 128.5, 128.8, 129.3, 130.9, 131.5, 133.6, 135.2, 135.6, 136.1, 138.1, 143.8, 144.1, 166.2 ppm; MS (ES): *m/z* (%) = 459.1 (100) [M+1]⁺; C₂₉H₂₂N₄O₂ (458.1743): calcd. for C 75.97, H 4.84, N 12.22; found for C 76.09, H 4.85, N 12.18.

Procedure for the synthesis of methyl 1-cyano-9-methyl-9H-pyrido[3,4-b]indole-3-carboxylate (5a). To a stirred solution of **1a** (0.05, 0.186 mmol), ammonium acetate (0.036 g, 0.466 mmol) and NaHCO₃ (0.024, 0.28 mmol) in 1 mL of DMF; lodine (0.009 g, 0.037 mmol) was added and the reaction content was stirred at room temperature for 1 h. After completion of reaction as examined by TLC, the reaction content was poured into ice cold water, extracted with EtOAc (3 x 10 mL) and the combined organic layer was washed with 5% aq. Na₂S₂O₃ (15 mL). The organic layer was dried over anhydrous Na₂SO₄ and excess of solvent was evaporated under reduced pressure. The crude product was purified through silica gel (60-120 mesh size) column chromatography using hexane : EtOAc (80:20, v/v) to obtain the pure product (**5a**) as light brown solid (0.022 g, 45%; R_f = 0.60 (hexane/EtOAc, 70:30, v/v).

Methyl 1-cyano-9-methyl-9*H***-pyrido**[**3**,**4**-*b*]**indole-3-carboxylate (5a).** Yield: 45% (0.022 g from 0.050 g) as a light brown solid; m.p. 194-196 °C; $R_f = 0.60$ (hexane/EtOAc, 70:30, v/v); IR (neat):

 v_{max} (cm⁻¹) = 2235 (CN), 1706 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) δ = 4.09 (s, 3 H, NCH₃), 4.34 (s, 3 H, CO₂CH₃), 7.30 (t, *J* = 7.6 Hz, 1 H, ArH), 7.59 (d, *J* = 8.4 Hz, 1 H, ArH), 7.77 (t, *J* = 7.8 Hz, 1 H, ArH), 8.24 (d, *J* = 7.9 Hz, 1 H, ArH), 9.02 (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 31.0, 53.3, 110.4, 114.1, 116.6, 120.3, 120.6, 122.2, 122.3, 130.7, 131.8, 138.5, 138.8, 143.1, 166.3 ppm; MS (ES): *m/z* (%) = 266.1 (100) [M+1]⁺; C₁₅H₁₁N₃O₂ (265.0851): calcd. for C 67.92, H 4.18, N 15.84; found for C 68.05, H 4.15, N 15.89.

General Procedure for the preparation of compounds 4a-j as exemplified for methyl 3-(3-(methoxycarbonyl)-9-methyl-9*H*-pyrido[3,4-*b*]indol-1-yl)-11-methyl-11-imidazo[1',5':1,2]

pyrido[3,4-b]indole-5 carboxylate (4a). To a stirred suspension of **1a** (0.40 g, 1.49 mmol) in 8 mL of acetic acid; ammonium acetate (0.144 g, 1.86 mmol) was added and the reaction content was stirred at room temperature for 2 h. It was observed that suspension of **1a** in AcOH turned into a clear solution with the progress of reaction. After completion of reaction as examined by TLC, the reaction content was poured into ice cold water, yellow precipitates were formed which were filtered through sintered funnel and dried under vacuum. The crude product was washed with 10 mL of methanol and finally triturated and washed twice with 10 mL of anhydrous diethyl ether to obtain analytically pure product (**4a**) as the yellow solid (0.35 g, 91%; R_f = 0.30 (hexane/EtOAc, 60:40, v/v). A clean reaction was required (except **4f**).

Methyl 3-(3-(methoxycarbonyl)-9-methyl-9*H*-pyrido[3,4-*b*]indol-1-yl)-11-methyl-11*H*imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (4a). Yield: 91% (0.35 g from 0.20 g) as a yellow solid; m.p. 220-222 °C; $R_f = 0.30$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1724 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) δ = 3.32 (s, 3 H, CO₂CH₃), 3.99 (s, 3 H, NCH₃), 4.01 (s, 3 H, CO₂CH₃), 4.24 (s, 3 H, NCH₃), 7.35 (t, *J* = 7.5 Hz, 1 H, ArH), 7.40 (t, *J* = 7.4 Hz, 1 H, ArH), 7.48 (t, *J* = 7.6 Hz, 1 H, ArH), 7.54–7.57 (m, 2 H, ArH), 7.67 (t, *J* = 8.0 Hz, 1 H, ArH), 7.95 (d, *J* = 7.8 Hz, 1 H, ArH), 8.04 (s, 1 H, ArH), 8.18 (s, 1 H, ArH), 8.25 (d, *J* = 7.8 Hz, 1 H, ArH), 8.91 (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 32.1, 33.4, 51.9, 52.7, 109.8, 110.3, 110.5, 115.7, 117.6, 119.7, 119.8, 120.1, 120.9, 121.4, 121.6, 121.8, 123.5, 124.8, 124.9, 129.2, 131.6, 132.0, 135.9, 136.0, 136.3, 138.5, 140.0, 143.6, 163.5, 166.6 ppm; HRMS (ESI) m/z: calcd. for C₃₀H₂₃N₅O₄ [M + H⁺]: 518.1828, found: 518.1825.

Methyl 11-ethyl-3-(9-ethyl-3-(methoxycarbonyl)-9*H*-pyrido[3,4-*b*]indol-1-yl)-11*H*imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (4b). Yield: 85% (0.33 g from 0.20 g) as a yellow solid; m.p. >250 °C; $R_f = 0.32$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1711 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 1.23$ (t, J = 7.2 Hz, 3 H, NCH₂CH₃), 1.61 (t, J = 7.2 Hz, 3 H, NCH₂CH₃), 3.28 (s, 3 H, CO₂CH₃), 4.00 (s, 3 H, CO₂CH₃), 4.50 (q, J = 7.2 Hz, 1 H, NCHHCH₃), 4.71 (q, J = 7.2 Hz, 2 H, NCH₂CH₃), 5.23 (q, J = 7.2 Hz, 1 H, NCHHCH₃), 7.34–7.42 (m, 2 H, ArH), 7.49 (t, J = 7.5 Hz, 1 H, ArH), 7.56–7.62 (m, 2 H, ArH), 7.68 (d, J = 4.6 Hz, 1 H, ArH), 8.00 (d, J = 7.8 Hz, 1 H, ArH), 8.10 (d, J = 6.4 Hz, 2 H, ArH), 8.27 (d, J = 7.7 Hz, 1 H, ArH), 8.91 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 14.8, 15.0, 40.3, 41.2, 53.0, 53.1, 110.1, 114.1, 117.0, 117.7, 120.5, 121.2, 121.9, 122.1, 122.9, 123.0, 125.6, 126.5, 127.8, 129.8, 130.0, 131.3, 132.1, 134.2, 134.4, 134.8, 137.0, 139.5, 142.0, 143.7, 161.7, 165.2 ppm; HRMS (ESI) m/z: calcd. for C₃₂H₂₇N₅O₄ [M + H⁺]: 546.2141, found: 546.2137.

Methyl 3-(3-(methoxycarbonyl)-9-propyl-9*H*-pyrido[3,4-*b*]indol-1-yl)-11-propyl-11*H*imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (4c). Yield: 88% (0.34 g from 0.20 g) as a yellow solid; m.p. 202-204 °C; $R_f = 0.38$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1712 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 0.65$ (t, J = 7.4 Hz, 3 H, NCH₂CH₂CH₃), 1.08 (t, J = 7.4 Hz, 3 H, NCH₂CH₂CH₃), 1.56–1.61 (m, 1 H, NCH₂CHHCH₃), 1.71–1.75 (m, 1 H, NCH₂CHHCH₃), 2.01– 2.07 (m, 2 H, NCH₂CH₂CH₃), 3.24 (s, 3 H, CO₂CH₃), 4.00 (s, 3 H, CO₂CH₃), 4.29–4.36 (m, 1 H, NCHHCH₂CH₃), 4.57 (q, J = 6.8 Hz, 2 H, NCH₂CH₂CH₃), 5.18–5.25 (m, 1 H, NCHHCH₂CH₃), 7.32 (d, J= 7.4 Hz, 1 H, ArH), 7.39 (d, J = 7.5 Hz, 1 H, ArH), 7.45 (d, J = 7.8 Hz, 1 H, ArH), 7.54–7.60 (m, 2 H, ArH), 7.66 (t, J = 7.5 Hz, 1 H, ArH), 7.96 (d, J = 7.7 Hz, 1 H, ArH), 8.04 (s, 1 H, ArH), 8.06 (s, 1 H, ArH), 8.25 (d, J = 7.8 Hz, 1 H, ArH), 8.91 (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 11.5$, 11.6, 22.4, 23.4, 46.8, 46.9, 51.8, 52.7, 110.0, 110.5, 110.8, 115.6, 117.6, 119.5, 119.7, 120.4, 120.8, 121.3, 121.6, 121.7, 123.5, 124.7, 124.8, 129.1, 131.2, 131.9, 135.6, 136.2, 138.3, 139.6, 143.0, 163.5, 166.5 ppm; HRMS (ESI) m/z: calcd. for C₃₄H₃₁N₅O₄ [M + H⁺]: 574.2454, found: 574.2451.

Methyl 11-benzyl-3-(9-benzyl-3-(methoxycarbonyl)-9H-pyrido[3,4-b]indol-1-yl)-11Himidazo[1',5':1,2]pyrido[3,4-b]indole-5-carboxylate (4d). Yield: 72% (0.28 g from 0.20 g) as a yellow solid; m.p. 163-165 °C; $R_f = 0.50$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1710 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) δ = 3.03 (s, 3 H, CO₂CH₃), 4.00 (s, 3 H, CO₂CH₃), 5.43–5.67 (m, 2 H, CH₂Ph), 5.88 (d, *J* = 5.1 Hz, 2 H, CH₂Ph), 6.69–6.71 (m, 1 H, ArH), 6.76 (d, *J* = 7.4 Hz, 2 H, ArH), 6.92 (dd, J_1 = 13.0 Hz, J_2 = 5.3 Hz, 3 H, ArH), 7.15 (d, *J* = 7.6 Hz, 2 H, ArH), 7.31 (d, *J* = 7.4 Hz, 2 H, ArH), 7.39 (d, *J* = 9.7 Hz, 2 H, ArH), 7.43–7.47 (m, 1 H, ArH), 7.50–7.56 (m, 3 H, ArH), 8.92 (s, 1 H, ArH), 7.85 (s, 1 H, ArH), 8.02 (d, *J* = 7.4 Hz, 1 H, ArH), 8.28 (d, *J* = 7.9 Hz, 1 H, ArH), 8.92 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 48.7, 48.9, 51.5, 52.7, 110.1, 110.9, 111.3, 115.7, 117.4, 119.8, 120.9, 121.2, 121.7, 121.8, 123.6, 124.6, 125.2, 126.1, 126.7, 127.2, 128.0, 128.2, 128.6, 129.3, 129.4, 131.5, 132.1, 135.2, 136.1, 137.5, 139.9, 143.3, 163.0, 166.4 ppm; HRMS (ESI) m/z: calcd. for C₄₂H₃₁N₅O₄ [M + H⁺]: 670.2454, found: 670.2464.

Methyl 11-allyl-3-(9-allyl-3-(methoxycarbonyl)-9*H*-pyrido[3,4-*b*]indol-1-yl)-11*H*-imidazo [1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (4e). Yield: 75% (0.29 g from 0.20 g) as an orange red solid; m.p. 207-209 °C; $R_f = 0.40$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1709 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 3.28$ (s, 3 H, CO₂CH₃), 4.01 (s, 3 H, CO₂CH₃), 4.83–4.94 (m, 3 H, NCH₂ and =C*H*H), 4.99 (d, *J* = 17.4 Hz, 1 H, =CH*H*), 5.28 (d, *J* = 9.8 Hz, 3 H, NCH₂ and =C*H*H), 5.83–5.90 (m, 2 H, =CH*H* and CH₂C*H*), 6.14–6.20 (m, 1 H, CH₂C*H*), 7.37–7.42 (m, 2 H, ArH), 7.45–7.50 (m, 2 H, ArH), 7.59 (d, *J* = 8.3 Hz, 1 H, ArH), 7.66 (t, *J* = 7.6 Hz, 1 H, ArH), 8.00 (d,

J = 7.8 Hz, 1 H, ArH), 8.03 (s, 1 H, ArH), 8.09 (s, 1 H, ArH), 8.27 (d, *J* = 7.9 Hz, 1 H, ArH), 8.92 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 47.3, 48.0, 51.8, 52.7, 110.0, 110.7, 111.2, 115.6, 117.0, 117.5, 117.7, 119.7, 119.9, 120.7, 121.1, 121.6, 121.7, 121.9, 123.6, 124.5, 125.0, 129.2, 131.4, 131.6, 132.0, 133.2, 135.2, 136.0, 139.6, 142.9, 163.4, 166.5 ppm; HRMS (ESI) m/z: calcd. for C₃₄H₂₇N₅O₄ [M + H⁺]: 570.2063, found: 570.2088.

Methyl 3-(3-(methoxycarbonyl)-9-(prop-2-yn-1-yl)-9*H*-pyrido[3,4-*b*]indol-1-yl)-11-(prop-2-yn-1-yl)-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (4f). Yield: 57% (0.22 g from 0.20 g) as an orange red solid; m.p. 188-190 °C; $R_f = 0.40$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1714 (CO₂CH₃);¹H NMR (500 MHz, CDCl₃) $\delta = 2.05$ (d, J = 2.6 Hz, 1 H, C≡CH), 2.42 (t, J = 2.3 Hz, 1 H, C≡CH), 3.24 (s, 3 H, CO₂CH₃), 4.02 (s, 3 H, CO₂CH₃), 5.30–5.37 (m, 3 H, NC*H*H and NCH₂), 6.10 (d, J = 15.5 Hz, 1 H, NCH*H*), 7.39 (t, J = 7.5 Hz, 1 H, ArH), 7.43–7.46 (m, 1 H, ArH), 7.52 (t, J = 7.4 Hz, 1 H, ArH), 7.62 (d, J = 8.2 Hz, 1 H, ArH), 7.71 (t, J = 2.6 Hz, 2 H, ArH), 7.99 (d, J = 8.3 Hz, 1 H, ArH), 8.08 (s, 1 H, ArH), 8.27 (t, J = 3.9 Hz, 2 H, ArH), 8.90 (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = spectra could not be recorded due to solubility problem in CDCl₃ & DMSO-*d*₆; MS (ES): *m*/*z* (%) = 566.0 (100) [M+1]⁺; C₃₄H₂₃N₅O₄ (565.1750): calcd. for C 72.20, H 4.10, N 12.38; found for C 72.29, H 4.12, N 12.42. HRMS (ESI) m/z: calcd. for C₃₄H₂₃N₅O₄ [M + H⁺]: 566.1828, found: 566.1827.

Methyl 11-(2-ethoxy-2-oxoethyl)-3-(9-(2-ethoxy-2-oxoethyl)-3-(methoxycarbonyl)-9*H*pyrido[3,4-*b*]indol-1-yl)-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (4g). Yield: 82% (0.32 g from 0.20 g) as an orange red solid; m.p. 237-239 °C; $R_f = 0.35$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1726 (CO₂CH₂CH₃), 1713 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 1.25$ (t, J = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃), 3.23 (s, 3 H, CO₂CH₃), 4.02 (s, 3 H, CO₂CH₃), 4.05 (s, 1 H, NC*H*H), 4.08 (s, 2 H, NCH₂), 4.13 (s, 1 H, NCH*H*), 5.21–5.40 (m, 4 H, 2 x CO₂CH₂CH₃), 7.38 (t, J =6.4 Hz, 1 H, ArH), 7.44–7.49 (m, 3 H, ArH), 7.67 (t, J = 7.4 Hz, 2 H, ArH), 7.99 (s, 1 H, ArH), 7.92 (s, 1 H, ArH), 8.27 (d, J = 7.7 Hz, 2 H, ArH), 8.91 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) $\delta =$ 14.1, 14.3, 46.9, 47.6, 51.7, 52.8, 61.5, 62.4, 109.6, 110.4, 111.5, 115.6, 117.5, 119.1, 119.9, 121.6, 121.9, 122.0, 123.6, 124.8, 125.4, 129.6, 131.4, 132.4, 135.2, 136.6, 138.2, 139.8, 143.4, 163.2, 166.2, 167.7, 168.5 ppm; HRMS (ESI) m/z: calcd. for C₃₆H₃₁N₅O₈ [M + H⁺]: 662.2251, found: 662.2243.

Ethyl 3-(3-(ethoxycarbonyl)-9-methyl-9*H***-pyrido[3,4-***b***]indol-1-yl)-11-methyl-11***H***-imidazo [1',5':1,2]pyrido[3,4-***b***]indole-5-carboxylate (4h). Yield: 90% (0.35 g from 0.20 g) as a yellow solid; m.p. >250 °C; R_f = 0.35 (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1711 (CO₂CH₂CH₃); ¹H NMR (400 MHz, CDCl₃) \delta = 0.96 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.46 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 3.77 (q, J = 7.1 Hz, 2 H, CO₂CH₂CH₃), 4.00 (s, 3 H, NCH₃), 4.22 (s, 3 H, NCH₃), 4.38–4.56 (m, 2 H, CO₂CH₂CH₃), 7.35 (t, J = 7.3 Hz, 1 H, ArH), 7.39 (t, J = 7.6 Hz, 1 H, ArH), 7.48 (t, J = 7.7 Hz, 1 H, ArH), 7.55 (d, J_1 = 8.3 Hz, J_2 = 2.8 Hz, 2 H, ArH), 7.66 (d, J = 7.3 Hz, 1 H, ArH), 7.97 (d, J = 7.8 Hz, 1 H, ArH), 8.02 (s, 1 H, ArH), 8.17 (s, 1 H, ArH), 8.25 (d, J = 7.8 Hz, 1 H, ArH), 8.88** (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 13.9, 14.6, 32.0, 33.3, 61.3, 61.5, 109.8, 110.3, 110.5, 115.6, 117.4, 119.7, 120.5, 120.8, 121.3, 121.6, 121.7, 123.5, 124.8, 124.9, 129.1, 131.5, 131.9, 135.9, 136.2, 136.5, 138.7, 139.9, 143.6, 163.1, 165.9 ppm; HRMS (ESI) m/z: calcd. for $C_{32}H_{27}N_5O_4$ [M + H⁺]: 546.2141, found: 546.2110.

