Isolation and Identification of Flavonoids from the Saudi Arabian Plant Retama raetam which Stimulate Secretion of Insulin and Inhibit α -Glucosidase

Mohammad Nur-e-Alam,^{*,a} Muhammad Yousaf,^a Ifat Parveen,^b Rahman M. Hafizur,^c Usman Ghani,^d Sarfaraz Ahmed,^a Abdul Hameed,^c Michael D. Threadgill^e and Adnan J. Al-Rehaily^{*,a}

^aDepartment of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451, Kingdom of Saudi Arabia

^bInstitute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom

^cDr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan

^dClinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia

^eDrug & Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

<u>Contents</u>

Fig. S1: HRMS of 1

- Fig. S2: ¹H NMR spectrum of **1**
- Fig. S3: Expansion of ¹H NMR spectrum of **1**
- Fig. S4: ¹³C NMR spectrum of **1**
- Fig. S5: COSY spectrum of 1
- Fig. S6: HMBC spectrum of 1
- Fig. S7: HSQC spectrum of 1

Fig. S8: HRMS of **2**

Fig. S9: ¹H NMR spectrum of **2**

Fig. S10: Expansion A of ¹H NMR spectrum of **2**

Fig. S11: Expansion B of ¹H NMR spectrum of **2**

Fig. S12: ¹³C NMR spectrum of **2**

Fig. S13: COSY spectrum of 2

Fig. S14: HMBC spectrum of 2

Fig. S15: HSQC spectrum of 2

Fig. S16: NOESY spectrum of 2

Fig. S17: HRMS of **3**

Fig. S18: ¹H NMR spectrum of **3**

Fig. S19: Expansion of ¹H NMR spectrum of **3**

Fig. S20: ¹³C NMR spectrum of **3**

Fig. S21: COSY spectrum of 3

Fig. S22: HMBC spectrum of **3**

Fig. S23: HSQC spectrum of 3

Fig. S24: NOESY spectrum of 3

Fig. S25: ¹H NMR spectrum of **4**

Fig. S26: Expansion of ¹H NMR spectrum of **4**

Fig. S27: ¹³C NMR spectrum of **4**

Fig. S28: COSY spectrum of 4

Fig. S29: HMBC spectrum of 4

Fig. S30: HSQC spectrum of 4

Fig. S31: HRMS of compound 5

Fig. S32: ¹H NMR spectrum of **5**

Fig. S33: Expansion of ¹H NMR spectrum of **5**

Fig. S34: ¹³C NMR spectrum of **5**

Fig. S35: COSY spectrum of 5

Fig. S36: HMBC spectrum of 5

Fig. S37: HSQC spectrum of 5

Fig. S38: NOESY spectrum of 5

Fig. S39: HRMS of **6**

Fig. S40: ¹H NMR spectrum of **6**

Fig. S41: Expansion of ¹H NMR spectrum of **6**

Fig. S42: ¹³C NMR spectrum of **6**

Fig. S43: COSY spectrum of 6

- Fig. S44: HMBC spectrum of 6
- Fig. S45: HSQC spectrum of 6
- Fig. S46: NOESY spectrum of 6
- Fig. S47: HRMS of **7**
- Fig. S48: ¹H NMR spectrum of **7**
- Fig. S49: ¹³C NMR spectrum of **7**
- Fig. S50: COSY spectrum spectrum of 7
- Fig. S51: HMBC spectrum of 7
- Fig. S52: HSQC spectrum of 7
- Fig. S53: HRMS of **8**
- Fig. S54: ¹H NMR spectrum of 8
- Fig. S55: Expansion A of ¹H NMR spectrum of **8**
- Fig. S56: Expansion B of ¹H NMR spectrum of **8**
- Fig. S57: ¹³C NMR spectrum of 8
- Fig. S58: COSY spectrum of 8
- Fig. S59: HMBC spectrum of 8
- Fig. S60: HSQC spectrum of 8
- Fig. S61: ¹H NMR spectrum of **9**
- Fig. S62: Expansion of ¹H NMR spectrum of **9**
- Fig. S63: ¹³C NMR spectrum of **9**
- Fig. S64: COSY spectrum of 9
- Fig. S65: HMBC spectrum of 9

