

Supporting information

Diastereoselective synthesis of 3,3-disubstituted 3-nitro- 4-chromanone derivatives as potential antitumor agents

Huiqing Chen,^a Jia Xie,^b Dong Xing,^a Jinping Wang,^a Jie Tang,^a Zhengfang Yi,^b Fei Xia,^a Wenwei Qiu^{*a} and Fan Yang^{*a}

^a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. E-mail: wwqiu@chem.ecnu.edu.cn; fyang@chem.ecnu.edu.cn

^b Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Table of Contents

1. General experimental details	S2
2. General procedure and spectral data.....	S2
3. Derivatization of the product 2a and spectral data.....	S19
4. Biology materials and methods	S20
5. X-Ray crystallography of 2f (CCDC1873098)	S21
6. NMR charts	S24

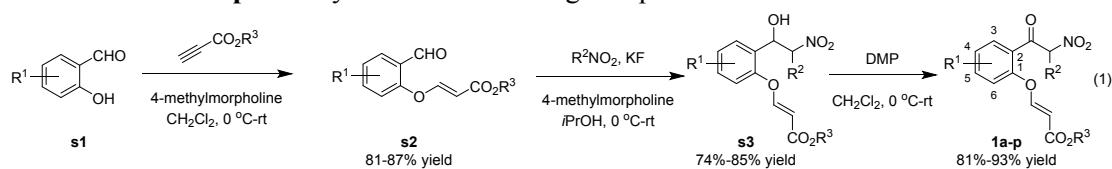
1. General experimental details

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. The progress of reactions was monitored by silica gel thin layer chromatography (TLC) plates, visualized under UV. Flash column chromatography was performed using Qingdao Haiyang 200-300 mesh silica gel. ¹H NMR spectra were recorded on Bruker Ascend 400 (400 MHz) or Bruker AVANCE III (500 MHz) spectrophotometers. Chemical shifts (δ) are reported in ppm from the solvent resonance as the internal standard (CDCl_3 : 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Bruker Ascend 400 (100 MHz) or Bruker AVANCE III (126 MHz) with complete proton decoupling spectrophotometers (CDCl_3 : 77.0 ppm). High resolution mass spectra were performed using a Bruker micrOTOF II high resolution mass spectrometer. Melting points were uncorrected and were recorded on a WRR melting point apparatus. Single crystal X-ray diffraction data were collected on a Bruker Apex II CCD diffractometer using Mo-K α radiation ($\lambda = 0.71073 \text{ \AA}$) at 296 K. Complete crystallographic data, in CIF format, have been deposited with the Cambridge Crystallographic Data Center. CCDC 1873098 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. For details on the individual structures, see the Single Crystal X-ray Crystallography section of this document.

2. General procedure and spectral data

2.1 Condition Optimization on the amount of catalyst

Table S1


Entry	Catalyst	Amount of catalyst (mol%)	Solvent	Temp (°C)	Yield of 2a (%)	d.r.
1	KOtBu	10	THF	-40	>95	20:1
2	KOtBu	5	THF	-40	>95	16.6:1
3	KOtBu	2	THF	-40	>95	15.7:1
4	KOtBu	20	THF	-40	92	18.3:1

2.2 Preparation and Spectral Data of Substrates

2.2.1 Preparation of Substrates

α -Nitro ketones were prepared by the following procedures.¹

Substrates **1a-p** were synthesized according to equation 1.

Reference

- 1 a) E. Ciganek, *Synthesis*, 1995, **10**, 1311; b) L. Q. Lu, F. Li, J. An, J. J. Zhang, X. L. An, Q. L. Hua and W. J. Xiao, *Angew. Chem. Int. Ed.*, 2009, **48**, 9542; c) B. P. Murphy, *J. Org.*

Chem., 1985, **50**, 5873; d) S. Bera, S. K. Das, T. Saha and G. Panda, *Tetrahedron Lett.*, 2015, **56**, 146.