Ethyl 3-(3-(ethoxycarbonyl)-9-ethyl-9*H*-pyrido[3,4-*b*]indol-1-yl)-11-ethyl-11*H*-imidazo [1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (4i). Yield: 80% (0.31 g from 0.20 g) as a yellow solid; m.p. 200-202 °C; $R_f = 0.40$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1712 (CO₂CH₂CH₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 0.98$ (t, *J* = 7.0 Hz, 3 H, NCH₂CH₃), 1.26 (t, *J* = 7.1 Hz, 3 H, NCH₂CH₃), 1.46 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.63 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 3.66 (q, *J* = 7.1 Hz, 1 H, NCHHCH₃), 3.84 (q, *J* = 7.1 Hz, 1 H, NCHHCH₃), 4.39 (q, *J* = 7.0 Hz, 1 H, NCHHCH₃), 4.51 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), 4.71 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), 5.23 (q, *J* = 7.1 Hz, 1 H, NCHHCH₃), 7.34–7.41 (m, 2 H, ArH), 7.48 (t, *J* = 7.3 Hz, 1 H, ArH), 7.56–7.61 (m, 2 H, ArH), 7.67 (t, *J* = 7.6 Hz, 1 H, ArH), 8.02 (d, *J* = 7.8 Hz, 1 H, ArH), 8.08 (s, 1 H, ArH), 8.11 (s, 1 H, ArH), 8.27 (d, *J* = 7.8 Hz, 1 H, ArH), 8.89 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 14.0, 14.2, 14.6, 15.1, 40.1, 40.2, 61.2, 61.5, 109.7, 110.6, 115.5, 117.4, 119.4, 119.8, 120.7, 120.8, 121.3, 121.8, 122.0, 123.7, 124.5, 124.8, 129.0, 130.8, 132.0, 134.9, 136.1, 136.2, 138.8, 139.0, 142.6, 163.0, 165.9 ppm; HRMS (ESI) m/z: calcd. for C₃₄H₃₁N₅O₄ [M + H⁺]: 574.2454, found: 574.2502.

Isopropyl 3-(3-(isopropoxycarbonyl)-9-methyl-9*H***-pyrido[3**,**4**-*b*]indol-1-yl)-11-methyl-11*H*imidazo[**1**',**5**':**1**,**2**]pyrido[**3**,**4**-*b*]indole-5-carboxylate (4j). Yield: 85% (0.33 g from 0.20 g) as a yellow solid; m.p. >250 °C; $R_f = 0.45$ (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1710 (CO₂*i*-Pr); ¹H NMR (400 MHz, CDCl₃) $\delta = 0.98$ (d, J = 5.6 Hz, 3 H, CO₂CH(CH₃)₂), 1.08 (d, J = 5.6 Hz, 3 H, CO₂CH(CH₃)₂), 1.41 (d, J = 6.2 Hz, 3 H, CO₂CH(CH₃)₂), 1.43 (d, J = 6.2 Hz, 3 H, CO₂CH(CH₃)₂), 4.00 (s, 3 H, NCH₃), 4.26 (s, 3 H, NCH₃), 4.58–4.65 (m, 1 H, CO₂CH), 5.27–5.33 (m, 1 H, CO₂CH), 7.33–7.38 (m, 2 H, ArH), 7.48 (t, J = 7.6 Hz, 1 H, ArH), 7.56 (d, J = 8.3 Hz, 2 H, ArH), 7.67 (t, J = 7.5Hz, 1 H, ArH), 8.01 (d, J = 6.2 Hz, 2 H, ArH), 8.18 (s, 1 H, ArH), 8.26 (d, J = 7.8 Hz, 1 H, ArH), 8.83 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) $\delta = 21.4$, 21.6, 22.2, 32.0, 33.1, 68.8, 69.1, 109.9, 110.2, 110.5, 115.6, 117.4, 119.5, 119.7, 120.7, 121.3, 121.7, 121.8, 123.5, 124.7, 129.0, 131.4, 131.8, 135.9, 136.5, 136.7, 139.0, 139.9, 143.6, 162.5, 165.2 ppm; HRMS (ESI) m/z: calcd. for C₃₄H₃₁N₅O₄ [M + H⁺]: 574.2454, found: 574.2452.

11-methyl-3-(9-methyl-9H-pyrido[3,4-b]indol-1-yl)-11H-imidazo[1',5':1,2]pyrido[3,4-b]indole

(4k). Yield: 91% (0.052 g from 0.030 g) as a yellow solid; m.p. 202-204 °C; $R_f = 0.35$ (hexane/EtOAc, 70:30, v/v); ¹H NMR (400 MHz, CDCl₃) $\delta = 3.66$ (s, 3 H, NCH₃), 4.23 (s, 3 H, NCH₃), 7.27–7.37 (m, 3 H, ArH), 7.43–7.52 (m, 3 H, ArH), 7.63 (t, J = 7.5 Hz, 1 H, ArH), 7.95 (d, J = 7.7 Hz, 1 H, ArH), 8.04 (s, 1 H, ArH), 8.08 (d, J = 4.4 Hz, 1 H, ArH), 8.19 (d, J = 7.6 Hz, 1 H, ArH), 8.40 (d, J = 7.1 Hz, 1 H, ArH), 8.62 (d, J = 4.2 Hz, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 31.8$, 32.7, 107.9, 109.4, 110.1, 110.7, 115.0, 116.2, 117.5, 119.5, 120.1, 120.4, 121.1, 121.6,

123.1, 124.1, 128.9, 129.7, 131.4, 133.6, 136.2, 136.5, 138.4, 139.3, 143.2 ppm; HRMS (ESI) m/z: calcd. for $C_{26}H_{19}N_5$ [M + H⁺]: 402.1719, found: 402.1733.

11-ethyl-3-(9-ethyl-9H-pyrido[3,4-b]indol-1-yl)-11H-imidazo[1',5':1,2]pyrido[3,4-b]indole (4l). Yield: 90% (0.103 g from 0.06 g) as a yellow solid; m.p. 166-168 °C; $R_f = 0.40$ (hexane/EtOAc, 70:30, v/v); ¹H NMR (400 MHz, CDCl₃) $\delta = 0.95$ (t, J = 7.1 Hz, 3 H, NCH₂CH₃), 1.62 (t, J = 7.2 Hz, 3 H, NCH₂CH₃), 4.38 (q, J = 7.1 Hz, 2 H, NCH₂CH₃), 4.69 (q, J = 7.2 Hz, 2 H, NCH₂CH₃), 7.29 (d, J = 6.7Hz, 3 H, ArH), 7.45 (d, J = 6.5 Hz, 1 H, ArH), 7.52 (dd, $J_1 = 18.9$ Hz, $J_2 = 7.6$ Hz, 2 H, ArH), 7.62 (d, J = 8.1 Hz, 1 H, ArH), 7.97 (d, J = 7.9 Hz, 2 H, ArH), 8.12 (s, 1 H, ArH), 8.21–8.26 (m, 2 H, ArH), 8.64 (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.8$, 15.3, 39.6, 40.0, 107.9, 109.3, 110.2, 110.9, 115.2, 116.0, 117.2, 119.6, 120.1, 120.4, 121.4, 121.7, 123.4, 123.6, 124.1, 128.7, 128.8, 131.7, 133.4, 135.2, 136.7, 138.4, 142.1 ppm; HRMS (ESI) m/z: calcd. for C₂₈H₂₃N₅ [M + H⁺]: 430.3032, found: 430.3009.

General procedure for the synthesis of compounds 1aA-aC, 1fB, 1aE-aH, 1bE, 1dE, 1fE, 1fI, DD, DE, DG, JJ, 2aK and 2DK as exemplified for methyl 11-methyl-3-propyl-11*H*imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1aG): To a stirred solution of *n*butyraldehyde (G) (0.13 mL, 1.49 mmol) and ammonium acetate (0.144 g, 1.86 mmol) in acetic acid, methyl 1-formyl-9-methyl-9*H*-pyrido[3,4-*b*]indole-3-carboxylate 1a (0.20 g, 0.746 mmol) was added at room temperature and the reaction was continued for 2 h. After the completion of reaction as monitored by TLC, the excess of acetic acid was evaporated under reduced pressure. The crude product was purified through silica gel (60-120 mesh) column chromatography by using hexane: ethyl acetate (80:20, v/v) as an eluent to obtain 1aG as the yellow solid (0.17 g, 71%; R_f = 0.35 (hexane/EtOAc, 70:30, v/v).

Methyl 11-methyl-3-phenyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1aA).^{Ref.} ² Yield: 49% (0.13 g from 0.20 g) as a pale yellow solid; m.p. 147-149 °C (Reported m. p. 148-149 °C); R_f = 0.35 (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 1712 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) δ = 3.25 (s, 3 H, NCH₃), 4.22 (s, 3 H, CO₂CH₃), 7.34 (t, *J* = 7.6 Hz, 1 H, ArH), 7.41 (d, *J* = 7.4 Hz, 1 H, ArH), 7.47–7.53 (m, 4 H, ArH), 7.67 (d, *J* = 7.2 Hz, 2 H, ArH), 7.93 (s, 1 H, ArH), 7.96 (s, 1 H, ArH), 8.09 (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 31.8, 51.6, 109.2, 109.6, 116.8, 119.3, 119.4, 119.9, 121.4, 123.3, 124.3, 124.6, 126.1, 128.6, 128.8, 132.3, 133.3, 139.7, 142.8, 163.4 ppm; HRMS (ESI) m/z: calcd. for C₂₂H₁₇N₃O₂ [M + H⁺]: 356.1321, found: 356.1178.

Methyl 3-(2-hydroxyphenyl)-11-methyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5carboxylate (1aB). Yield: 61% (0.17 g from 0.20 g) as a yellow solid; m.p. >250 °C; $R_f = 0.30$ (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 3028 (OH), 1710 (CO₂CH₃); ¹H NMR (600 MHz, CDCl₃) δ = 3.40 (s, 3 H, CO₂CH₃), 4.18 (s, 3 H, NCH₃), 6.91 (t, *J* = 7.4 Hz, 1 H, ArH), 7.17 (d, *J* = 8.1 Hz, 1 H, ArH), 7.26–7.29 (m, 1 H, ArH), 7.35 (t, *J* = 7.0 Hz, 1 H, ArH), 7.37 (d, *J* = 7.7 Hz, 1 H, ArH), 7.47 (t, *J* = 7.6 Hz, 1 H, ArH), 7.50 (d, *J* = 8.2 Hz, 1 H, ArH), 7.93 (d, *J* = 7.7 Hz, 1 H, ArH), 8.04 (s, 1 H, ArH), 8.05 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 32.1, 52.2, 109.8, 109.9, 117.2, 117.7, 118.0, 118.5, 119.1, 119.6, 120.1, 121.8, 123.5, 123.8, 124.0, 125.0, 130.2, 132.5, 139.9, 154.9, 163.4 ppm; HRMS (ESI) m/z: calcd. for C₂₂H₁₇N₃O₃ [M + H⁺]: 372.1348, found: 372.1308.

Methyl 3-(4-fluorophenyl)-11-methyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1aC).^{Ref. 2} Yield: 50% (0.14 g from 0.20 g) as a pale yellow solid; m.p. 112-114 °C (Reported m.p. 111-112 °C); $R_f = 0.40$ (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 1711 (CO₂CH₃); The similar ¹H and ¹³C-NMR spectrum was obtained as reported in Ref 17. MS (ES): *m/z* (%) = 374.2 (100) [M+1]⁺; C₂₂H₁₆FN₃O₂ (373.1227).

Methyl 3-(2-hydroxyphenyl)-11-(prop-2-yn-1-yl)-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5carboxylate (1fB). Yield: 67% (0.18 g from 0.20 g) as a yellow solid; m.p. 186-188 °C; R_f = 0.35 (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 3271 (OH), 1711 (CO₂CH₃); ¹H NMR (600 MHz, CDCl₃) δ = 2.43 (s, 1 H, C≡CH), 3.40 (s, 3 H, CO₂CH₃), 5.30 (s, 2 H, NCH₂), 6.92 (t, *J* = 7.4 Hz, 1 H, ArH), 7.17 (d, *J* = 8.2 Hz, 1 H, ArH), 7.28 (d, *J* = 5.2 Hz, 1 H, ArH), 7.39 (d, *J* = 7.4 Hz, 2 H, ArH), 7.50 (t, *J* = 7.5 Hz, 1 H, ArH), 7.58 (d, *J* = 8.3 Hz, 1 H, ArH), 7.96 (d, *J* = 7.6 Hz, 1 H, ArH), 8.05 (s, 1 H, ArH), 8.15 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 34.8, 52.2, 74.6, 76.7, 109.8, 110.6, 117.1, 117.6, 117.7, 119.1, 119.8, 120.9, 122.3, 123.4, 123.7, 123.8, 125.4, 130.2, 131.6, 139.0, 141.3, 154.9, 163.3 ppm; HRMS (ESI) m/z: calcd. for C₂₄H₁₇N₃O₃ [M + H⁺]: 396.1348, found: 396.1344.

Methyl 11-methyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1aE). ^{Ref.2} Yield: 48% (0.10 g from 0.20 g) as a light yellow solid; m.p. 178-180 °C (Reported m.p. 177-178 °C); R_f = 0.20 (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 1708 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) δ = 4.03 (s, 3 H, NCH₃), 4.11 (s, 3 H, CO₂CH₃), 7.35 (t, *J* = 7.8 Hz, 1 H, ArH), 7.46–7.49 (m, 2 H, ArH), 7.94 (d, *J* = 7.4 Hz, 2 H, ArH), 8.29 (s, 1 H, ArH), 9.57 (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 31.5, 52.4, 108.7, 109.6, 115.8, 116.8, 118.2, 119.2, 121.4, 123.0, 124.7, 131.6, 132.6, 139.5, 162.6 ppm; HRMS (ESI) m/z: calcd. for C₁₆H₁₃N₃O₂ [M + H⁺]: 280.1008, found: 280.0950.

Methyl 3,11-dimethyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1aF).^{Ref. 2} Yield: 53% (0.115 g from 0.20 g) as a light brown solid; m.p. 169-171 °C, (Reported m.p. 168– 169 °C); $R_f = 0.25$ (hexane/ EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 2927, 2835, 2120, 1912, 1706, 1470, 1353; The similar ¹H and ¹³C-NMR spectrum was obtained as reported in Ref 17. MS (ES): m/z (%) = 294.1 (100) [M+1]⁺; C₁₇H₁₅N₃O₂ (293.1164).

Methyl 11-methyl-3-propyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1aG). Yield: 71% (0.17 g from 0.20 g) as a yellow solid; m.p. 95-96 °C; $R_f = 0.35$ (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 1711 (CO₂CH₃); ¹H NMR (600 MHz, CDCl₃) δ = 0.96 (s, 3 H, CH₂CH₂CH₃), 1.83 (d, J = 6.1 Hz, 2 H, CH₂CH₂CH₃), 2.97 (s, 2 H, CH₂CH₂CH₃), 4.03 (s, 6 H, NCH₃ and CO₂CH₃), 7.28 (s, 1 H, ArH), 7.41 (s, 2 H, ArH), 7.84 (d, J = 6.4 Hz, 1 H, ArH), 7.89 (s, 1 H, ArH), 7.92 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) $\delta = 14.1$, 20.2, 31.8, 32.6, 52.7, 108.3, 109.6, 117.2, 118.3, 118.4, 119.2, 121.3, 123.4, 124.4, 132.9, 139.6, 144.5, 163.3 ppm; HRMS (ESI) m/z: calcd. for C₁₉H₁₉N₃O₂ [M + H⁺]: 322.1556, found: 322.1557.

Methyl 3-isopropyl-11-methyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1aH).^{Ref 2} Yield: 54% (0.13 g from 0.20 g) as a pale yellow solid; m.p. 124-126 °C; R_f = 0.50 (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 1703 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) δ = 1.38 (d, *J* = 6.7 Hz, 6 H, CH(CH₃)₂), 3.40–3.50 (m, 1 H, CH(CH₃)₂), 4.03 (s, 3 H, NCH₃), 4.15 (s, 3 H, CO₂CH₃), 7.31 (t, *J* = 7.4 Hz, 1 H, ArH), 7.42 (t, *J* = 7.4 Hz, 1 H, ArH), 7.48 (d, *J* = 8.2 Hz, 1 H, ArH), 7.90 (d, *J* = 7.8 Hz, 1 H, ArH), 7.97 (s, 1 H, ArH), 7.98 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 21.2, 28.6, 31.9, 52.8, 108.2, 109.6, 117.3, 118.7, 119.2, 121.4, 123.4, 123.6, 124.4, 133.0, 139.7, 149.7, 163.8 ppm; MS (ES): *m/z* (%) = 322.1 (100) [M+1]⁺; C₁₉H₁₉N₃O₂(321.1477): calcd. for C 71.01, H 5.96, N 13.08; found for C 71.11, H 5.99, N 13.13.

Methyl 11-ethyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1bE). Yield: 53% (0.11 g from 0.20 g) as a yellow solid; m.p. 189-191 °C; $R_f = 0.25$ (hexane/EtOAc, 50:50, v/v); IR (neat): v_{max} (cm⁻¹) = 1698 (CO₂CH₃); ¹H NMR (400 MHz, CDCl₃) δ = 1.53 (d, *J* = 7.2 Hz, 3 H, NCH₂CH₃), 4.02 (s, 3 H, CO₂CH₃), 4.50 (q, *J* = 7.2 Hz, 2 H, NCH₂CH₃), 7.33 (t, *J* = 6.8 Hz, 1 H, ArH), 7.43–7.49 (m, 2 H, ArH), 7.85 (s, 1 H, ArH), 7.92 (t, *J* = 9.2 Hz, 1 H, ArH), 8.27 (s, 1 H, ArH), 9.55 (s, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 14.8, 40.1, 52.5, 109.2, 109.7, 116.2, 117.0, 119.0, 119.5, 121.6, 122.1, 123.6, 124.8, 132.2, 138.9, 163.1 ppm; HRMS (ESI) m/z: calcd. for C₁₇H₁₅N₃O₂ [M + H⁺]: 294.1243, found: 294.1251.

Methyl 11-benzyl-11*H***-imidazo[1',5':1,2]pyrido[3,4-***b***]indole-5-carboxylate** (**1dE**). ^{Ref.2} Yield: 48% (0.10 g from 0.20 g) as a light brown solid; m.p. 154-156 ° C (Reported m.p. 156–157 °C); R_f = 0.25 (hexane/EtOAc, 50:50, v/v); IR (neat): v_{max} (cm⁻¹) = 2926, 2840, 2121, 1708, 1504, 1434, 1359, 1231, 1134, 912, 793, 742, 650; The similar ¹H and ¹³C-NMR spectrum was obtained as reported in Ref 17. MS (ES): m/z (%) = 356.1 (100) [M+1]⁺; C₂₂H₁₇N₃O₂ (355.1321).

