Electronic Supplementary Information (ESI) for

Substrate selectivity and its mechanistic insight of the photo-responsive non-

nucleoside triphosphate for myosin and kinesin

Md. Jahirul Islam^{1,2,†}, Kazuya Matsuo^{1,2,†}, Halley M. Menezes^{1,2}, Masayuki Takahashi³, Hidehiko Nakagawa⁴, Akira Kakugo³, Kazuki Sada³ and Nobuyuki Tamaoki^{1,2, *}

1. Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo, Japan

2. Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Japan

3. Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Japan

4. Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Japan

† These authors contributed equally to this work.

* Correspondence and requests for materials should be addressed to N. T. (E-mail: tamaoki@es.hokudai.ac.jp).

Table of Contents

1.	Reverse-phase (RP) HPLC profile of 1c			
2.	UV-VIS absorption spectra of 1b–1d at different light irradiation condition S			
3.	cis-to-trans isomer ratio of AzoTP derivatives at the UV and VIS PSS			
4.	Thermal stability of <i>cis</i> isomer of compound 1a–1e			
5.	AzoTPs (1a, 1b, 1d and 1e) in actin-myosin system as photoresponsive S			
	energy molecules			
6.	Myosin-based actin filament gliding velocity depending on the	S10		
	concentration of triphosphate energy molecules			
7.	Kinesin-based microtubule gliding velocity depending on the concentration	S11		
	of triphosphate energy molecules			
8.	8. Reversible photoregulation of the microtubule gliding velocity with AzoTP			
	derivatives			
9.	Binding mode of ATP in kinesin-1 and myosin II motor domain			
10	Information of Supplementary Movies			
11.	NMR Spectral data	S15		
12.	High-resolution mass spectra data of 1c	S23		
	References	S24		

1. Reverse-phase (RP) HPLC profile of 1c

Fig. S1 RP HPLC chromatogram of **1c.** Retention time: 41.61 min (94%), Column: Mightysil, RP-18 GP (L) 150-4.6 (5μm) (Kanto Chemical). Eluent: 10–70 % of CH₃CN in sodium phosphate buffer (pH 6) for 80 min. Monitoring wavelength: 325 nm. Flow rate: 1.0 mL / min at room temperature.

Fig. S2 UV-VIS absorption spectra of **1b** – **1d** at before irradiation (BI) condition, UV photo stationary state (PSS), and VIS PSS. UV-VIS absorption spectra of (a) **1b** (8.9×10^{-4} M), (b) **1c** (9.5×10^{-4} M), (c) **1d** (7.1×10^{-4} M) in BRB-80 buffer at 25 °C. BI (black line), UV PSS (red line), VIS PSS (dark green line). Insets: Absorbance changes after the alternate irradiations with UV (20 sec) and VIS (150 sec) light for 5 cycles.

3. *cis*-to-*trans* isomer ratio of AzoTP derivatives at the UV and VIS PSS

AzoTP	UV PSS		VIS	PSS
derivatives	<i>cis</i> (%)	trans (%)	<i>cis</i> (%)	trans (%)
1a	92	8	38	62
1b	87	13	25	75
1c	88	12	26	74
1d	93	7	50	50
1e	93	7	35	65

Table S1. Ratio of *cis* and *trans* isomers at the UV and VIS PSS

We determined the *cis*-to-*trans* isomer ratio of **1a**, **1b**, **1d**, and **1e** using ¹H NMR spectroscopy previously.^{1,2}

Estimation of *cis*-to-*trans* ratio of **1c** at UV and VIS PSS:

Fig. S3 ¹H NMR spectra of **1c** in D₂O prior to irradiation and after irradiation with the UV and VIS light (at PSS condition). The area for methylene protons of **1c** at 3.27 ppm was studied at before irradiation (BI) condition; after irradiation with UV (PSS); and after irradiation with VIS (PSS). At UV PSS, *cis* to *trans* ratio was 88 : 12 and at VIS PSS, *cis* to *trans* ratio was 26 : 74.

4. Thermal stability of *cis* isomer of compound 1a-1e

Fig. S4 Time course of the absorbance of (a) **1a** at 327 nm, (b) **1b** at 325 nm, (c) **1c** at 325 nm, (d) **1d** at 325 nm, (e) **1e** at 336 nm in BRB-80 buffer (pH 6.9) after UV irradiation and then incubated under dark condition at 25 °C. Conditions: [**1a**] = 6.8×10^{-4} M, [**1b**] = 12.1×10^{-4} M, [**1c**] = 10.0×10^{-4} M, [**1d**] = 7.1×10^{-4} M, [**1e**] = 3.0×10^{-4} M. (f) The plot for thermal isomerization rate determination of **1a-1e** under dark condition at 25 °C; equation, $\ln\left(\frac{Abs (BI) - Abs (time)}{Abs (BI) - Abs (UV PSS)}\right) = -kt$ was used to determine the rate of the thermal isomerization reaction where *Abs* (BI), Absorbance at before irradiation; *Abs* (UV PSS), Absorbance at UV photo stationary state; *Abs* (time), Absorbance at different time interval in dark start from UV PSS. Rate constants, k = 0.0074 h⁻¹ ($t_{1/2} = 94$ h) for **1a**, k = 0.0016 h⁻¹ ($t_{1/2} = 4.3 \times 10^2$ h) for **1b**, k = 0.0016 h⁻¹ ($t_{1/2} = 4.3 \times 10^2$ h) for **1b**, k = 0.0016 h⁻¹ ($t_{1/2} = 1.1 \times 10^2$ h) for **1e**.