2.2.2 Spectral Data of Substrates

Ethyl (E)-3-(2-(2-nitropropanoyl)phenoxy)acrylate (**1a**)

To a mixture of Salicylaldehyde **s1a** (610 mg, 5 mmol, 1 equiv.) and ethyl propiolate (540 mg, 5.5 mmol, 1 equiv.) in DCM (20 mL) at 0 °C was added 4-methylmorpholine (50 mg, 0.5 mmol, 0.1 equiv.) under N₂ atmosphere. The mixture was allowed to rise to room temperature and stirred for another 2 h. The mixture was quenched with 1N HCl and extracted 3 times with EtOAc. Combined organic phases were dried over sodium sulfate, filtered and purified by column chromatography (petroleum ether/ethyl acetate = 20:1) on silica gel to afford ethyl (E)-3-(2-formylphenoxy)acrylate **s2a** as a yellowish oil in 81% yield (890 mg). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.35 (s, 1H), 7.91 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.82 (d, *J* = 12.2 Hz, 1H), 7.65-7.61 (m, 1H), 7.30 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.14 (d, *J* = 8.2 Hz, 1H), 5.62 (d, *J* = 12.2 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 188.05, 166.48, 157.94, 157.50, 135.96, 128.90, 126.48, 125.32, 118.24, 104.13, 60.33, 14.21. HRMS (ESI): Calcd for C₁₂H₁₂NaO₄ [M+Na]⁺: 243.0633. Found: 243.0645.

To a mixture of ethyl (E)-3-(2-formylphenoxy)acrylate **s2a** (880 mg, 4 mmol, 1 equiv.) and nitroethane (900 mg, 12 mmol, 3 equiv.) in *i*PrOH (20 mL) at 0 °C was added 4-methylmorpholine (40 mg, 0.4 mmol, 0.1 equiv.) and KF (24 mg, 0.4 mmol, 0.1 equiv.) under N₂ atmosphere. The mixture was allowed to rise to room temperature and stirred for another 18 h. The mixture was quenched with 1N HCl and extracted 3 times with EtOAc. Combined organic phases were dried over sodium sulfate, filtered and purified by column chromatography (petroleum ether/ethyl acetate = 5:1) on silica gel to afford ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3a** as a colorless oil in 85% yield (1 g). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (d, *J* = 12.2 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.40 (dd, *J* = 7.3, 7.2 Hz, 1H), 7.07 (d, *J* = 8.1 Hz, 1H), 5.69 (s, 1H), 5.63 (d, *J* = 12.2 Hz, 1H), 4.80 (dd, *J* = 6.9, 2.9 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.17 (d, *J* = 4.3 Hz, 1H), 1.46 (d, *J* = 6.9 Hz, 3H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.90, 157.90, 151.87, 129.86, 128.85, 127.97, 125.39, 117.20, 103.39, 85.01, 68.85, 60.38, 14.21, 11.64. HRMS (ESI): Calcd for C₁₄H₁₇NNaO₆ [M+Na]⁺: 318.0948. Found: 318.0946.

To a solution of ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3a** (590 mg, 2 mmol) in DCM (20 mL) at 0 °C was added Dess-Martin periodinane (1060 mg, 2.5 mmol) under N₂ atmosphere. The mixture was allowed to rise to room temperature and stirred for another 18 h. The slurry was purified directly by column chromatography (CH₂Cl₂/HOAc = 100:1) on silica gel. The eluent fractions were collected and washed with water. Combined organic phases were dried over sodium sulfate and concentrated. Removal of the residual acetic acid in vacuo by azeotroping with toluene to afford ethyl (E)-3-(2-(2-nitropropanoyl)phenoxy)acrylate **1a** as a yellowish oil in 88% yield (556 mg). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.87 (d, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 12.2 Hz, 1H), 7.65-7.61 (m, 1H), 7.30 (dd, *J* = 7.4, 7.3 Hz, 1H), 7.14 (d, *J* = 8.1 Hz, 1H), 5.98 (q, *J* = 7.0 Hz, 1H), 5.76 (d, *J* = 12.2 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.79 (d, *J* = 7.0 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 189.36, 166.07, 155.96, 154.44, 135.56, 131.78, 125.60,

125.40, 117.49, 105.66, 88.12, 60.51, 15.49, 14.18. HRMS (ESI): Calcd for $C_{14}H_{15}NNaO_6$ $[M+Na]^+$: 316.0792. Found: 316.0792.