Methyl 11-(prop-2-yn-1-yl)-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (1fE). Yield: 43% (0.09 g from 0.20 g) as a yellow solid; m.p. 249-251 °C; R_f = 0.25 (hexane/EtOAc, 50:50, v/v); IR (neat): v_{max} (cm⁻¹) = 1698 (CO₂CH₃); ¹H NMR (600 MHz, CDCl₃) δ = 2.41 (s, 1 H, C=CH), 4.06 (s, 3 H, CO₂CH₃), 5.30 (s, 2 H, NCH₂), 7.39 (t, *J* = 7.2 Hz, 1 H, ArH), 7.50 (t, *J* = 7.5 Hz, 1 H, ArH), 7.59 (d, *J* = 8.5 Hz, 1 H, ArH), 7.99 (d, *J* = 7.7 Hz, 1 H, ArH), 8.08 (s, 1 H, ArH), 8.40 (s, 1 H, ArH), 9.66 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 34.8, 52.6, 74.4, 109.7, 109.8, 116.8, 117.2, 119.7, 119.8, 125.2, 132.6, 139.0, 163.1 ppm; HRMS (ESI) m/z: calcd. for C₁₈H₁₃N₃O₂ [M + H⁺]: 304.1086, found: 304.1082. **3-Ethyl 5-methyl 11-(prop-2-yn-1-yl)-11***H***-imidazo[1',5':1,2]pyrido[3,4-***b***]indole-3,5dicarboxylate (1fl). Yield: 35% (0.09 g from 0.20 g) as a yellow solid; m.p. 198-200 °C; R_f = 0.35 (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 1714 (CO₂CH₃ and CO₂CH₂CH₃); ¹H NMR (400 MHz, CDCl₃) \delta = 1.48 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 2.40 (s, 1 H, C=CH), 3.97 (s, 3 H, CO₂CH₃), 4.50 (q, J = 7.1 Hz, 2 H, CO₂CH₂CH₃), 5.29 (s, 2 H, NCH₂), 7.38 (t, J = 7.3 Hz, 1 H, ArH), 7.52 (t, J = 7.6 Hz, 1 H, ArH), 7.58 (d, J = 8.2 Hz, 1 H, ArH), 7.97 (d, J = 7.8 Hz, 1 H, ArH), 8.09 (d, J = 8.1 Hz, 2 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) \delta = 14.5, 34.8, 52.6, 62.0, 74.7, 76.6, 109.9, 112.5, 115.9, 120.1, 120.8, 121.3, 122.2, 123.2, 125.3, 126.0, 130.4, 133.6, 139.1, 160.3, 163.9 ppm; HRMS (ESI) m/z: calcd. for C₂₁H₁₇N₃O₄ [M + H⁺]: 376.1297, found: 376.1265.**

3-(Pyridin-2-yl)imidazo[1,5-*a***]pyridine (DD).** ^{Ref. 3} Yield: 73% (0.20 g from 0.15 g) as a pale yellow solid; m.p. 105-106 °C (Reported m.p. 105-107 °C); $R_f = 0.20$ (hexane/EtOAc, 90:10, v/v); IR (neat): v_{max} (cm⁻¹) = 2927, 2858, 2119, 1585, 1492, 1249; ¹H NMR (600 MHz, CDCl₃) $\delta = 6.71$ (t, J = 6.7 Hz, 1 H, ArH), 6.84 (t, J = 7.1 Hz, 1 H, ArH), 7.17 (t, J = 5.8 Hz, 1 H, ArH), 7.52 (d, J = 9.0 Hz, 1 H, ArH), 7.59 (s, 1 H, ArH), 7.76 (t, J = 7.7 Hz, 1 H, ArH), 8.34 (d, J = 8.0 Hz, 1 H, ArH), 8.62 (d, J = 2.2 Hz, 1 H, ArH), 9.95 (d, J = 7.1 Hz, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) $\delta = 113.6$, 118.1, 120.2, 121.1, 121.6, 121.8, 126.1, 133.0, 135.5, 136.6, 148.2, 151.2 ppm; HRMS (ESI) m/z: calcd. for C₁₂H₉N₃ [M + H⁺]: 196.0875, found: 196.0877.

Imidazo[1,5-*a***]pyridine (DE).** Yield: 77% (0.34 g from 0.40 g) as a brown oil; $R_f = 0.25$ (hexane/EtOAc, 50:50, v/v); IR (neat): v_{max} (cm⁻¹) = 3124, 2496, 1708, 1366, 1250, 1111; ¹H NMR (600 MHz, CDCl₃) δ = 6.55 (t, J = 6.6 Hz, 1 H, ArH), 6.69 (t, J = 7.9 Hz, 1 H, ArH), 7.39–7.42 (m, 2 H, ArH), 7.90 (d, J = 7.0 Hz, 1 H, ArH), 8.17 (s, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 113.2, 118.5, 119.0, 119.5, 122.3, 127.5, 130.3 ppm; HRMS (ESI) m/z: calcd. for C₇H₆N₂ [M + H⁺]: 119.0609, found: 119.0600.

3-Propylimidazo[1,5-*a***]pyridine (DG).** ^{Ref. 3} Yield: 57% (0.17 g from 0.20 g) as a brown oil; R_f = 0.30 (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 2966, 2877, 1709, 1364, 1254, 1045; ¹H NMR (600 MHz, CDCl₃) δ = 1.00 (t, *J* = 7.2 Hz, 3 H, CH₂CH₂CH₃), 1.81–1.87 (m, 2 H, CH₂CH₂CH₃), 2.94 (t, *J* = 7.3 Hz, 2 H, CH₂CH₂CH₃), 6.51 (t, *J* = 6.5 Hz, 1 H, ArH), 6.60–6.65 (m, 1 H, ArH), 7.35 (s, 1 H, ArH), 7.37 (d, *J* = 9.2 Hz, 1 H, ArH), 7.69 (d, *J* = 7.0 Hz, 1 H, ArH) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 14.0, 20.5, 28.3, 112.5, 117.9, 118.8, 120.6, 130.2, 138.8 ppm; MS (ES): *m/z* (%) = 161.0 (100) [M+1]⁺; C₁₀H₁₂N₂ (160.1000): calcd. for C 74.97, H 7.55, N 17.48; found for C 75.04, H 7.58, N 17.53.

7-Chloro-3-(4-chloropyridin-2-yl)imidazo[1,5-*a***]pyridine (JJ).** Yield: 54% (0.10 g from 0.10 g) as a pale yellow solid; m.p. 121-123 °C; $R_f = 0.60$ (hexane/EtOAc, 90:10, v/v); IR (neat): v_{max} (cm⁻¹) = 2927, 2113, 1576, 1488, 1357, 1254; ¹H NMR (400 MHz, CDCl₃) δ = 6.69 (dd, $J_1 = 7.7$ Hz, $J_2 = 2.0$ Hz, 1 H, ArH), 7.20 (dd, $J_1 = 5.4$ Hz, $J_2 = 1.9$ Hz, 1 H, ArH), 7.52 (s, 2 H, ArH), 8.35 (d, J = 1.9 Hz, 1 H, ArH), 8.49 (d, J = 5.4 Hz, 1 H, ArH), 9.87 (d, J = 7.7 Hz, 1 H, ArH) ppm;¹³C NMR (100 MHz,

CDCl₃) δ = 115.5, 116.6, 121.2, 121.7, 122.2, 126.9, 133.2, 134.7, 144.7, 149.3, 151.9 ppm; HRMS (ESI) m/z: calcd. for C₁₂H₇Cl₂N₃ [M + H⁺]: 264.0095, found: 264.0087.

6-bromo-3-(5-bromopyridin-2-yl)imidazo[1,5-*a***]pyridine (KK).** Yield: 37% (0.035 g from 0.05 g) as a light brown solid; m.p. 190-192 °C; $R_f = 0.57$ (hexane/EtOAc, 90:10, v/v); ¹H NMR (400 MHz, CDCl₃) $\delta = 6.93$ (d, J = 9.4 Hz, 1 H, ArH), 7.43 (d, J = 9.4 Hz, 1 H, ArH), 7.59 (s, 1 H, ArH), 7.88 (dd, $J_1 = 8.6$ Hz, $J_2 = 2.0$ Hz, 1 H, ArH), 8.20 (d, J = 8.6 Hz, 1 H, ArH), 8.68 (d, J = 1.3 Hz, 1 H, ArH), 10.03 (s, 1 H, ArH) ppm;¹³C NMR (100 MHz, CDCl₃) $\delta = 109.7$, 118.6, 118.9, 122.5, 123.1, 124.1, 125.9, 131.4, 134.8, 139.5, 148.9, 149.3 ppm; HRMS (ESI) m/z: calcd. for C₁₂H₇Br₂N₃ [M + H⁺]: 351.9085, found: 351.9109.

5-bromo-3-(6-bromopyridin-2-yl)imidazo[**1**,**5**-*a*]**pyridine (LL).** Yield: 32% (0.030 g from 0.05 g) as a pale yellow solid; m.p. 162-164 °C; R_f = 0.50 (hexane/EtOAc, 90:10, v/v); ¹H NMR (400 MHz, CDCl₃) δ = 6.64–6.72 (m, 1 H, ArH), 6.94 (d, *J* = 6.7 Hz, 1 H, ArH), 7.53 (t, *J* = 7.2 Hz, 2 H, ArH), 7.66 (t, *J* = 7.3 Hz, 2 H, ArH), 7.77 (d, *J* = 7.3 Hz, 1 H, ArH) ppm;¹³C NMR (100 MHz, CDCl₃) δ = 112.3, 117.8, 120.4, 120.5, 121.7, 124.5, 127.6, 138.4, 140.1, 151.9 ppm; HRMS (ESI) m/z: calcd. for C₁₂H₇Br₂N₃ [M + H⁺]: 351.9085, found: 351.9098.

Methyl 3-formyl-11-methyl-11*H*-imidazo[1',5':1,2]pyrido[3,4-*b*]indole-5-carboxylate (2aK). Yield: 74% (0.17 g from 0.20 g) as a light brown solid; m.p. 193-194 °C; $R_f = 0.25$ (hexane/EtOAc, 50:50, v/v); IR (neat): v_{max} (cm⁻¹) = 1720 (CO₂CH₃), 1690 (CHO); ¹H NMR (600 MHz, CDCl₃) δ = 3.87 (s, 3 H, NCH₃), 3.98 (s, 3 H, CO₂CH₃), 7.30 (t, *J* = 6.9 Hz, 1 H, ArH), 7.36 (d, *J* = 7.9 Hz, 1 H, ArH), 7.42 (t, *J* = 6.9 Hz, 1 H, ArH), 7.81 (d, *J* = 8.3 Hz, 2 H, ArH), 8.03 (s, 1 H, ArH), 9.47 (s, 1 H, CHO) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 31.6, 52.5, 108.9, 109.7, 116.0, 116.9, 118.5, 119.3, 121.6, 123.2, 124.8, 132.8, 139.7, 162.8, 175.3 ppm; MS (ES): *m/z* (%) = 308.1 (100) [M+1]⁺; C₁₇H₁₃N₃O₃ (307.0957): calcd. for C 66.44, H 4.26, N 13.67; found for C 66.53, H 4.28, N 13.70.

Imidazo[1,5-*a***]pyridine-3-carbaldehyde (2DK).** Yield: 82% (0.45 g from 0.40 g) as a grey solid; m.p. 60-62 °C; $R_f = 0.30$ (hexane/EtOAc, 80:20, v/v); IR (neat): v_{max} (cm⁻¹) = 1651 (CHO); ¹H NMR (600 MHz, CDCl₃) δ = 7.05 (t, J = 6.5 Hz, 1 H, ArH), 7.23-7.27 (m, 1 H, ArH), 7.72 (d, J = 8.9 Hz, 1 H, ArH), 7.75 (s, 1 H, ArH), 9.52 (d, J = 6.7 Hz, 1 H, ArH), 9.98 (s, 1 H, CHO) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 116.8, 118.1, 125.3, 125.5, 125.9, 135.1, 135.8, 179.8 ppm; MS (ES): m/z (%) = 147.1 (100) [M+1]⁺; C₈H₆N₂O (146.0480): calcd. for C 65.75, H 4.14, N 19.17; found for C 65.83, H 4.17, N 19.22.

General procedure for the synthesis of compound 6-7 as exemplified for 3-(pyridin-2-yl)imidazo[1,5-*a***]pyridine-1-carbaldehyde (7):** To a stirred solution of anhydrous DMF (3 mL) at 0 °C, POCl₃ (0.19 mL, 2.04 mmol) was added drop-wise and the reaction mixture was stirred for 10 min to prepare the Vilsmeier reagent. Thereafter, **DD** (0.20 g, 1.02 mmol) dissolved in DMF (2 mL) was added and the reaction mixture was stirred at room temperature for 10 min and then heated at 80 °C for 2 h. After completion of reaction as monitored by TLC, the reaction

content was poured into ice cold water and extracted with ethyl acetate, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to yield the crude solid product which was purified through column chromatography by using hexane/EtOAc (9:1, v/v) as an eluent to afford **7** as a light brown solid (0.15 g, 65%; Rf = 0.20 (hexane/EtOAc, 80:20, v/v).

Methyl 1-formyl-3-(3-(methoxycarbonyl)-9-methyl-9*H*-pyrido[3,4-*b*]indol-1-yl)-11-methyl-11*H*-imidazo[1',5':1,2] pyrido[3,4-*b*]indole-5-carboxylate (6). Yield: 76% (0.08 g from 0.10 g) as a yellow solid; m.p. >250 °C; R_f = 0.40 (hexane/EtOAc, 60:40, v/v); IR (neat): v_{max} (cm⁻¹) = 1710 (CO₂CH₃), 1677 (CHO); ¹H NMR (400 MHz, CDCl₃) δ = 3.33 (s, 3 H, CO₂CH₃), 4.01 (s, 3 H, NCH₃), 4.06 (s, 3 H, NCH₃), 4.30 (s, 3 H, CO₂CH₃), 7.42 (t, *J* = 7.7 Hz, 2 H, ArH), 7.60–7.64 (m, 4 H, ArH), 7.69 (d, *J* = 7 8 Hz, 1 H, ArH), 8.07 (d, *J* = 7.9 Hz, 1 H, ArH), 8.27 (s, 1 H, ArH), 8.95 (s, 1 H, ArH), 10.34 (s, 1 H, CHO) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 33.4, 35.8, 52.3, 52.8, 110.5, 111.3, 116.4, 117.2, 118.1, 120.3, 120.4, 121.2, 121.5, 121.8, 122.2, 122.7, 126.0, 127.1, 129.5, 131.9, 132.0, 132.3, 135.1, 135.9, 139.8, 142.7, 143.6, 163.0, 166.2, 185.3 ppm; HRMS (ESI) m/z: calcd. for C₃₁H₂₃N₅O₅ [M + H⁺]: 546.1777, found: 546.1782.

3-(Pyridin-2-yl)imidazo[1,5-*a***]pyridine-1-carbaldehyde (7).** Yield: 65% (0.15 g from 0.20 g) as a light brown solid; m.p. 141-143 °C; $R_f = 0.20$ (hexane/EtOAc, 80:20, v/v); IR (neat): v_{max} (cm⁻¹) = 3118, 2811, 2782, 2119, 1851, 1664, 1493, 1158; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.02$ (t, J = 6.9 Hz, 1 H, ArH), 7.29–7.38 (m, 2 H, ArH), 7.85 (t, J = 7.8 Hz, 1 H, ArH), 8.35–8.43 (m, 2 H, ArH), 8.66 (d, J = 4.7 Hz, 1 H, ArH), 10.15 (d, J = 7.1 Hz, 1 H, ArH), 10.17 (s, 1 H, CHO) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 116.0$, 119.2, 122.7, 123.1, 127.4, 127.6, 130.6, 135.7, 137.1, 148.4, 150.2, 186.1 ppm; HRMS (ESI) m/z: calcd. for C₁₃H₉N₃O [M + H⁺]: 224.0824, found: 224.0820.

General procedure for the synthesis of 1-(imidazo[1,5-*a***]pyridin-3-yl)but-3-en-1-ol (8).** To a stirred solution of allyl bromide (0.15 mL, 1.70 mmol) in 4 mL of THF:H₂O (1:1 v/v,), Indium powder (0.086 g, 0.75 mmol) and imidazo[1,5-*a*]pyridine-3-carbaldehyde **2DK** (0.10 g, 0.68 mmol) was added at room temperature and stirred the content for 20 min. After the completion of reaction as monitored by TLC, the reaction mixture was poured into water and extracted with ethyl acetate (2 x 10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to yield the crude product which was purified through column chromatography by using silica gel (60-120 mesh size) and hexane: ethyl acetate (7:3, v/v) as an eluent to afford **8** as a brown oil (0.085 g, 66%; R_f = 0.20 (hexane/EtOAc, 70:30, v/v).

1-(Imidazo[1,5-*a***]pyridin-3-yl)but-3-en-1-ol (8).** Yield: 66% (0.085 g from 0.100 g) as a brown oil; $R_f = 0.20$ (hexane/EtOAc, 70:30, v/v); IR (neat): v_{max} (cm⁻¹) = 3082, 2916, 2854, 1714, 1641, 1436, 1328, 1039; ¹H NMR (400 MHz, CDCl₃) $\delta = 2.89$ (t, J = 6.9 Hz, 2 H, CH₂), 5.13 (dd, $J_1 = 7.8$ Hz, $J_2 = 5.1$ Hz, 2 H, CHOH and CHOH), 5.16–5.22 (m, 2 H, =CHH), 5.88–5.93 (m, 1 H, CHCH₂), 6.56 (t, J = 6.6 Hz, 1 H, ArH), 6.71 (dd, $J_1 = 9.1$ Hz, $J_2 = 6.4$ Hz, 1 H, ArH), 7.31 (s, 1 H, ArH), 7.40 (d, J = 9.1 Hz, 1 H, ArH), 8.15 (d, J = 7.1 Hz, 1 H, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 39.6$,

67.0, 112.5, 118.1, 118.5, 118.6, 118.9, 122.3, 131.3, 134.0, 139.2 ppm; MS (ES): *m/z* (%) = 189.2 (100) [M+1]⁺; C₁₁H₁₂N₂O (188.0950): calcd. for C 70.19, H 6.43, N 14.88; found for C 70.30, H 6.47, N 14.94.