Fig. 66: HSQC spectrum of 9
Fig. 67: ¹H NMR spectrum of 10
Fig. 68: Expansion of ¹H NMR spectrum of 10
Fig. 69: ¹³C NMR spectrum of 10
Fig. 70: COSY spectrum of 10
Fig. 71: HMBC spectrum of 10
Fig. 72: HSQC spectrum of 10
Fig. 573: CD spectrum of 2
Fig. S74: CD spectrum of 5
Fig. S75: CD spectrum of 8
Table S1: ¹H and ¹³C NMR spectroscopic data for 4,9,10 in (CD₃)₂SO [δ_H, multiplicity (J (Hz)); δ_c, type]

Table S2: Insulin secretion data

Fig. S1. HRMS of 1

Fig. S3. Expansion of ¹H NMR spectrum of 1

Fig. S4. ¹³C NMR spectrum of 1

Fig. S5. COSY spectrum of 1

Fig. S6. HMBC spectrum of 1

Fig. S7. HSQC spectrum of 1

Fig. S9. ¹H NMR spectrum of 2

Fig. S10. Expansion A of 1 H NMR spectrum of 2

Fig. S11. Expansion B of ¹H NMR of 2

Fig. S12. ¹³C NMR spectrum of 2

Fig. S13. COSY spectrum of 2

Fig. S14. HMBC spectrum of 2

Fig. S15. HSQC spectrum of 2

Fig. S16. NOESY spectrum of 2

Fig. S17. HRMS of 3

Fig. S18. ¹H NMR spectrum of 3

Fig. S19. Expansion of ¹H NMR spectrum of 3

Fig. S20. ¹³C NMR spectrum of **3**

Fig. S21. COSY spectrum of 3

Fig. S22. HMBC spectrum of 3

Fig. S23. HSQC spectrum of 3

Fig. S24. NOESY spectrum of 3

Fig. S25. ¹H NMR spectrum of 4

Fig. S26. Expansion of ¹H NMR spectrum of 4

Fig. S27. ¹³C NMR spectrum of 4

Fig. S28. COSY spectrum of 4

Fig. S29. HMBC spectrum of 4

Fig. S30. HSQC spectrum of 4

Fig. S31. HRMS of 5

Fig. S32. ¹H NMR spectrum of 5

Fig. S33. Expansion of ¹H-NMR spectrum of 5

Fig. S34. ¹³C NMR spectrum of 5

Fig. S35. COSY spectrum of 5

Fig. S36. HMBC spectrum of 5

Fig. S37. HSQC spectrum of 5

Fig. S38. NOESY spectrum of 5

Fig. S39. HRMS of 6

Fig. S40. ¹H NMR spectrum of **6**

Fig. S41. Expansion of ¹H NMR of 6

Fig. S42. ¹³C NMR spectrum of **6**

Fig. S43. COSY spectrum of 6

Fig. S44. HMBC spectrum of 6

Fig. S45. HSQC spectrum of 6

Fig. S46. NOESY of 6

Fig. S47. HRMS of 7

Fig. S48. ¹H NMR spectrum of 7

Fig. S49. ¹³C NMR spectrum of 7

Fig. S50. COSY spectrum of 7

Fig. S51. HMBC spectrum of 7

Fig. S52. HSQC spectrum of 7

Fig. S53. HRMS of 8

Fig. S54. ¹H NMR spectrum of 8

Fig. S55. Expansion A of ¹H NMR spectrum of 8

Fig. S56. Expansion B of ¹H NMR spectrum of 8

Fig. S57. ¹³C NMR spectrum of 8

Fig. S58. COSY spectrum of 8

Fig. S59. HMBC spectrum of 8

Fig. S60. HSQC spectrum of 8

Fig. S61. ¹H NMR spectrum of 9

Fig. S62. Expansion of ¹H NMR spectrum of 9

Fig. S63. ¹³C NMR spectrum of 9

Fig. S64. COSY spectrum of 9

Fig. S65. HMBC spectrum of 9

Fig. S66. HSQC spectrum of 9

Fig. S67. ¹H NMR spectrum of 10

Fig. S68. Expansion of ¹H NMR spectrum of **10**

Fig. S69. ¹³C NMR spectrum of 10

Fig. S70. COSY spectrum of 10

Fig. S71. HMBC spectrum of 10

Fig. S72. HSQC spectrum of 10

Fig. S73. CD spectrum of 2. Concentration 857 μ g mL⁻¹.