Ethyl (E)-3-(4-methyl-2-(2-nitropropanoyl)phenoxy)acrylate (1b)

Substrate **1b** was synthesized analogously to **1a**. Ethyl (E)-3-(2-formyl-4-methylphenoxy)acrylate **s2b** was obtained as a yellowish oil in 86% yield from 2-hydroxy-5-methylbenzaldehyde **s1b** (5 mmol). **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 10.30 (s, 1H), 7.80 (d, J = 12.2 Hz, 1H), 7.70 (d, J = 1.4 Hz, 1H), 7.43 (dd, J = 8.3, 1.8 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 5.56 (d, J = 12.2 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.38 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). **13C NMR** (100 MHz, $CDCl_3$) δ (ppm) 188.27, 166.62, 158.61, 155.52, 136.62, 135.39, 128.93, 126.23, 118.46, 103.56, 60.29, 20.57, 14.24. HRMS (ESI): Calcd for $C_{13}H_{14}NaO_4$ $[M+Na]^+$: 257.0790. Found: 257.0804.

Ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-4-methylphenoxy)acrylate **s3b** was obtained as a colorless oil in 81% yield from ethyl (E)-3-(2-formyl-4-methylphenoxy)acrylate **s2b** (4 mmol). **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 7.72 (d, J = 12.2 Hz, 1H), 7.39 (s, 1H), 7.14 (dd, J = 8.2, 1.2 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 5.60 (t, J = 3.4 Hz, 1H), 5.54 (d, J = 12.2 Hz, 1H), 4.75 (qd, J = 6.7, 3.0 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.13 (d, J = 4.3 Hz, 1H), 2.35 (s, 3H), 1.44 (d, J = 6.9 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H). **13C NMR** (100 MHz, $CDCl_3$) δ (ppm) 166.99, 158.46, 149.75, 135.28, 130.26, 128.49, 128.27, 117.34, 102.82, 85.09, 68.93, 60.30, 20.88, 14.21, 11.73. HRMS (ESI): Calcd for $C_{15}H_{19}NNaO_6$ $[M+Na]^+$: 332.1110. Found: 332.1088.

Ethyl (E)-3-(4-methyl-2-(2-nitropropanoyl)phenoxy)acrylate **1b** was obtained as a yellowish oil in 86% yield from ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-4-methylphenoxy)acrylate **s3b** (1 mmol). **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 7.71 (d, J = 12.2 Hz, 1H), 7.66 (d, J = 1.4 Hz, 1H), 7.42 (dd, J = 8.4, 1.6 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 5.97 (q, J = 7.0 Hz, 1H), 5.71 (d, J = 12.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.37 (s, 3H), 1.78 (d, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H). **13C NMR** (100 MHz, $CDCl_3$) δ (ppm) 189.58, 166.25, 156.54, 152.42, 136.17, 135.49, 131.82, 125.30, 117.62, 105.08, 88.11, 60.48, 20.47, 15.51, 14.19. HRMS (ESI): Calcd for $C_{15}H_{17}NNaO_6$ $[M+Na]^+$: 330.0948. Found: 330.0942.