References

- 1. D. Singh, P. Sharma, R. Kumar, S. K. Pandey, C. C. Malakar and V. Singh, Asian J. Org. Chem., 2018, 7, 383.
- 2. D. Singh, V. Kumar, N. Devi, C. C. Malakar, R. Shankar and V. Singh, *Adv. Synth. Catal.*, 2017, **359**, 1213.
- 3. M. Li, Y. Xie, Y. Ye, Y. Zou, H. Jiang and W. Zeng, *Org. Lett.*, 2014, **16**, 6232.

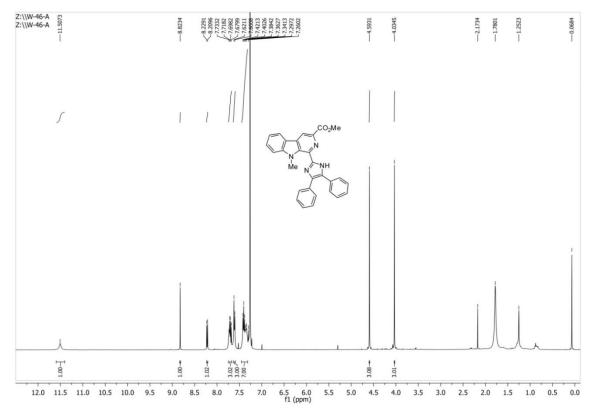


Figure S1. ¹H-NMR spectrum of 3a.

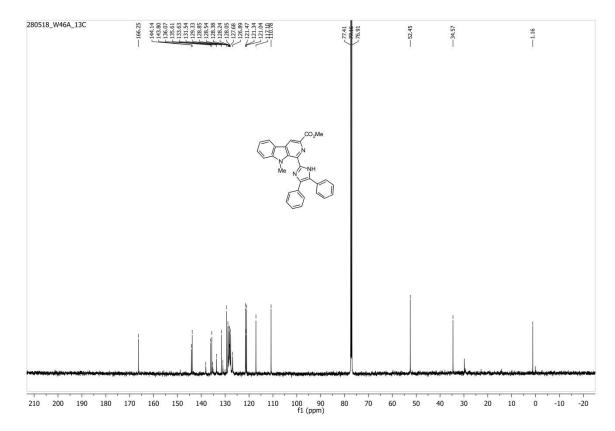


Figure S2. ¹³C-NMR spectrum of 3a.

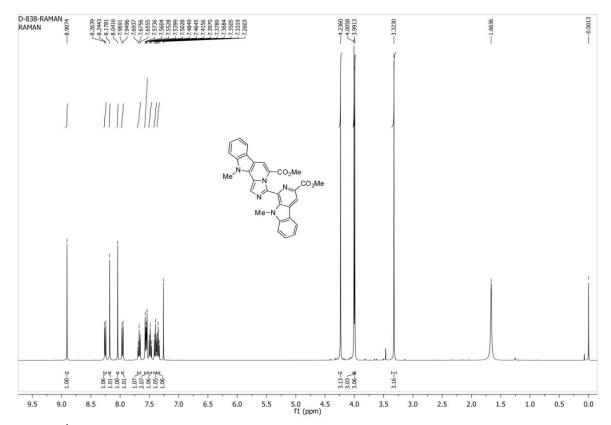


Figure S3. ¹H-NMR spectrum of 4a.

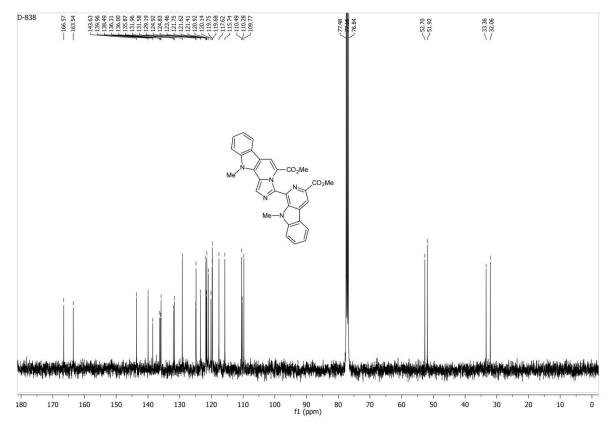
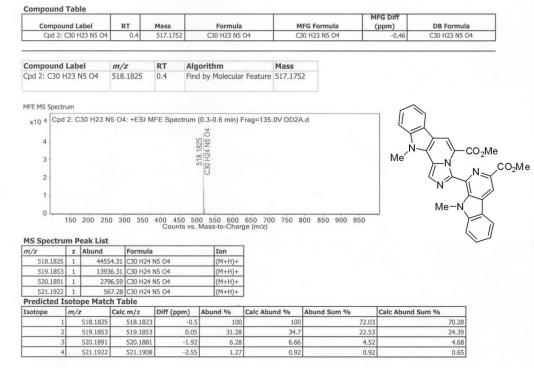
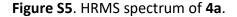




Figure S4. ¹³C-NMR spectrum of 4a.

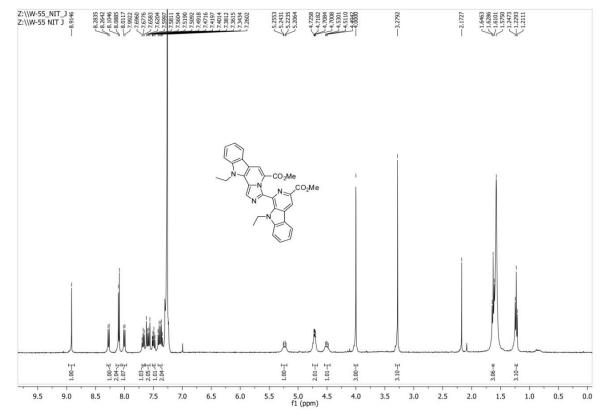
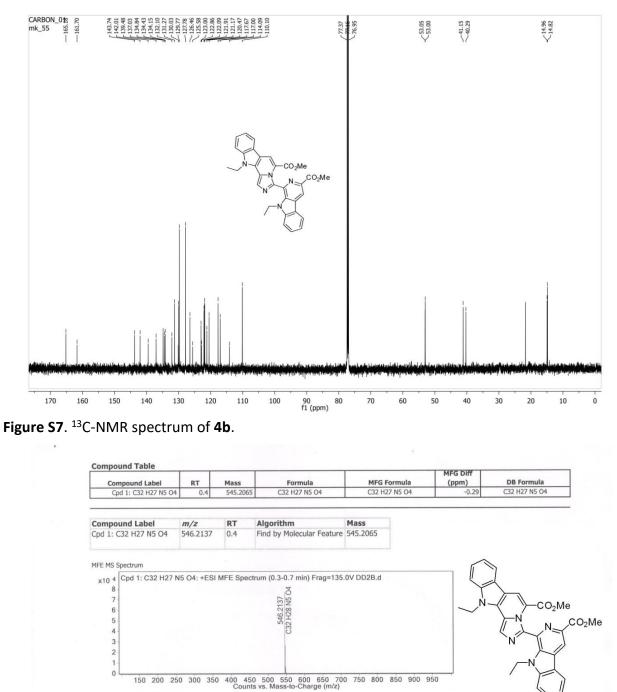



Figure S6. ¹H-NMR spectrum of 4b.

MS Spectru	m P	eak List							
m/z	z	Abund Formu			Ion]			
546.2137	1	7710	6.27 C32 H28 I	N5 04	(M+H)+]			
547.2168	1	2649	4.14 C32 H28	N5 04	(M+H)+]			
548.2196	1	546	2.13 C32 H28	N5 04	(M+H)+]			
549.2249	549.2249 1 864.2 C32 H28 N5		N5 04	(M+H)+]				
Predicted Is	soto	pe Matc	h Table						
Isotope	m/.	z	Calc m/z	Diff (ppm)	Abund %	Calc Abund %	Abund Sum %	Calc Abund Sum %	
1		546.2137	546.2136	-0.26	100	100	70.14	68.	76
2		547.2168	547.2167	-0.24	34.36	36.91	24.1	25	38
3		548.2196 548.2		-0.18	7.08	7.44	4.97	5.	5.12
4		549.2249 549.2222 -4.86		1.12	1.07	0.79	0.	.74	

---- End Of Report ----

Figure S8. HRMS spectrum of 4b.

Figure S9. ¹H-NMR spectrum of 4c.

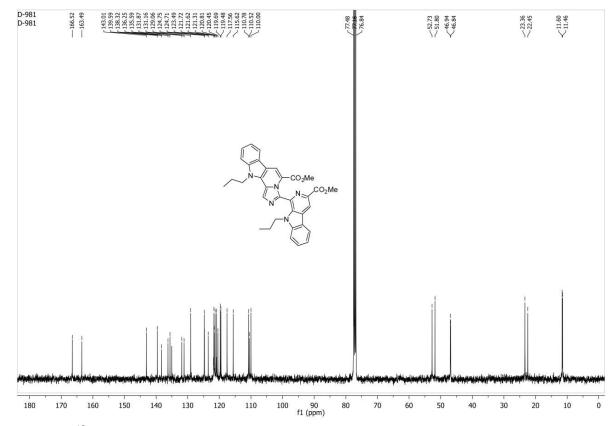
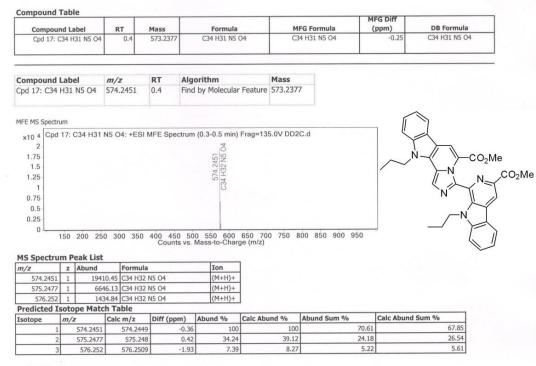




Figure S10. ¹³C-NMR spectrum of 4c.

--- End Of Report ---

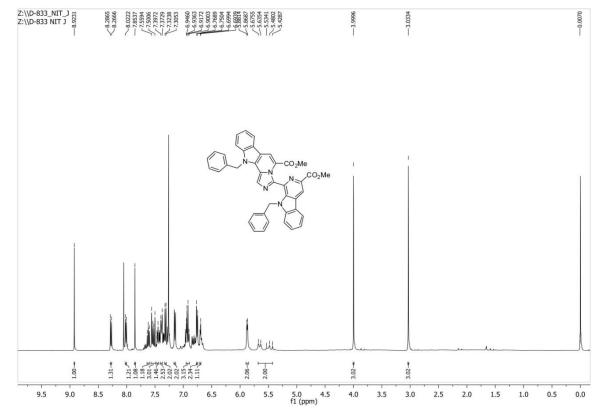


Figure S12. ¹H-NMR spectrum of 4d.

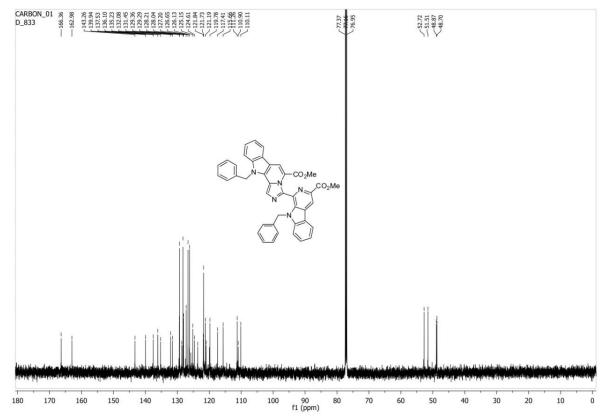
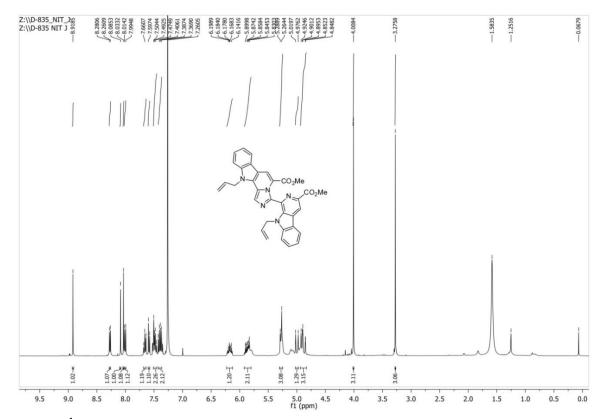



Figure S13. ¹³C-NMR spectrum of 4d.

Figure S14. HRMS spectrum of 4d.

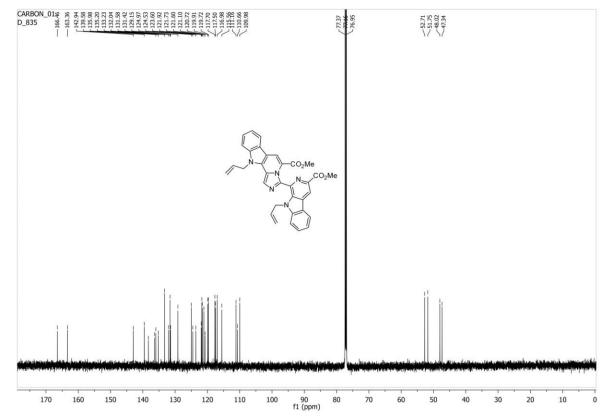
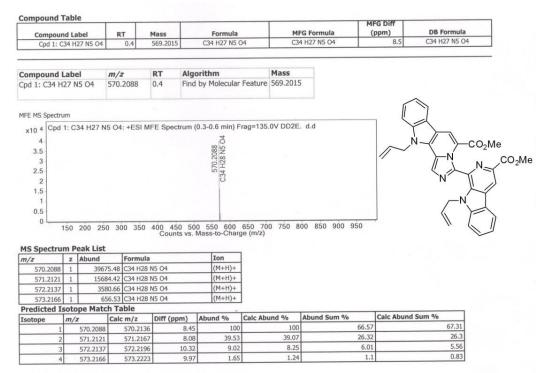



Figure S16. ¹³C-NMR spectrum of 4e.

--- End Of Report ---

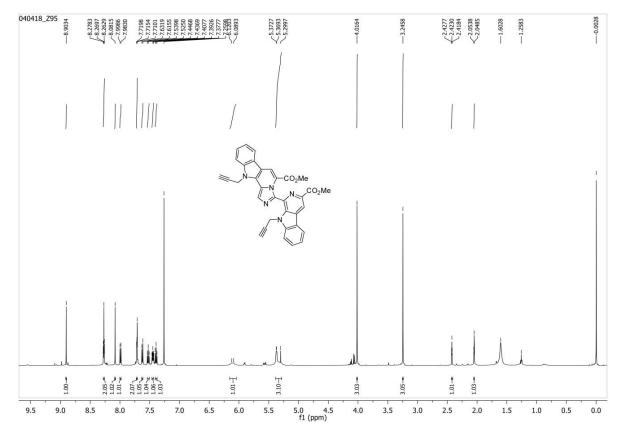


Figure S18. ¹H-NMR spectrum of 4f.

Sample Group Acquisition St Version				TOF/650	00 series	Info.										
Compound	Tab	le														
					Mass		Formula		MFG Formula			IFG Diff	DB For			
Compound Label Cpd 4: C34 H23 N5 O4					565.1755	C	C34 H23 N5 O4		C34 H23 N5 04			(ppm) -0.82	C34 H23			
			-			_										
Compound									lass							
Cpd 4: C34 H	23 1	15 04	566.1	827	0.3	Find by	Molecular	Feature 5	65.175	5						
												ſ				
MFE MS Spectre	ım											Ľ	1			
			300	350	400 450 Counts	500 5 vs. Mas	566, 1827 566, 1827 5009 C34 H24 N5 O4 C34 H24 N5 O4	650 700 ge (m/z)	750 8	00 850 900	950		`n)	
MS Spectru m/z		Abund	E	ormula			Ion									
566.1827	1			34 H24 I	N5 04		(M+H)+									
567.1858	1			C34 H24 N5 O4		(M+H)+										
568.1888	1			C34 H24 N5 O4			(M+H)+									
569.1927	1			34 H24 I	N5 O4		(M+H)+									
Predicted Is Isotope	m/z		Calc m/z Diff (ppr		m) Abund %		Calc Abun	d %	Abund Sum %		Calc Abund	Sum %	_			
1		566.1827		66.1823		0.74	100		100		66.72			.34		
2		567.1858	56	67.1854	-	0.83	38.54		39.03		25.71		26	.28		
3		568.1888	54	68.1882		1.06	9.55		8.24		6.37		5	.55		
				569.191		2.91	1.79									

Figure S19. HRMS spectrum of 4f.

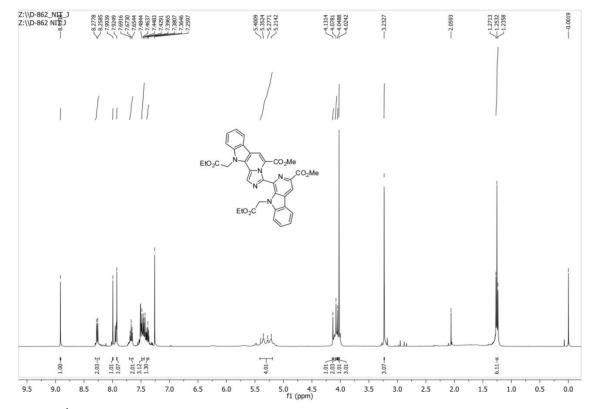


Figure S20. ¹H-NMR spectrum of 4g.