5. AzoTPs (1a, 1b, 1d and 1e) in actin-myosin system as photoresponsive energy molecules

AzoTP	V _{max}	K _m	Gliding velocity switching*
derivatives/ATP	(µm/s)	(mM)	(%)
1a ²	1.5 ± 0.04	0.10 ± 0.01	54
1b ²	1.0 ± 0.1	0.18 ± 0.04	80
1d ²	1.9 ± 0.2	0.091 ± 0.02	79
1e ²	1.7 ± 0.2	0.27 ± 0.09	81

Table S2. Summary of AzoTP derivatives (1a, 1b, 1d and 1e) in actin-myosin system

*Gliding velocity switching between *trans* and *cis*-rich state of AzoTP derivatives at saturated concentration, 1.0 mM for **1a** and **1e**; 0.50 mM for **1b** and **1d**.

6. Myosin-based actin filament gliding velocity depending on the concentration of triphosphate energy molecules

Fig. S5 Actin filament gliding motility with triphosphate energy molecule. (a) Gliding velocity depending on the concentration of ATP. (b) Gliding velocity with respect to the concentration of GTP. Solid black line: curve fitting using the Michaelis-Menten equation ($K_m = 0.16 \pm 0.02$ mM, $V_{max} = 5.1 \pm 0.2 \mu$ m/sec for ATP). These K_m and V_{max} values with ATP were different from our formal report² because we used the different batch of myosin and actin from our previous report in this new experiment. Error bars represent the standard deviation of 10 actin filaments in a single flow cell.

7. Kinesin-based microtubule gliding velocity depending on the concentration of triphosphate energy molecules

Fig. S6 Kinesin-based microtubule gliding velocity depending on the concentration of triphosphate energy molecules (filled circle (•): before irradiation and open circle (•): UV irradiation). Gliding velocity with respect to the concentration of (a) **1a**, (b) ATP, and (c) GTP. Solid black line: curve fitting using the Michaelis-Menten equation ($K_m = 1.7 \pm 0.2 \text{ mM}$, $V_{max} = 0.83 \pm 0.06 \text{ µm/sec}$ for **1a**; $K_m = 0.079 \pm 0.003 \text{ mM}$, $V_{max} = 0.92 \pm 0.01 \text{ µm/sec}$ for ATP, and, $K_m = 1.8 \pm 0.2 \text{ mM}$, $V_{max} = 0.55 \pm 0.03 \text{ µm/sec}$ for GTP). Dash black line: theoretical curve derived from solid black line for remaining *trans* isomer (8%) in *cis* rich state of **1a**. Error bars represent the standard deviation of 10 microtubules in a single flow cell.

8. Reversible photoregulation of the microtubule gliding velocity with AzoTP

derivatives

Fig. S7 Reversible photoregulation of the microtubule gliding velocity induced by AzoTP derivatives. (BI: before irradiation; UV: after irradiation with 365 nm light; Vis: after irradiation with 436 nm light). (a) **1b**, (b) **1c**, (c) **1d** and (d) **1e**. Error bars represent the standard deviation of 10 microtubules in a single flow cell.

9. Binding mode of ATP in kinesin-1 and myosin II motor domain

Fig. S8 X-ray crystallography analyses of ATP analogues with kinesin-1 and myosin II motor domain. X-ray crystal structures obtained from RCSB Protein Data Bank (PDB entry code: 4HNA for kinesin-1 and 1MMD for myosin II) were used. All figures of simulated results were created with pymol (DeLano Scientific). (a) X-ray structure and (b) binding modes of ADP-Mg-AIFx in kinesin-1. (c) X-ray structure and (d) binding modes of ADP-Mg-BFx in myosin II. In X-ray structures, ADP were represented by a stick mode. Magnesium ion (yellow) and BF_{3}^{-1} or AIF_{4}^{-1} was done by a ball mode. In the figures of binding modes, the amino acid resides composing ARBS were colored in blue and the residues composing the triphosphate binding site were colored in green.

10. Information of Supplementary Movies

Movie S1: Movie (total 8 min, 10 fps) in kinesin-myosin composite motility assay using **1e** (1.0 mM). *In situ* photoregulation of microtubules and actin filaments motility was studied by irradiating alternatingly with UV (365nm) and VIS (436 nm) light. AzoTP **1e** could drive actin filaments with photoreversibility (BI : $1.1 \pm 0.04 \mu$ m/sec, UV : $0.27 \pm 0.01 \mu$ m/sec and VIS : $0.88 \pm 0.03 \mu$ m/sec at 1.0 mM), whereas it could not drive microtubules efficiently (BI : $0.054 \pm 0.01 \mu$ m/sec UV : $0.014 \pm 0.003 \mu$ m/sec and VIS : $0.040 \pm 0.01 \mu$ m/sec at 1.0 mM).

Movie S2: Movie (total 4 min, 10 fps) in kinesin-myosin composite motility assay using ATP (0.20 mM). ATP could drive both of actin filaments and microtubules efficiently $(3.3 \pm 0.3 \mu m/sec$ for actin filaments and 0.71 ± 0.02 $\mu m/sec$ for microtubules).

11. NMR Spectral data

Fig. S11 ¹H NMR of 1c-3

S17

S18

S22

12. High-resolution mass spectra data of 1c

References

- 1 N. Perur, M. Yahara, T. Kamei and N. Tamaoki, *Chem. Commun.*, 2013, **49**, 9935–9937.
- 2 H. M. Menezes, M. J. Islam, M. Takahashi and N. Tamaoki, *Org. Biomol. Chem.*, 2017, **15**, 8894–8903.