Ethyl (E)-3-(2-(2-nitropropanoyl)-4-(trifluoromethyl)phenoxy)acrylate (1c)

Substrate **1c** was synthesized analogously to **1a**. Ethyl (E)-3-(2-formyl-4-(trifluoromethyl)phenoxy)acrylate **s2c** was obtained as a white solid in 85% yield from 2-hydroxy-5-(trifluoromethyl)benzaldehyde **s1c** (5 mmol). m.p. 46-48 °C. **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 10.40 (s, 1H), 8.18 (s, 1H), 7.88 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 12.1 Hz, 1H), 7.29 (d, J = 8.6 Hz, 1H), 5.77 (d, J = 12.1 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H). **13C NMR** (100 MHz, $CDCl_3$) δ (ppm) 186.67, 165.98, 159.45, 156.01, 132.55 (q, J = 3.5 Hz), 127.62 (q, J = 3.7 Hz), 126.48 (q, J = 3.7 Hz), 123.18 (q, J = 270.6 Hz), 118.01, 106.12, 77.32, 77.00, 76.68, 60.61, 14.20. HRMS (ESI): Calcd for $C_{13}H_{11}F_3NaO_4$ $[M+Na]^+$: 311.0502. Found: 311.0493.

Ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-4-(trifluoromethyl)phenoxy)acrylate **s3c** was obtained as a white solid in 74% yield from ethyl (E)-3-(2-formyl-4-methylphenoxy)acrylate **s2c** (4 mmol). m.p. 86-90 °C. **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 7.94 (s, 1H), 7.76 (d, J = 12.2 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.17 (d, J = 8.5 Hz, 1H), 5.73 (d, J = 12.2 Hz, 2H),

4.77 (qd, $J = 6.8, 2.4$ Hz, 1H), 4.21 (q, $J = 7.1$ Hz, 2H), 3.19 (d, $J = 4.0$ Hz, 1H), 1.44 (d, $J = 6.9$ Hz, 3H), 1.30 (t, $J = 7.1$ Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 166.40, 156.11, 154.05, 129.62, 127.61 (q, $J = 32.9$ Hz), 127.17 (q, $J = 3.8$ Hz), 125.58 (q, $J = 3.8$ Hz), 123.60 (q, $J = 270.3$ Hz), 116.69, 105.31, 84.49, 68.25, 60.66, 14.20, 11.44. HRMS (ESI): Calcd for $\text{C}_{15}\text{H}_{16}\text{F}_3\text{NNaO}_6$ $[\text{M}+\text{Na}]^+$: 386.0822. Found: 386.0827.

Ethyl (*E*)-3-(2-(2-nitropropanoyl)-4-(trifluoromethyl)phenoxy)acrylate **1c** was obtained as a yellowish oil in 87% yield from ethyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)-4-(trifluoromethyl)-phenoxy)acrylate **s3c** (1 mmol). **^1H NMR** (400 MHz, CDCl_3) δ (ppm) 8.16 (s, 1H), 7.87 (d, $J = 8.5$ Hz, 1H), 7.73 (d, $J = 12.1$ Hz, 1H), 7.27 (d, $J = 8.7$ Hz, 1H), 5.94 (q, $J = 7.0$ Hz, 1H), 5.86 (d, $J = 12.1$ Hz, 1H), 4.22 (q, $J = 7.1$ Hz, 2H), 1.82 (d, $J = 7.0$ Hz, 3H), 1.29 (t, $J = 7.1$ Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 188.05, 165.66, 156.47, 154.36, 132.21 (q, $J = 3.4$ Hz), 129.40 (q, $J = 3.8$ Hz), 127.75 (q, $J = 34.0$ Hz), 125.87, 123.04 (q, $J = 270.9$ Hz), 117.47, 107.51, 87.85, 60.79, 15.42, 14.12. **^{19}F NMR** (376 MHz, CDCl_3) δ (ppm) 62.49. HRMS (ESI): Calcd for $\text{C}_{15}\text{H}_{14}\text{F}_3\text{NNaO}_6$ $[\text{M}+\text{Na}]^+$: 384.0665. Found: 384.0668.