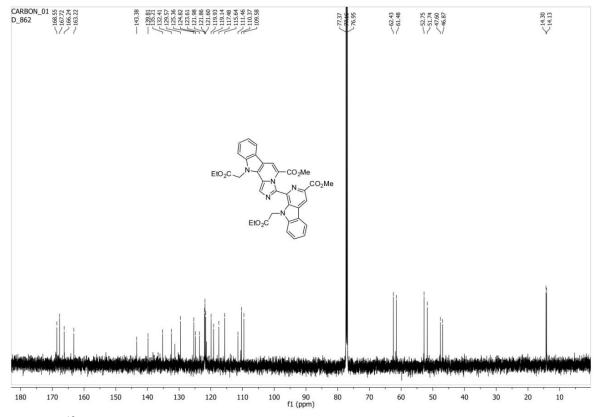
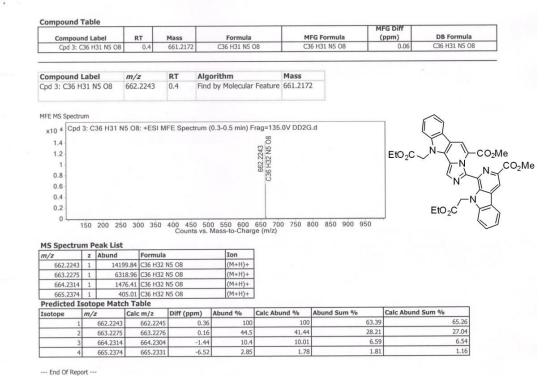
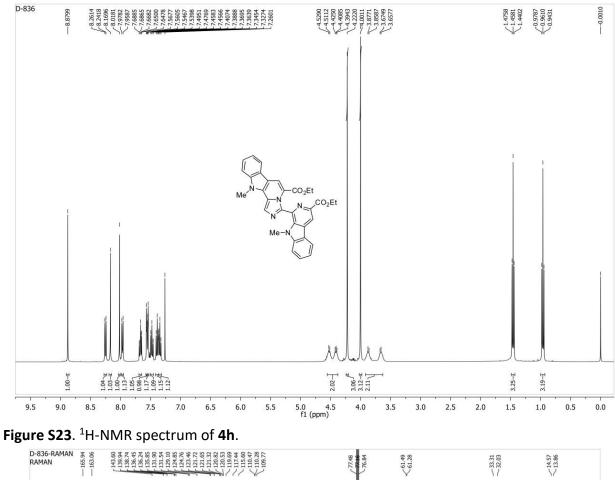




Figure S21. ¹³C-NMR spectrum of 4g.

--- End Of Report ---

Figure S22. HRMS spectrum of 4g.

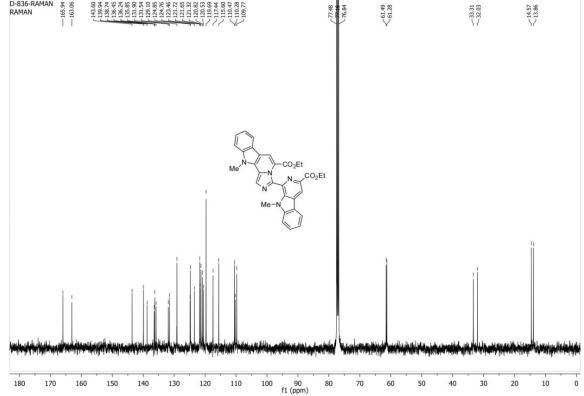
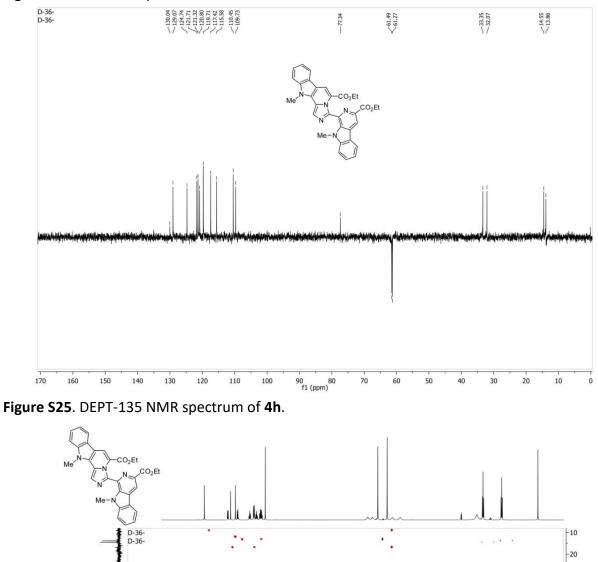



Figure S24. ¹³C-NMR spectrum of 4h.

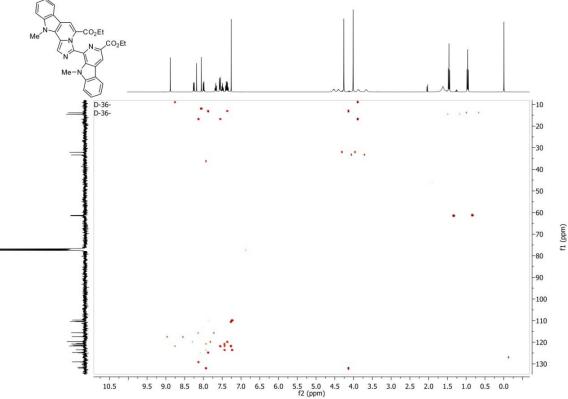


Figure S26. HMBC NMR spectrum of 4h.

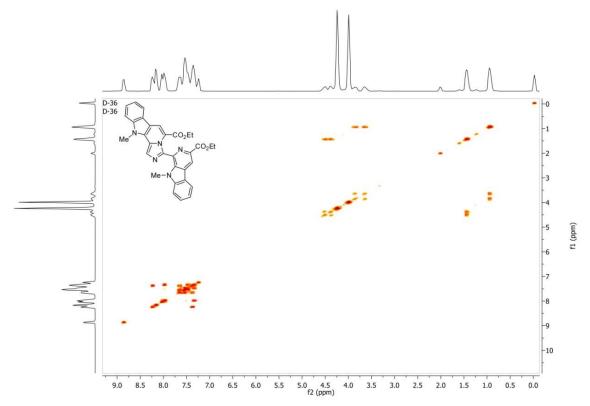


Figure S27. COSY NMR spectrum of 4h.

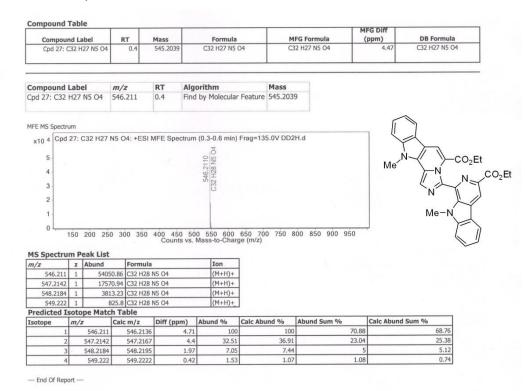


Figure S28. HRMS spectrum of 4h.

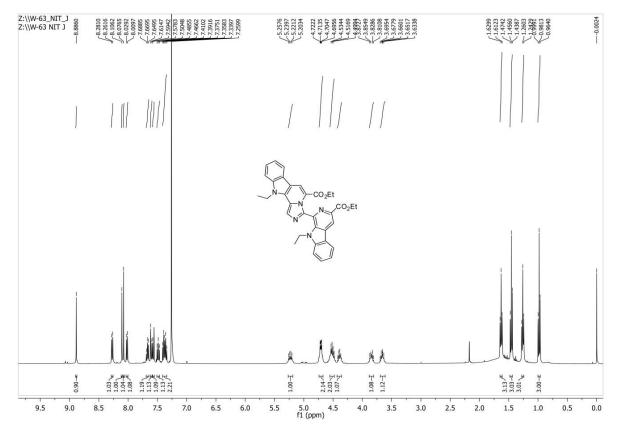


Figure S29. ¹H-NMR spectrum of 4i.

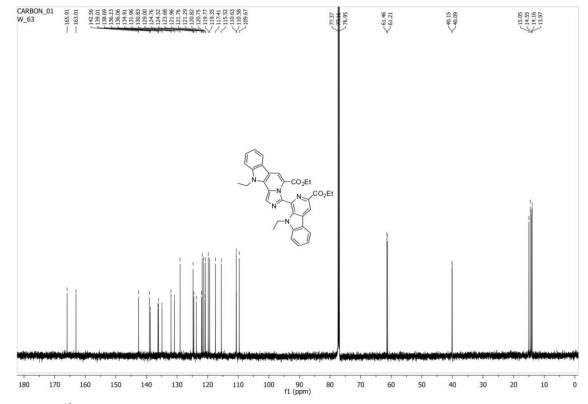


Figure S30. ¹³C-NMR spectrum of 4i.

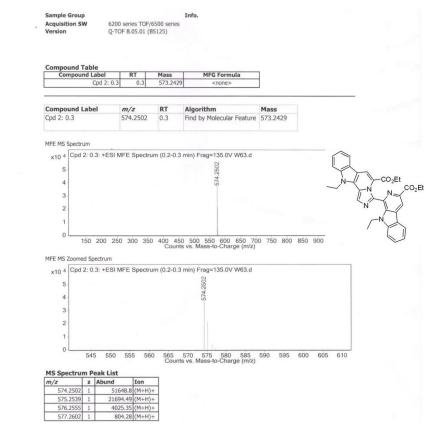


Figure S31. HRMS spectrum of 4i.

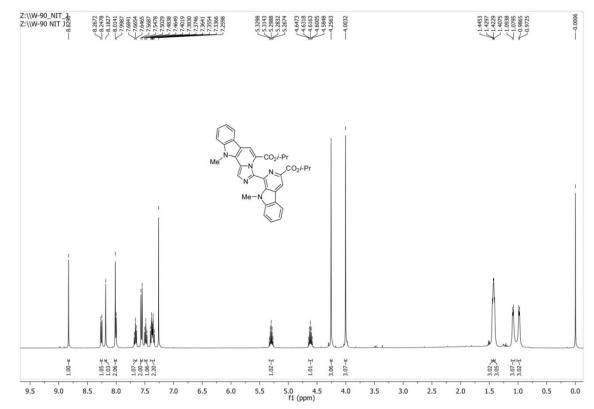


Figure S32. ¹H-NMR spectrum of 4j.

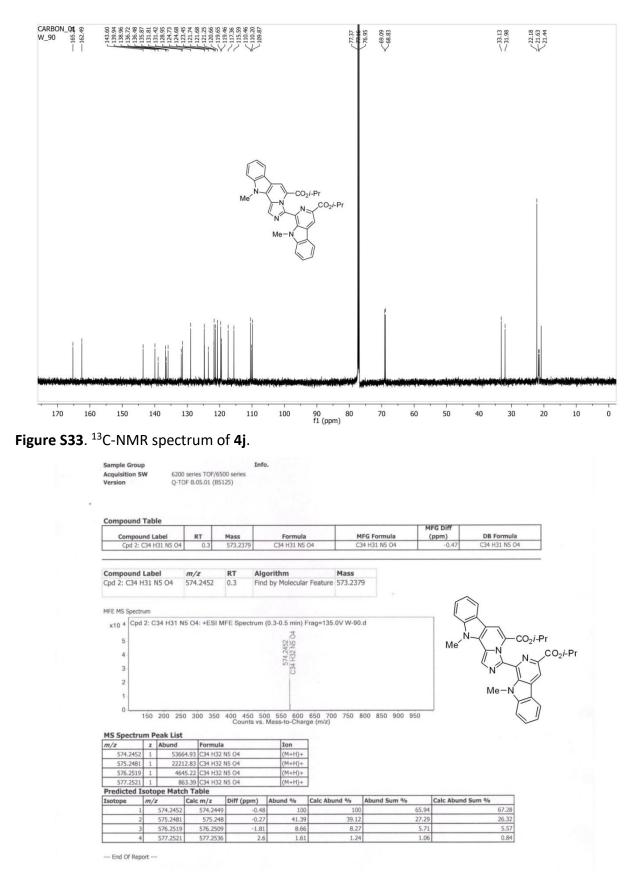


Figure S34. HRMS spectrum of 4j.

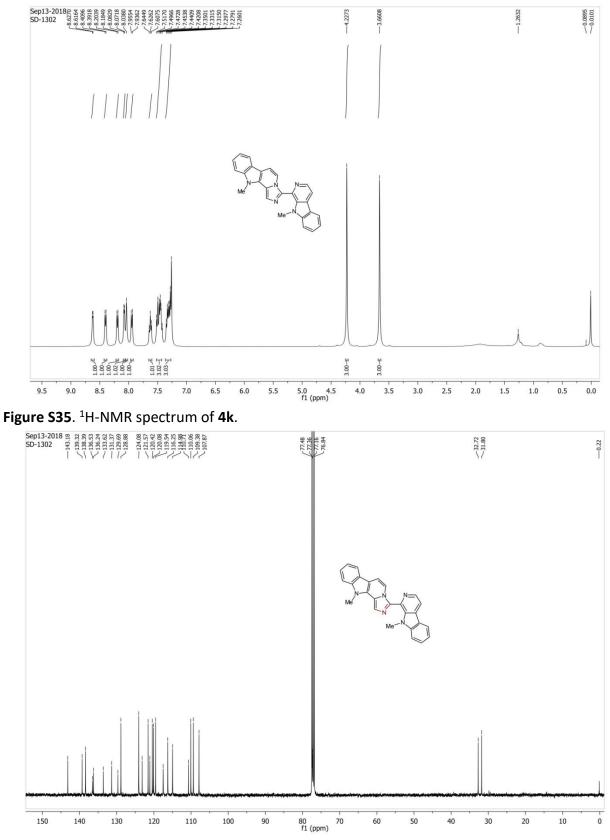


Figure S36. ¹³C-NMR spectrum of 4k.

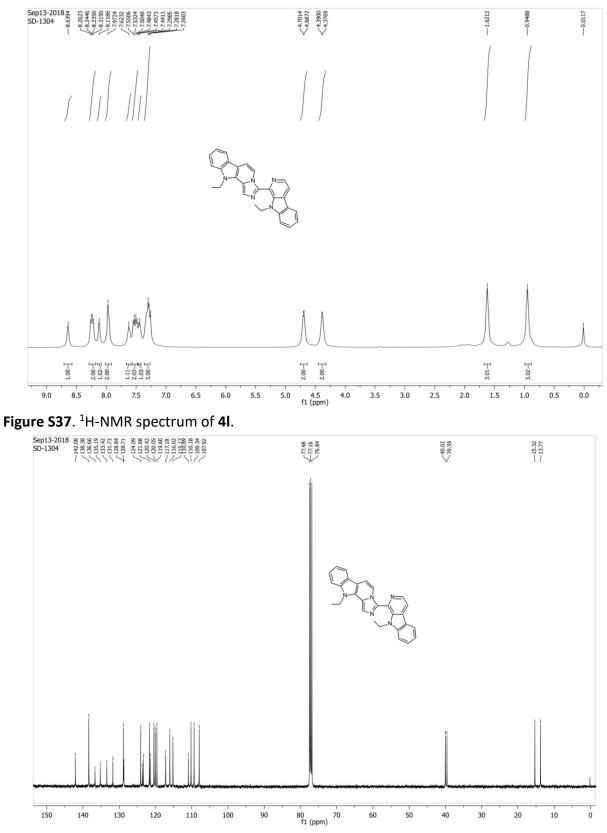


Figure S38. ¹H-NMR spectrum of 4I.

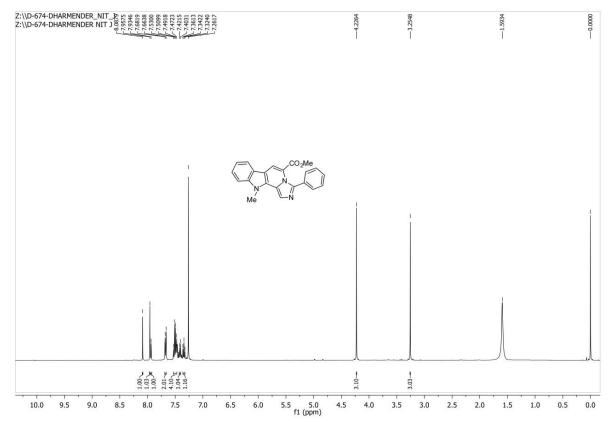


Figure S39. ¹H-NMR spectrum of **1aA**.

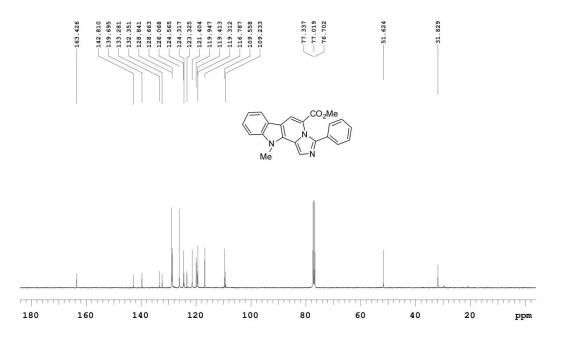


Figure S40. ¹³C-NMR spectrum of **1aA**.

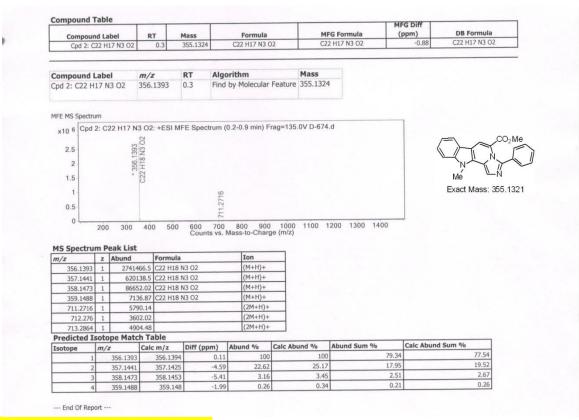


Figure S41. HRMS spectrum of 1aA.

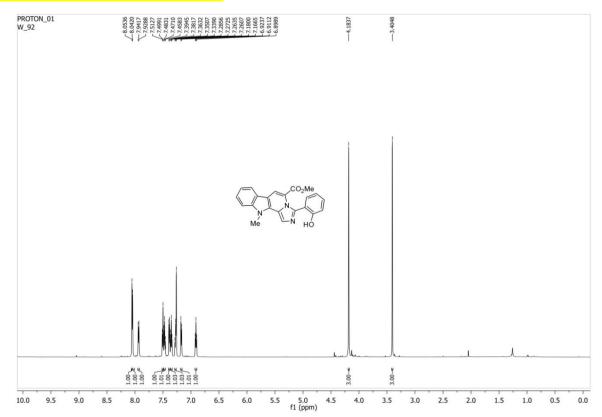


Figure S42. ¹H-NMR spectrum of **1aB**.