Fig. S75. CD spectrum of 8. Concentration 857 μ g mL⁻¹.

Fig. S74. CD spectrum of 5. Concentration 857 μ g mL⁻¹.

Position	4		9		10	
	$\delta_{ extsf{H}}$	δc	δ_{H}	δ_{C}	$\delta_{ extsf{H}}$	δc
2		164.1, C _q	8.37, s	154.67, CH	8.52, s	155.63, CH
3	6.79, s	103.1, CH		122.85, C _q		121.99, C _q
4		182.6, C _q		180.88, Cq		182.59, C _q
4a		104.1, C _q		105.74, C _q		106.41, C _q
5		162.1, C _q		157.14, C _q		158.52, C _q
6	6.29, s	98.8, CH		105.26, C _q		113.66, C _q
7		161.6, C _q		159.72, C _q		165.61, C _q
8		106.5, C _q	6.47, s	94.94 <i>,</i> CH	6.81, CH	91.24, CH
8a		154.9, C _q		157.95, C _q		153.93, C _q
1′		122.0, C _q		121.49, C _q		121.58, C _q
2′,6′	7.91, d <i>, J</i> = 8.5	128.8, CH	7.39, d, <i>J</i> = 8.4	130.64, CH	7.43, d, <i>J</i> = 8.4	130.74, CH
3',5'	6.95, d, <i>J</i> = 8.5	116.5, CH	6.84, d, <i>J</i> = 8.4	115.54, CH	6.85, d, <i>J</i> = 8.4	115.57, CH
4'		159.5, C _q		156.30, C _q		157.93, C _q
1″	3.45, d <i>, J</i> = 6.3	21.8, CH ₂				
2″	5.20 <i>, ca</i> . t	122.9, CH		81.66, C _q		130.74, CH
3″		131.5, C _q	5.74, d, <i>J</i> = 9.8	126.69, CH	5.52, s	115.57, CH
4″	1.64, s <i>or</i> 1.77, s	18.3, CH₃ or 25.9, CH₃	6.69, d, <i>J</i> = 9.8	116.47, CH		67.90, C _q
5″	1.64, s or 1.77, s		3.49, dd, J = 11.9, 5.6; 3.50, dd, J = 11.9.5.6	67.50, CH ₂	1.54, s	29.25, CH₃
6″			1.36, s	23.69, CH₃	1.54, s	29.25, CH₃
HO-5	12.81, s		13.36, s		13.74, s	
HO-7	10.4, br <i>or</i> 10.8, br		5.13, t <i>, J</i> = 5.6			
HO-4'	10.4, br <i>or</i> 10.8, br		9.64 <i>,</i> s		9.64, s	

Table S1. ¹H and ¹³C NMR spectroscopic data for **4,9,10** in (CD₃)₂SO [δ_{H} , multiplicity (J (Hz)); δ_{C} , type]

Table S2: Insulin secretion data

Insulin secretion (ng islet ⁻¹ h ⁻¹) mean ± SEM	Compound No.
8.51 ± 0.38	Control
38.51 ± 1.55	1
2.16 ± 0.95	2
32.86 ± 2.45	3
3.47 ± 0.36	4
35.23 ± 2.14	5
32.16 ± 0.69	6
12.08 + 1.09	7
19.88 ± 0.53	8
25 85 + 1 07	9
42 63 + 1 48	10
19 49 + 1 69	ТВ

Glucose-stimulated insulin secretion by pure compounds. Miurine islets were incubated in KRB buffer containing 16.7 glucose supplemented with or without pure compound (200 μ M) / TB (200 μ M) and secreted insulin was measured by ELISA. All data points are an average of a minimum of *n* = 3 separate experiments and are expressed as means ± SEM. TB, (tolbutamide) was used as a positive control.