Ethyl (*E*)-3-(4-fluoro-2-(2-nitropropanoyl)phenoxy)acrylate (**1d**)

Substrate **1d** was synthesized analogously to **1a**. Ethyl (*E*)-3-(4-fluoro-2-formylphenoxy)acrylate **s2d** was obtained as a yellowish oil in 86% yield from 5-fluoro-2-hydroxybenzaldehyde **s1d** (5 mmol). **^1H NMR** (400 MHz, CDCl_3) δ (ppm) 10.28 (d, $J = 2.9$ Hz, 1H), 7.78 (d, $J = 12.2$ Hz, 1H), 7.58 (dd, $J = 8.0, 3.2$ Hz, 1H), 7.34 (ddd, $J = 8.9, 7.4, 3.2$ Hz, 1H), 7.15 (dd, $J = 9.0, 4.0$ Hz, 1H), 5.57 (d, $J = 12.2$ Hz, 1H), 4.19 (q, $J = 7.1$ Hz, 2H), 1.28 (t, $J = 7.1$ Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 186.87, 166.33, 159.61 (d, $J = 246.1$ Hz), 158.32, 153.50 (d, $J = 2.6$ Hz), 127.84 (d, $J = 6.4$ Hz), 122.85 (d, $J = 24.2$ Hz), 120.59 (d, $J = 7.8$ Hz), 114.73 (d, $J = 23.8$ Hz), 104.16, 60.43, 14.22. HRMS (ESI): Calcd for $\text{C}_{12}\text{H}_{11}\text{FNaO}_4$ $[\text{M}+\text{Na}]^+$: 261.0534. Found: 261.0550.

Ethyl (*E*)-3-(4-fluoro-2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3d** was obtained as a yellowish oil in 80% yield from ethyl (*E*)-3-(4-fluoro-2-formylphenoxy)acrylate **s2d** (4 mmol). **^1H NMR** (400 MHz, CDCl_3) δ (ppm) 7.69 (d, $J = 12.2$ Hz, 1H), 7.36 (dd, $J = 8.9, 2.5$ Hz, 1H), 7.05 (ddd, $J = 8.1, 5.8, 2.8$ Hz, 1H), 7.02 (dd, $J = 8.8, 4.6$ Hz, 1H), 5.64 (s, 1H), 5.55 (d, $J = 12.2$ Hz, 1H), 4.75 (qd, $J = 6.8, 2.4$ Hz, 1H), 4.18 (q, $J = 7.1$ Hz, 2H), 3.24 (d, $J = 4.2$ Hz, 1H), 1.43 (d, $J = 6.9$ Hz, 3H), 1.28 (t, $J = 7.1$ Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 166.79, 159.93 (d, $J = 243.8$ Hz), 158.20, 147.56 (d, $J = 2.7$ Hz), 131.36 (d, $J = 7.4$ Hz), 119.15 (d, $J = 8.5$ Hz), 116.37 (d, $J = 23.6$ Hz), 115.07 (d, $J = 25.1$ Hz), 103.30, 84.61, 68.34, 60.48, 14.20, 11.37. HRMS (ESI): Calcd for $\text{C}_{14}\text{H}_{16}\text{FNaO}_6$ $[\text{M}+\text{Na}]^+$: 336.0854. Found: 336.0855.

Ethyl (*E*)-3-(4-fluoro-2-(2-nitropropanoyl)phenoxy)acrylate **1d** was obtained as a yellowish oil in 90% yield from ethyl (*E*)-3-(4-fluoro-2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3d** (1 mmol). **^1H NMR** (400 MHz, CDCl_3) δ (ppm) 7.67 (d, $J = 12.2$ Hz, 1H), 7.60 (dd, $J = 8.4, 3.1$ Hz, 1H), 7.34 (ddd, $J = 6.5, 4.0, 3.2$ Hz, 1H), 7.14 (dd, $J = 9.0, 4.1$ Hz, 1H), 5.93 (q, $J = 7.0$ Hz, 1H), 5.74 (d, $J = 12.2$ Hz, 1H), 4.22 (q, $J = 7.1$ Hz, 2H), 1.81 (d, $J = 7.1$ Hz, 3H), 1.30 (t, $J = 7.1$ Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 187.96, 165.97, 159.33 (d, $J = 246.1$ Hz), 156.13, 150.57 (d, $J = 2.6$ Hz), 127.00 (d, $J = 6.6$ Hz), 122.42 (d, $J = 23.8$ Hz), 119.61 (d, $J = 7.9$ Hz), 118.11 (d, $J = 24.9$ Hz), 105.84, 87.71, 60.64, 15.51, 14.20. HRMS (ESI): Calcd for $\text{C}_{14}\text{H}_{14}\text{FNaO}_6$ $[\text{M}+\text{Na}]^+$: 334.0697. Found:

Ethyl (E)-3-(4-chloro-2-(2-nitropropanoyl)phenoxy)acrylate (1e)

Substrate **1e** was synthesized analogously to **1a**. Ethyl (E)-3-(4-chloro-2-formylphenoxy)acrylate **s2e** was obtained as a yellow gum in 84% yield from 5-chloro-2-hydroxybenzaldehyde **s1e** (5 mmol). **1H NMR** (400 MHz, CDCl₃) δ (ppm) 10.29 (s, 1H), 7.87 (d, *J* = 2.6 Hz, 1H), 7.78 (d, *J* = 12.2 Hz, 1H), 7.58 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.12 (d, *J* = 8.8 Hz, 1H), 5.64 (d, *J* = 12.2 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 13C NMR (100 MHz, CDCl₃) δ 195.93, 168.18, 159.29, 136.48, 127.63, 127.04, 119.57, 118.89, 80.47, 77.36, 77.04, 76.72, 72.34, 52.33, 41.66, 36.77, 36.32, 29.43, 18.19. HRMS (ESI): Calcd for C₁₂H₁₁ClNaO₄ [M+Na]⁺: 277.0238. Found: 277.0239.

Ethyl (E)-3-(4-chloro-2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3e** was obtained as a yellowish oil in 83% yield from ethyl (E)-3-(4-chloro-2-formylphenoxy)acrylate **s2e** (4 mmol). **1H NMR** (400 MHz, CDCl₃) δ (ppm) 7.70 (d, *J* = 12.2 Hz, 1H), 7.62 (d, *J* = 2.0 Hz, 1H), 7.34 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.99 (d, *J* = 8.7 Hz, 1H), 5.65 (s, 1H), 5.61 (d, *J* = 12.2 Hz, 1H), 4.74 (dd, *J* = 6.9, 2.6 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.17 (d, *J* = 4.2 Hz, 1H), 1.44 (d, *J* = 6.9 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 166.64, 157.35, 150.23, 131.04, 130.70, 129.77, 128.14, 118.50, 104.01, 84.60, 68.34, 60.53, 14.21, 11.47. HRMS (ESI): Calcd for C₁₄H₁₆ClNaO₆ [M+Na]⁺: 352.0558. Found: 352.0574.

Ethyl (E)-3-(4-chloro-2-(2-nitropropanoyl)phenoxy)acrylate **1e** was obtained as a yellow gum in 91% yield from ethyl (E)-3-(4-chloro-2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3e** (1 mmol). **1H NMR** (400 MHz, CDCl₃) δ (ppm) 7.85 (d, *J* = 2.5 Hz, 1H), 7.67 (d, *J* = 12.2 Hz, 1H), 7.58 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 1H), 5.92 (q, *J* = 7.1 Hz, 1H), 5.78 (d, *J* = 12.1 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 1.80 (d, *J* = 7.1 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 188.03, 165.86, 155.43, 152.89, 135.21, 131.41, 131.16, 126.77, 118.90, 106.37, 87.81, 60.68, 15.49, 14.20. HRMS (ESI): Calcd for C₁₄H₁₄ClNaO₆ [M+Na]⁺: 350.0402. Found: 350.0399.