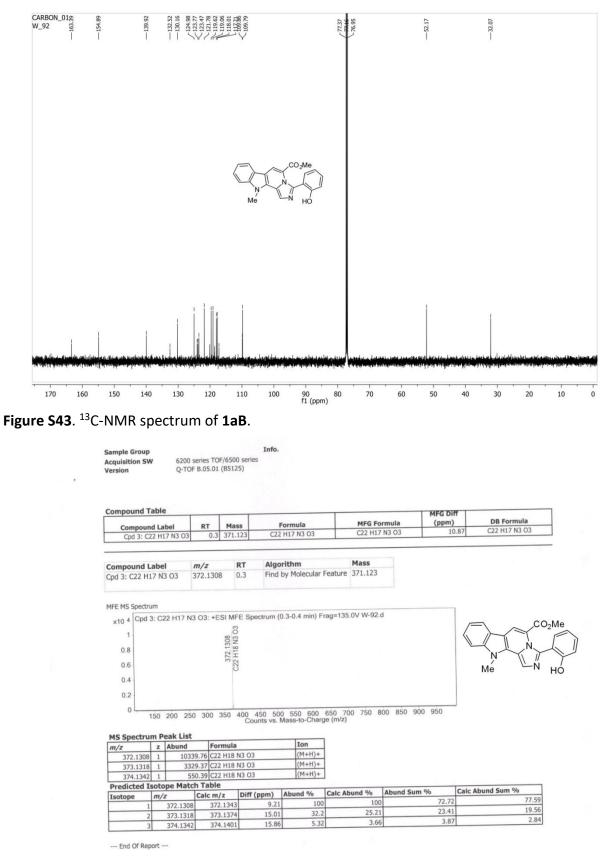
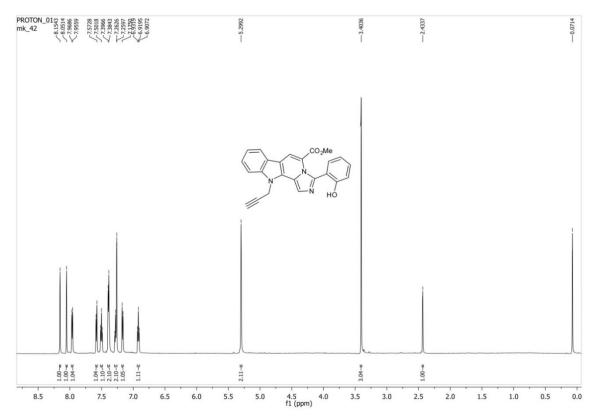
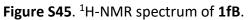




Figure S44. HRMS spectrum of 1aB.

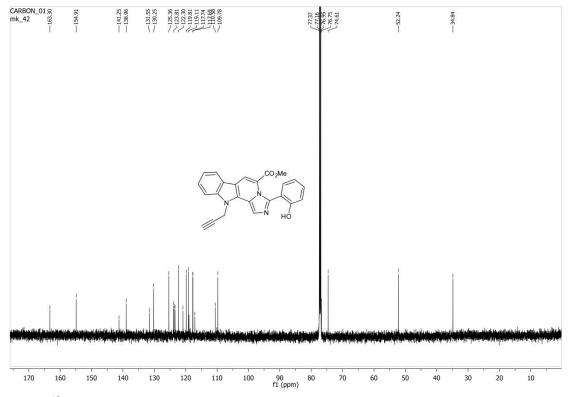
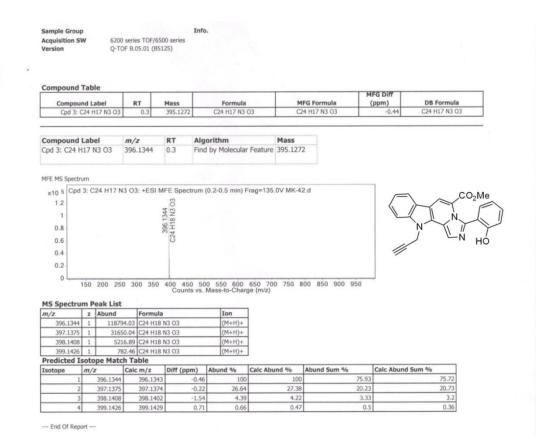



Figure S46. ¹³C-NMR spectrum of 1fB.

Figure S47. HRMS spectrum of 1fB.

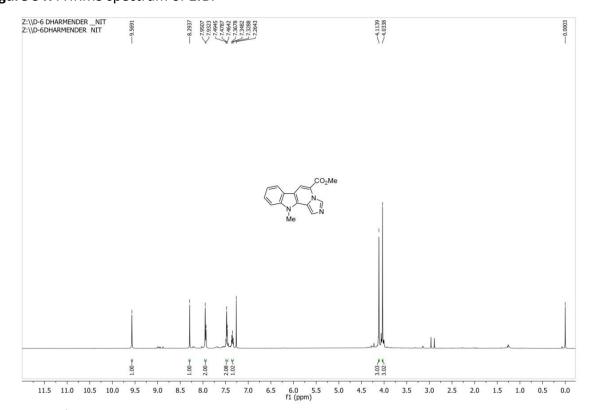


Figure S48. ¹H-NMR spectrum of 1aE.

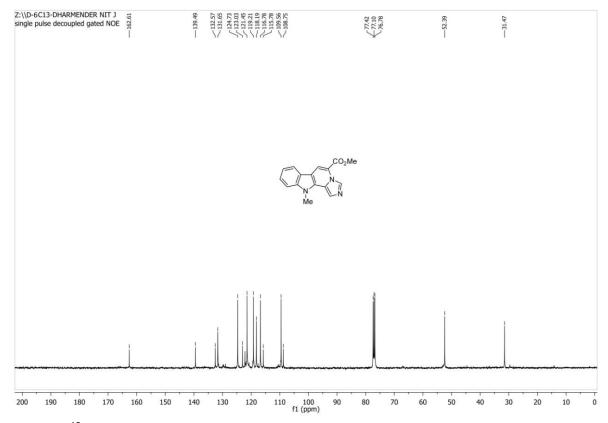


Figure S49. ¹³C-NMR spectrum of 1aE.

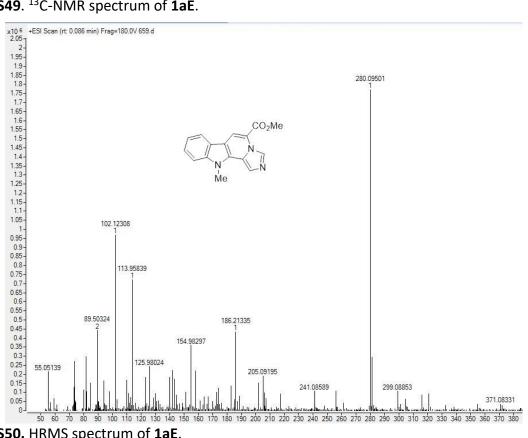
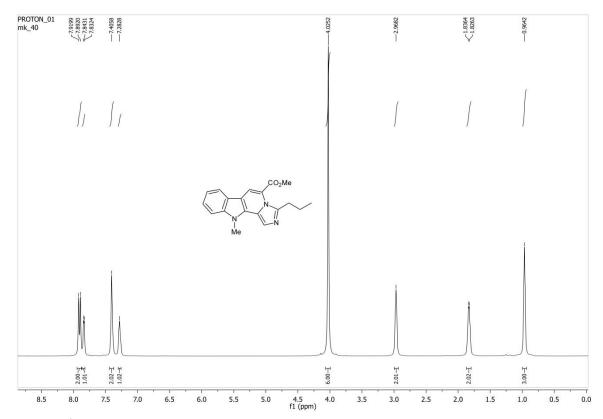



Figure S50. HRMS spectrum of 1aE.



Figure S52. ¹³C-NMR spectrum of **1aG**.

Sample Group Acquisition SI Version				TOF/650	0 series	nfo.						
Compound	Tabl	e	_								MFG Diff	
Compou	nd La	bel	RT	r	Mass		Formula		м	FG Formula	(ppm)	DB Formula
		19 N3 O2		0.3	321.1484	(C19 H19 N3 (02	C1	9 H19 N3 O2	-2.12	C19 H19 N3 O2
Compound	Lab	al	m/z		RT #	Algori	thm	1	Mass			
Cpd 1: C19 H			322.1				y Molecular	Feature	321.1484	ł		
MFE MS Spectr											-	
x10 5 Cpd	1: C	19 H19 N			FE Spectru	im (0.2	2-0.9 min) F	rag=135.0	V MK-40).d		CO2
7				19 H20 N3 02							A	
6				CON CON								
5			5	H20								
4			8	110								N N
3				0								Me
2								06				WIC
1				1				643.2990				
											_	
MS Spectru	m P				400 450 Counts v	500 vs. Ma	550 600 ss-to-Charg	650 700 je (m/z)	750 8	00 850 900 950		
m/z		Abund	_	Formula			Ion					
322.1557	1			C19 H20 I			(M+H)+	_				
	1			C19 H20 I	and the second se		(M+H)+	_				
323.1588	1		_	C19 H20 I			(M+H)+					
324.1616				C19 H20 I			(M+H)+					
324.1616 325.1639	1			C19 H20 I	N3 02		(M+H)+					
324.1616 325.1639 326.1603	1						(2M+H)+					
324.1616 325.1639 326.1603 643.299	1	20	9.45	blo								
324.1616 325.1639 326.1603 643.299 Predicted I	1	20 pe Mato	9.45 h Tal		Diff (nom)		und %	Calc Abu	nd %	Abund Sum %	Calc Abund	Sum %
324.1616 325.1639 326.1603 643.299 Predicted I: Isotope	1	20 pe Mato	9.45	m/z	Diff (ppm)		ound %	Calc Abur		Abund Sum % 80.7	Calc Abund	Sum %
324.1616 325.1639 326.1603 643.299 Predicted I Isotope 1	1 1 soto m/2	20 pe Matc 322.1557	9.45 h Tal Calc	m/z 322.155	-2	.12	100	Calc Abur	100	80.7	4	80.05
324.1616 325.1639 326.1603 643.299 Predicted I: Isotope 1 2	1 1 soto m/2	20 pe Mato 322.1557 323.1588	9.45 h Tal Calc	m/z 322.155 323.1581	-2	.12	100 20.91	Calc Abu	100 21.95		8	
324.1616 325.1639 326.1603 643.299 Predicted I Isotope 1	1 1 soto m/a	20 pe Matc 322.1557	09.45 h Tal Calc	m/z 322.155	-2	.12	100	Calc Abu	100	80.7	4 8 3	80.05 17.57

--- End Of Report ---

Figure S53. HRMS spectrum of 1aG.

.

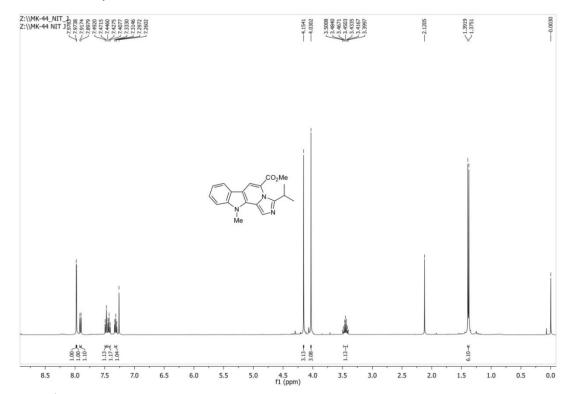
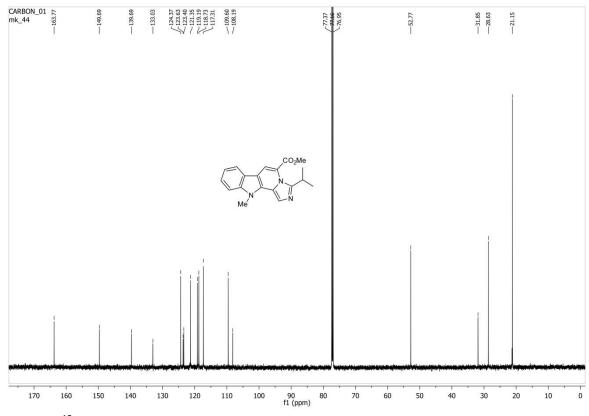




Figure S54. ¹H-NMR spectrum of **1aH**.

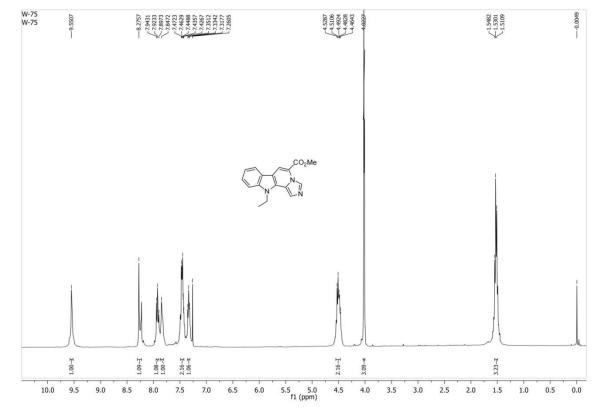


Figure S56. ¹H-NMR spectrum of **1bE**.

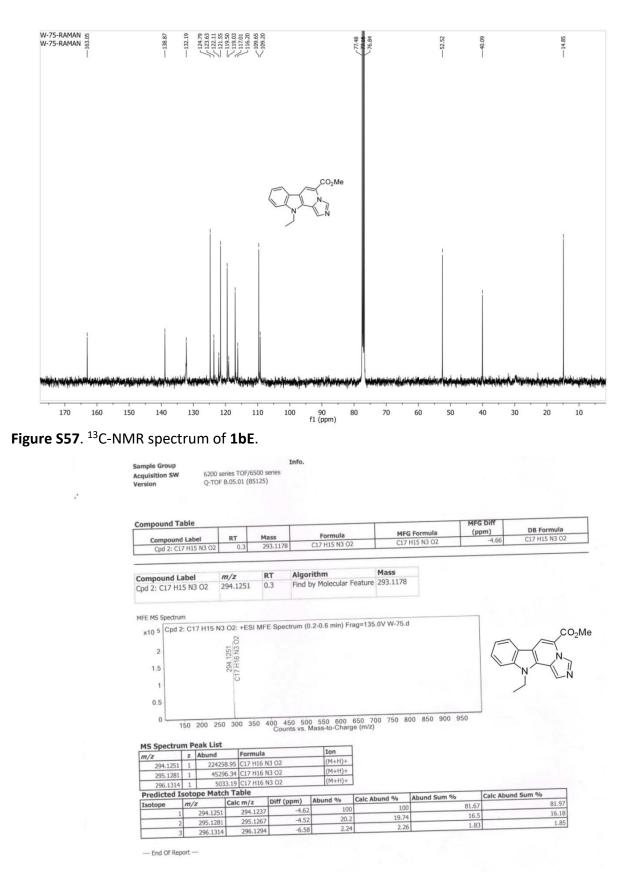


Figure S58. HRMS spectrum of 1bE.

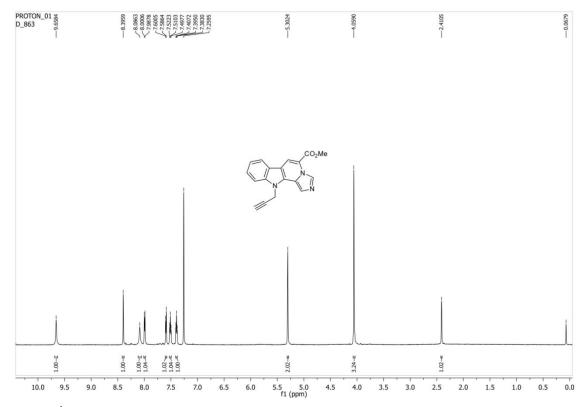
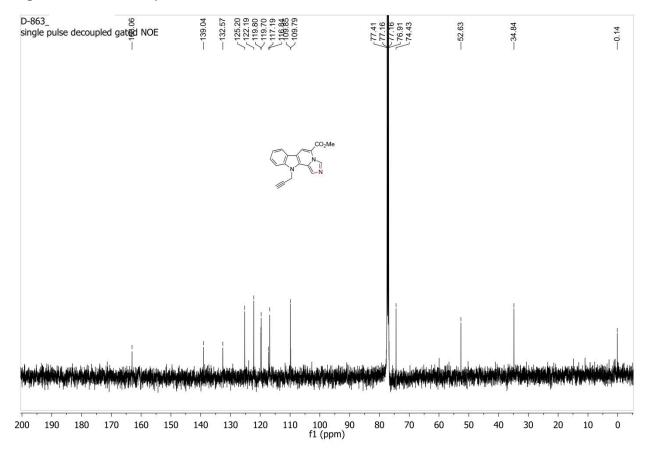
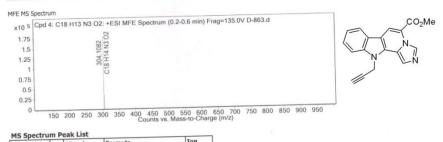



Figure S59. ¹H-NMR spectrum of 1fE.


Figure S60. ¹³C-NMR spectrum of 1fE.

Sample Group Acquisition SW Version

Info. 6200 series TOF/6500 series Q-TOF B.05.01 (B5125)

npound Table					MFG Diff		
		Mass	Formula	MFG Formula	(ppm)	DB Formula	
Compound Label	RT			C18 H13 N3 O2	-0.59	C18 H13 N3 O2	
Cpd 4: C18 H13 N3 O2	0.3	303.101	C18 H13 N3 O2	C18 H15 N5 02			

Comment and I ahal	m/z	RT	Algorithm	Mass
Compound Label				203 101
Cpd 4: C18 H13 N3 O2	304.1082	0.3	Find by Molecular Feature	303.101

m/z	z	Abund	For	rmula		TOU			
304.1082	1	17776	7.02 C18	8 H14 M	13 02	(M+H)+			
305.1114	1	3381	7.68 C18	8 H14 M	13 02	(M+H)+			
306.114	1	490	3.53 C18	8 H14 M	N3 O2	(M+H)+			
307.1153	1	77	9.76 C18	8 H14 I	N3 O2	(M+H)+			
Predicted Is	soto	pe Matc	h Table	e				Abund Sum %	Calc Abund Sum %
Isotope	m/	z	Calc m	/z	Diff (ppm)	Abund %	Calc Aballa 10	Abund bunn re	00.00
1300000		304.1082	304	4.1081	-0.52	100	100		
1	-	305.1114		5.1111		19.02	20.8		
2	-			6.1138			2.47	2.26	
3		306.114		and the second se				0.36	0.17
4		307.1153	30	7.1164	3.51	0.44	0.21	0.00	1

--- End Of Report ---

Figure S61. HRMS spectrum of 1fE.

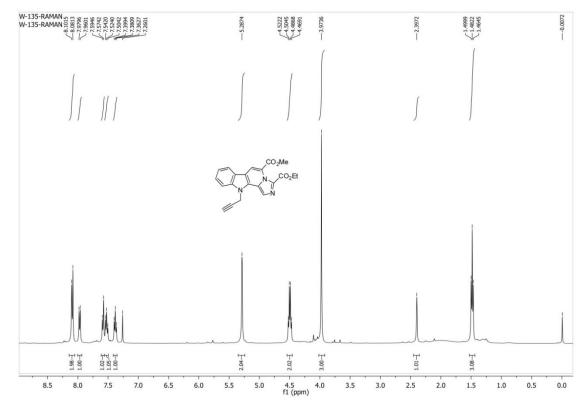
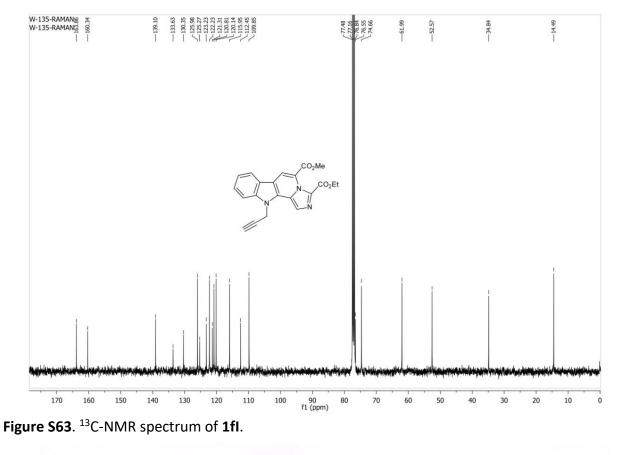



Figure S62. ¹H-NMR spectrum of 1fl.

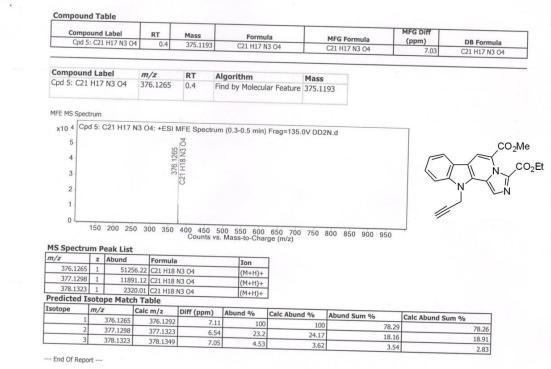


Figure S64. HRMS spectrum of 1fl.

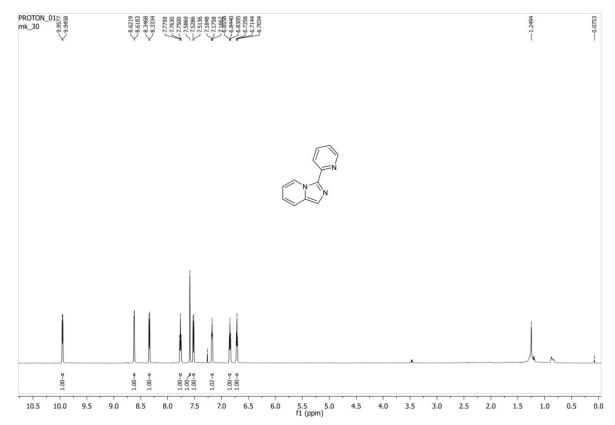


Figure S65. ¹H-NMR spectrum of DD.

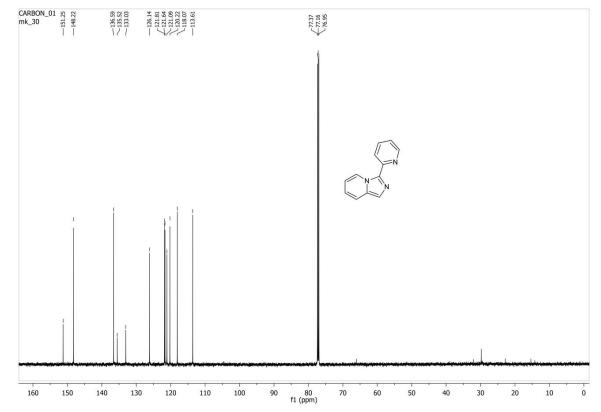


Figure S66. ¹³C-NMR spectrum of DD.

Version		Q-10	DF B.05.01 (B5)	(25)						
Compoun	d Ta	ble					м	FG Diff		_
Comp	ound	Label	RT	Mass	Formula	м		(ppm)	DB Formula	
	Cpd 1	: C12 H9 N3	0.3	195.0805	C12 H9 N3	1	C12 H9 N3	-4.42	C12 H9 N3	
Compoun	d La	bel	m/z	RT A	Igorithm	Mass				
Cpd 1: C12			196.0877			Feature 195.080	5			
1.4 1.2 1 0.8 0.6 0.4 0.2 0	pd 1:	196.0877 C12 H10 N3 6H C12 H10 N3	0 300 350			135.0V MK-30.d 135.0V MK-30.d 650 700 750 8 ge (m/2)	00 850 900 950] (
m/z		Abund	Formula		Ion	1				
196.08			9.38 C12 H10	N3	(M+H)+	1				
197.09	12	1 17637	7.19 C12 H10	N3	(M+H)+]				
198.09			3.33 C12 H10		(M+H)+					
199.0			8.95 C12 H10	N3	(M+H)+]				
Isotope		tope Matc	Calc m/z	Diff (ppm)	Abund %	Calc Abund %	Abund Sum %	Calc Abun	d Sum %	
reactione	1	196.0877	196.0869		-4 100		and the second se		86.83	
	2	197.0912	197.0898		7.1 13.21				12.32	
		198.0943	198.0927			0.93			0.81	
	3									

Figure S67. HRMS spectrum of DD.

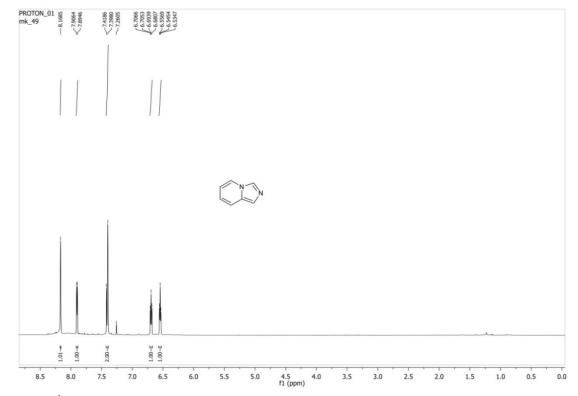


Figure S68. ¹H-NMR spectrum of DE.

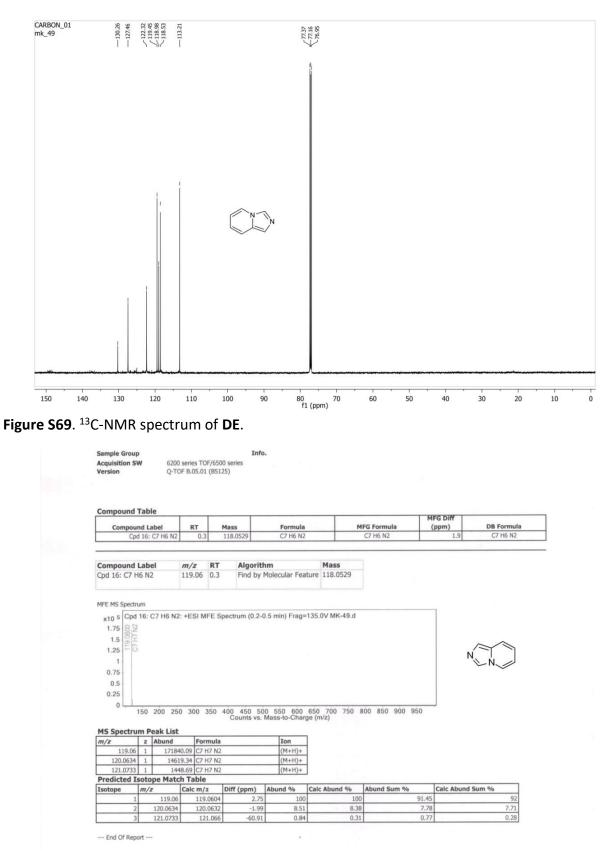
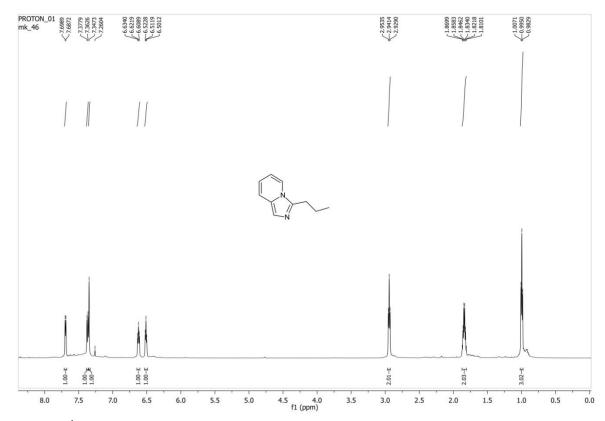



Figure S70. HRMS spectrum of DE.

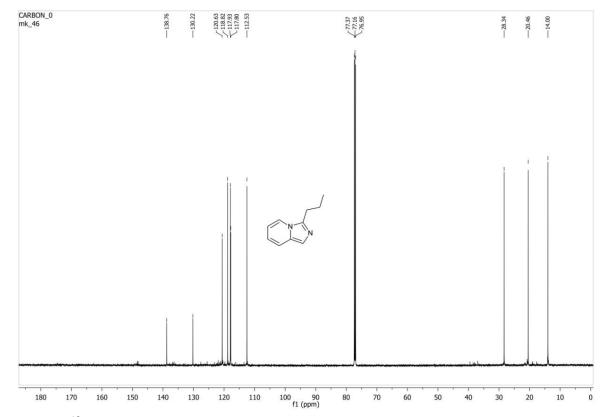


Figure S72. ¹³C-NMR spectrum of DG.

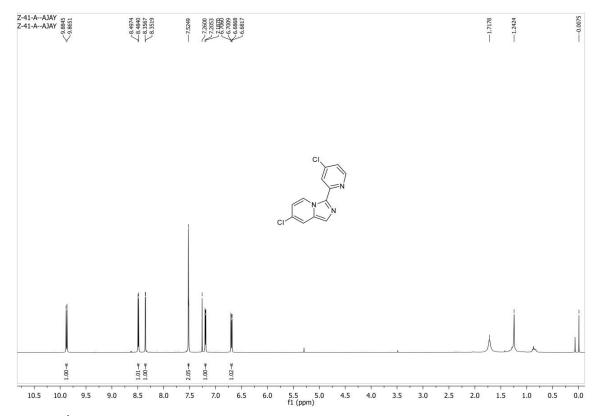


Figure S73. ¹H-NMR spectrum of JJ.

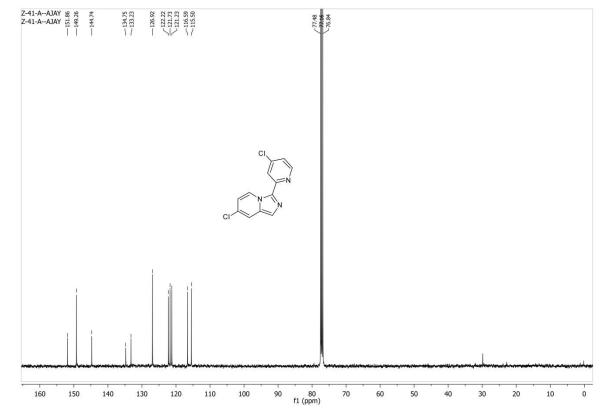
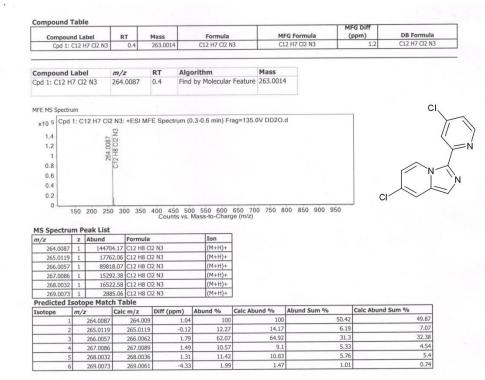



Figure S74. ¹³C-NMR spectrum of JJ.

--- End Of Report ---

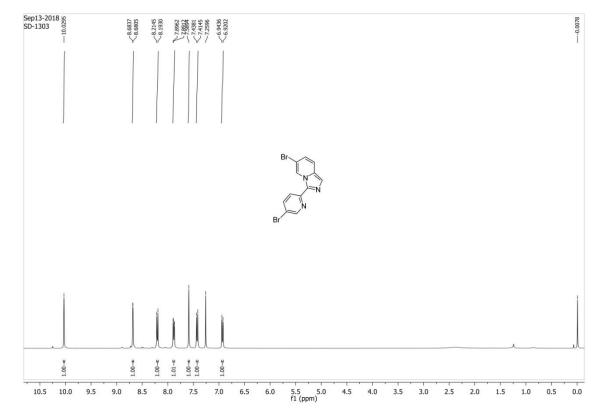


Figure S76. ¹H-NMR spectrum of KK.

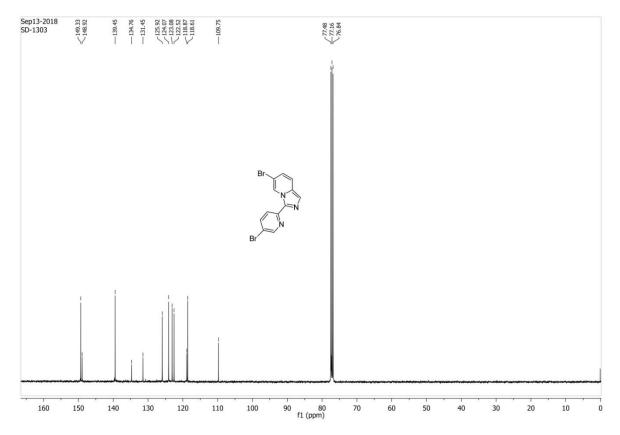


Figure S77. ¹³C-NMR spectrum of KK.



Figure S78. ¹H-NMR spectrum of LL.

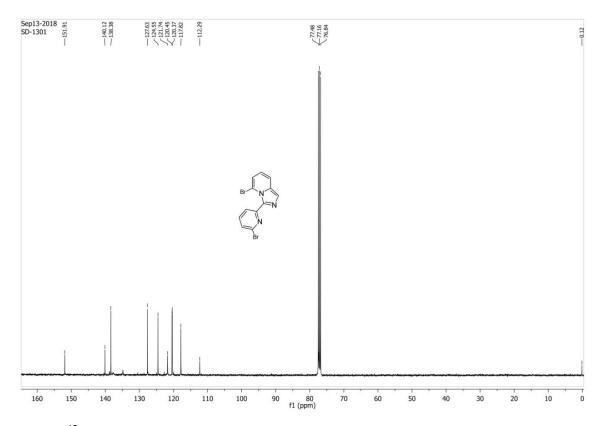


Figure S79. ¹³C-NMR spectrum of LL.

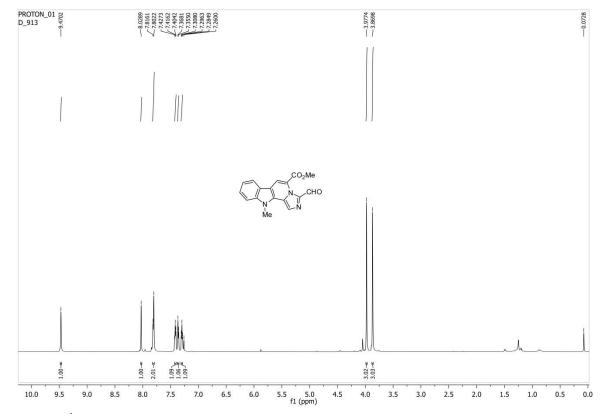


Figure S80. ¹H-NMR spectrum of **2aK**.

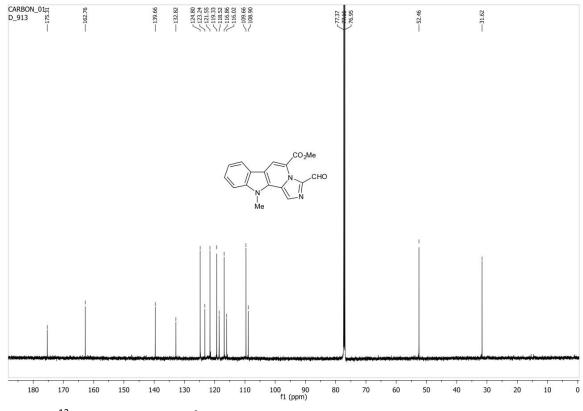


Figure S81. ¹³C-NMR spectrum of 2aK.

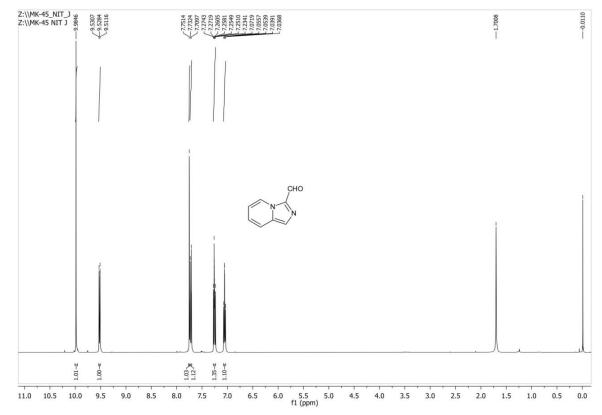
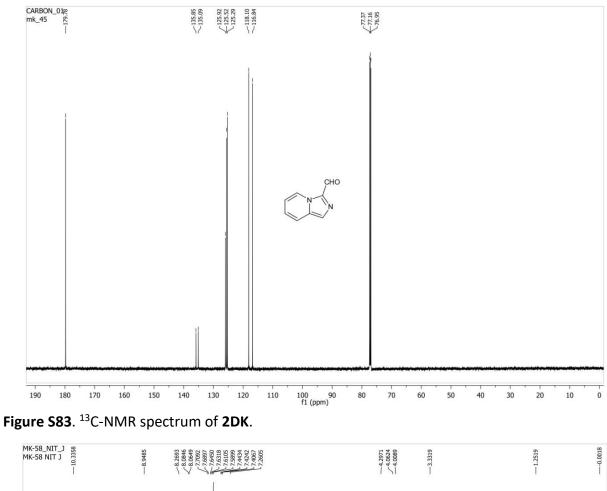



Figure S82. ¹H-NMR spectrum of 2DK.

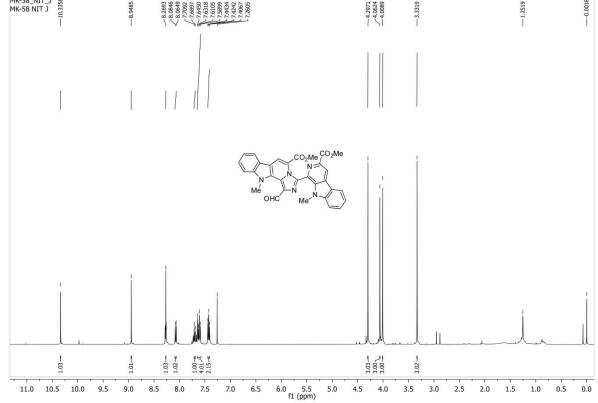


Figure S84. ¹H-NMR spectrum of 6.

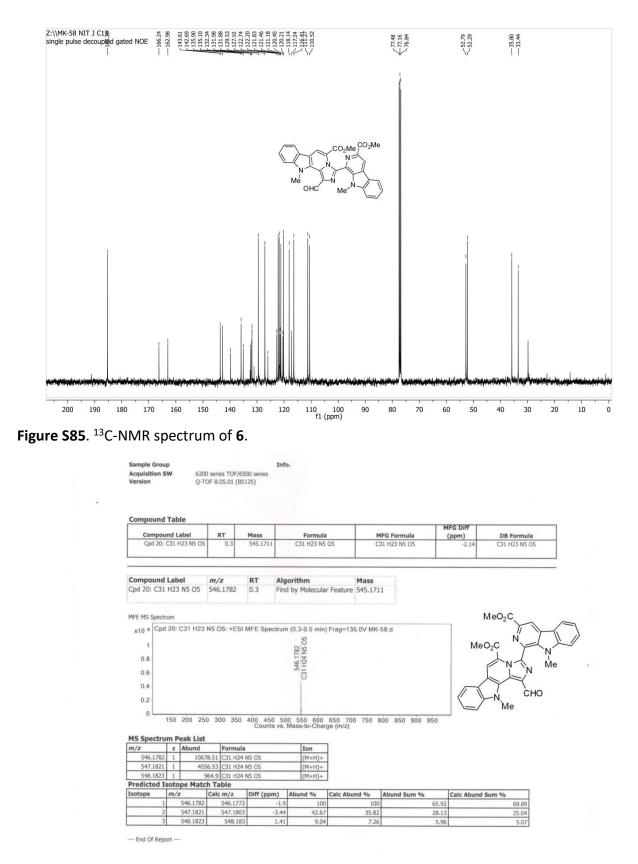
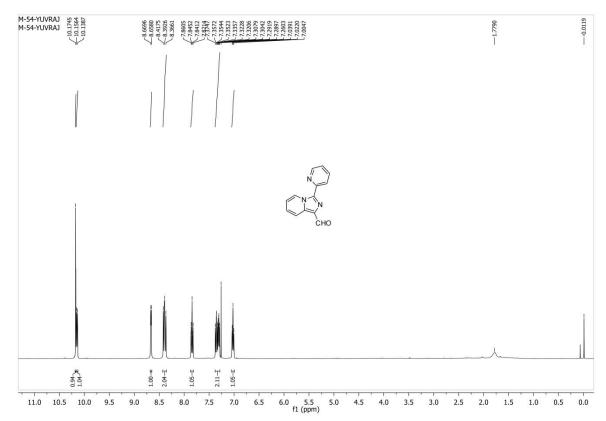



Figure S86. HRMS spectrum of 6.

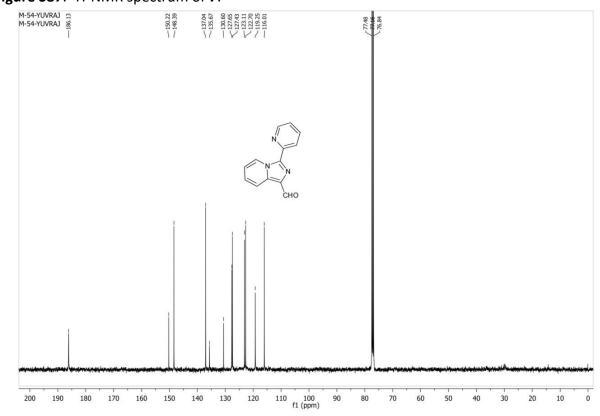


Figure S88. ¹³C-NMR spectrum of 7.

Info. Sample Group 6200 series TOF/6500 series Q-TOF B.05.01 (B5125) Acquisition SW Version **Compound Table** MFG Diff DB Formula C13 H9 N3 O Compound Label Cpd 8: C13 H9 N3 O MFG Formula C13 H9 N3 O (ppm) RT Mass Formula C13 H9 N3 O Algorithm Mass Compound Label *m/z* 224.082 RT 0.3 Find by Molecular Feature 223.0748 Cpd 8: C13 H9 N3 O x10 5 Cpd 8: C13 H9 N3 O: +ESI MFE Spectrum (0.2-0.5 min) Frag=135.0V MK-54.d 1.6 O MFE MS Spectrum 1.4 1.2 1 0.8 0.6 ĊНО 0.4 0.2 0 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 Counts vs. Mass-to-Charge (m/z) MS Spectrum Peak List
 z
 Abund
 Formula

 224.082
 1
 151519.2
 C13 H10 N3 O
Ion m/z (M+H)+ (M+H)+ 225.0852 1 24587.4 C13 H10 N3 O (M+H)+ 2212.89 C13 H10 N3 O 226.0882 1 Predicted Isotope Match Table Diff (ppm) Abund % Calc Abund % Abund Sum % Calc Abund Sum % Isotope m/z Calc m/z 84.97 100 100 224.082 224.0818 -0.7 16.23 225.0848 225.0852

1.24

--- End Of Report ---

226.0882

226.0874

-3.42

1.46

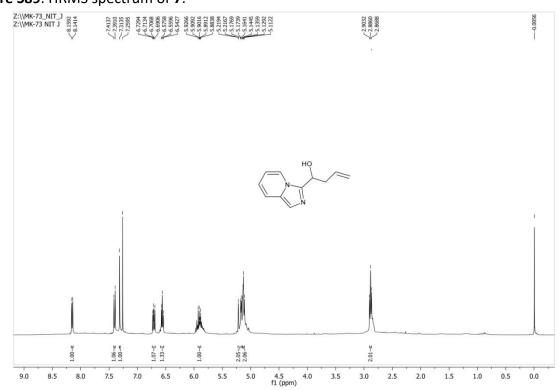
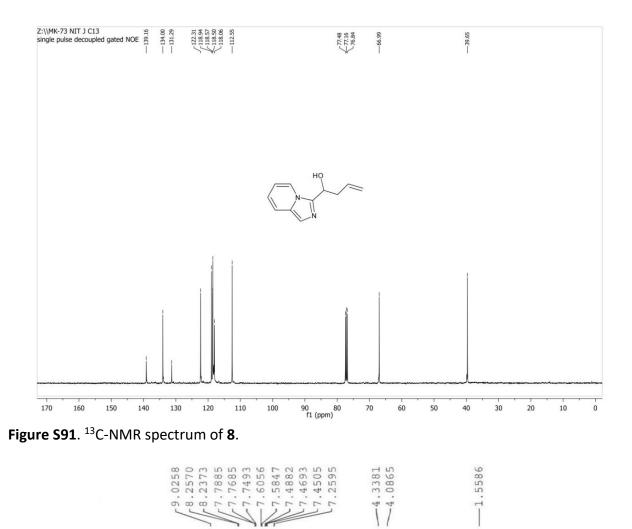



Figure S90. ¹H-NMR spectrum of 8.

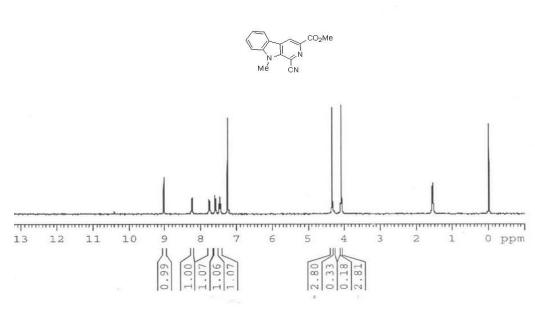


Figure S92. ¹H-NMR spectrum of 5a.

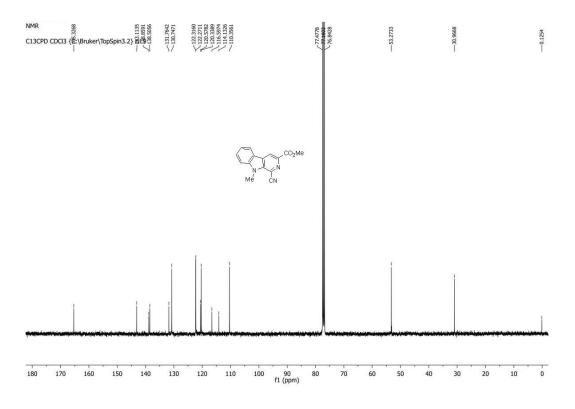
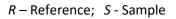
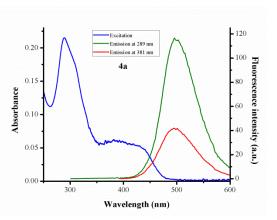



Figure S93. ¹³C-NMR spectrum of 5a.

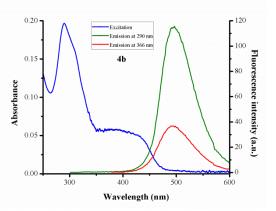
Photophysical studies of synthesised compounds

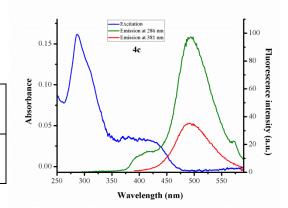
The fluorescent quantum yield (Φ) was measured relative to quinine sulfate ($\Phi_R = 0.546$) (0.1 M H₂SO₄ at 350 nm excitation) as a reference compound. For the measurement of UV-Vis absorption and fluorescence emission of samples, stock solution (1.0 mM) was prepared and diluted to final concentration (5.0 μ M) using anhydrous CHCl₃. These QY were calculated as equation:

$$\Phi_{s} = \Phi_{R} \times \frac{I_{s}}{I_{R}} \times \frac{A_{R}}{A_{s}} \times \frac{\eta_{s}^{2}}{\eta_{R}^{2}}$$

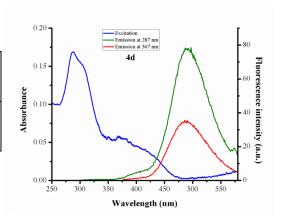


where Φ_R was the quantum yields of quinine sulfate, η was the refractive index of the solvent, I was the integrated fluorescence intensity and A was the absorbance. The concentration of samples should be sufficiently diluted not to occur concentration quenching.

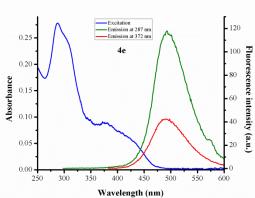

Figure S94. Photophysical properties and graphical data of β -carboline dimers (**4a-I** and **6**).

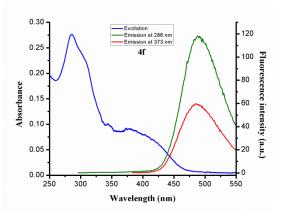

62

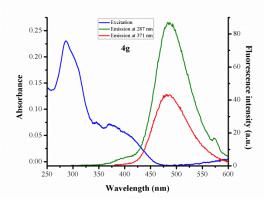
CO2Me CO2Me	UV-Vis	Fluore	scence	ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
Me-N	288.89	495.90	116.46	0.107
4a 🍑	381.37	494.43	40.82	0.136

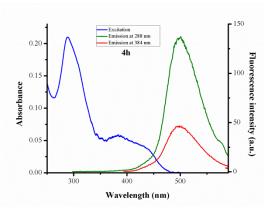


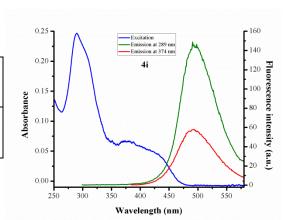
CO ₂ Me _{CO2} Me	UV-Vis	Fluore	scence	ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
, N	289.63	496.96	115.75	0.112
4b ~~~~	366.18	497.02	36.28	0.127



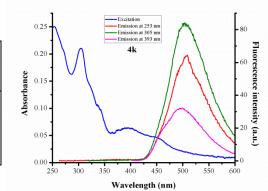

CO ₂ Me CO ₂ Me	UV-Vis	is Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N	286.53	498.03	97.36	0.131
4c	380.58	492.27	35.17	0.152

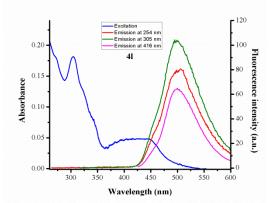

CO2Me CO2Me	UV-Vis Fluorescence		Φ _F	
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
S.D	287.08	496.96	78.59	0.102
4d	366.70	489.94	35.15	0.130

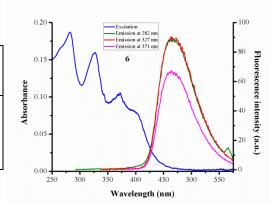

	UV-Vis	Фғ		
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N N	287.29	492.87	118.02	0.084
	371.83	491.33	42.21	0.096
4e				

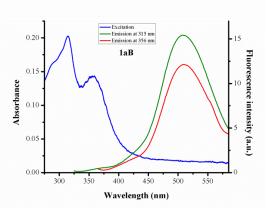

CO ₂ Me _{CO2} Me	UV-Vis	Fluorescence		Φ _F
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
Ń	285.59	488.05	118.38	0.088
4f	373.32	484.92	59.81	0.132

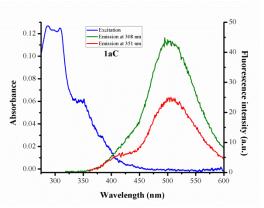
CO ₂ Me	UV-Vis	Fluore	scence	ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
EtO ₂ C	286.66	482.98	87.09	0.081
4g	370.69	479.75	43.41	0.127

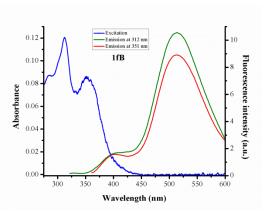

	UV-Vis Fluorescence			ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N Me ^{-N}	288.23	501.04	137.35	0.128
4h	384.10	499.26	46.24	0.158


CO ₂ Et	UV-Vis	Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
	289.39	490.90	148.94	0.117
4 i	374.21	493.03	57.97	0.177

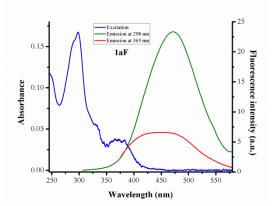

CO ₂ /Pr CO ₂ /Pr	UV-Vis	Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
Me-N	289.29	494.84	111.95	0.124
4j	372.37	495.95	34.75	0.137

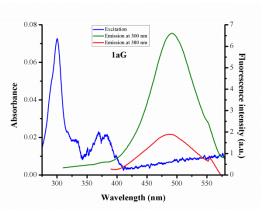

	UV-Vis Fluorescence		Фғ	
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N Me ^{-N}	253.30	508.95	64.55	0.055
	305.06	502.98	84.08	0.090
4k	393.14	499.33	32.18	0.115

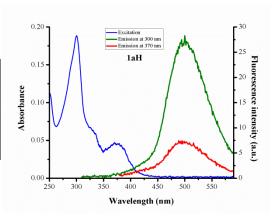

	UV-Vis	Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N N	253.90	505.82	80.80	0.080
	304.63	494.84	104.31	0.126
41	415.67	499.74	64.85	0.256

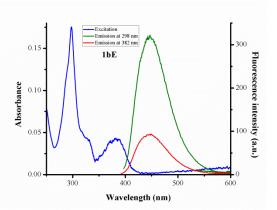

	UV-Vis	Fluores	scence	Φ _F
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
	282.14	465.09	89.80	0.096
Me ^{-N}	327.08	463.93	90.41	0.111
6	371.82	463.99	67.47	0.120

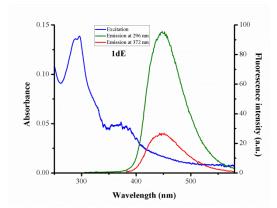
CO ₂ Me	UV-Vis	Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
Me N HO	314.81	510.61	15.73	0.020
1aB	355.62	516.06	12.47	0.021

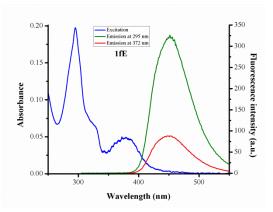

,CO ₂ Me	UV-Vis Fluorescence		ФF	
F N	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
Mė 🖳 N 1aC	308.51	495.54	44.03	0.096
	351.59	505.86	24.69	0.108

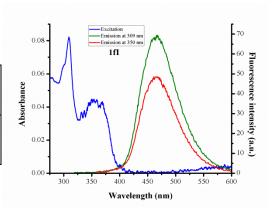

	UV-Vis	Fluores	scence	Фғ
CO ₂ Me	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
HO	312.51	514.11	10.93	0.024
1fB	351.00	516.01	09.08	0.028

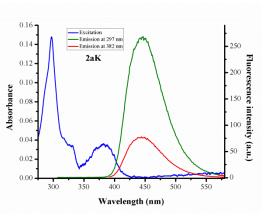

.CO₂Me	UV-Vis	Fluorescence		ΦF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N H Me	296.89	445.08	251.15	0.295
1aE	382.08	443.03	71.75	0.365


CO ₂ Me	UV-Vis	Fluorescence		Фг
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
Me 1aF	297.90	476.02	23.58	0.040
	365.51	470.80	6.86	0.059


.CO₂Me	UV-Vis	Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N Me	300.34	499.37	6.82	0.024
1aG	379.89	489.61	1.91	0.021


,CO₂Me	UV-Vis	Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N N Me	300.29	499.79	27.77	0.034
1aH	370.37	494.99	07.40	0.039


.CO₂Me	UV-Vis	Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N N	297.61	446.96	319.92	0.335
1bE	382.06	449.49	93.63	0.398


CO ₂ Me	UV-Vis	UV-Vis Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
	295.81	448.06	95.62	0.140
Ú 1dE	372.37	450.94	26.68	0.106

CO ₂ Me	UV-Vis	s Fluorescence		ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
	295.12	451.96	326.41	0.311
1fE	372.36	448.03	88.25	0.331

CO ₂ Me	UV-Vis	Fluorescence		Фғ
N N N N N N N N N N N N N N N N N N N	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
16	309.03	465.90	69.43	0.171
1fi	349.60	465.41	48.52	0.217

.CO₂Me	UV-Vis Fluorescence			ФF
	λ _{Ex} (nm)	λ _{Em} (nm)	Intensity	
N Me	297.06	446.81	268.66	0.327
2aK	382.28	443.93	77.77	0.384