Ethyl (E)-3-(4-bromo-2-(2-nitropropanoyl)phenoxy)acrylate (1f)

Substrate **1f** was synthesized analogously to **1a**. Ethyl (E)-3-(4-bromo-2-formylphenoxy)acrylate **s2f** was obtained as a white solid in 85% yield from 5-bromo-2-hydroxybenzaldehyde **s1f** (5 mmol). m.p. 59-61 °C. **1H NMR** (400 MHz, CDCl₃) δ (ppm) 10.28 (s, 1H), 8.01 (d, *J* = 2.4 Hz, 1H), 7.78 (d, *J* = 12.2 Hz, 1H), 7.73 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 1H), 5.65 (d, *J* = 12.2 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 1.28 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 186.64, 166.22, 157.25, 156.37, 138.55, 131.63, 127.65, 119.99, 118.56, 104.90, 60.50, 14.23. HRMS (ESI): Calcd for C₁₂H₁₁BrNaO₄ [M+Na]⁺: 320.9733. Found: 320.9725.

Ethyl (E)-3-(4-bromo-2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3f** was obtained as a colorless oil in 76% yield from ethyl (E)-3-(4-bromo-2-formylphenoxy)acrylate **s2f** (4 mmol). **1H NMR** (400 MHz, CDCl₃) δ (ppm) 7.67 (d, *J* = 5.8 Hz, 1H), 7.65 (d, *J* = 4.2 Hz, 1H), 7.48 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.95 (d, *J* = 8.7 Hz, 1H), 5.59 (d, *J* = 12.2 Hz, 1H), 5.33 (d, *J* = 7.8 Hz, 1H), 4.76 (dd, *J* = 8.3, 7.0 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.56 (s, 1H), 1.37 (d, *J* = 6.9 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 166.83,

157.65, 151.74, 133.20, 131.44, 131.30, 119.30, 118.59, 103.93, 87.77, 69.36, 60.58, 15.99, 14.16. HRMS (ESI): Calcd for $C_{14}H_{16}BrNNaO_6$ [M+Na]⁺: 396.0053. Found: 396.0069.

Ethyl (E)-3-(4-bromo-2-(2-nitropropanoyl)phenoxy)acrylate **1f** was obtained as a yellowish oil in 89% yield from ethyl (E)-3-(4-bromo-2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3f** (1 mmol). **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 8.00 (d, J = 2.4 Hz, 1H), 7.72 (dd, J = 8.8, 2.5 Hz, 1H), 7.67 (d, J = 12.1 Hz, 1H), 7.04 (d, J = 8.8 Hz, 1H), 5.91 (q, J = 7.0 Hz, 1H), 5.78 (d, J = 12.1 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.80 (d, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H). **13C NMR** (100 MHz, $CDCl_3$) δ (ppm) 187.95, 165.86, 155.29, 153.42, 138.16, 134.39, 127.05, 119.12, 118.40, 106.47, 87.81, 60.70, 15.51, 14.21. HRMS (ESI): Calcd for $C_{14}H_{14}BrNNaO_6$ [M+Na]⁺: 393.9897. Found: 393.9916.

Ethyl (E)-3-(3-methoxy-2-(2-nitropropanoyl)phenoxy)acrylate (1g)

Substrate **1g** was synthesized analogously to **1a**. Ethyl (E)-3-(2-formyl-3-methoxyphenoxy)acrylate **s2g** was obtained as a yellowish oil in 84% yield from 2-hydroxy-6-methoxybenzaldehyde **s1g** (5 mmol). **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 10.39 (s, 1H), 7.70 (d, J = 12.3 Hz, 1H), 7.49 (s, 1H), 6.82 (d, J = 8.5 Hz, 1H), 6.67 (d, J = 8.2 Hz, 1H), 5.49 (d, J = 12.3 Hz, 1H), 4.15 (d, J = 7.1 Hz, 2H), 3.91 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H). **13C NMR** (100 MHz, $CDCl_3$) δ (ppm) 187.74, 166.70, 162.13, 158.63, 156.65, 135.77, 116.20, 111.16, 108.42, 102.93, 60.09, 56.23, 14.17. HRMS (ESI): Calcd for $C_{13}H_{14}NaO_5$ [M+Na]⁺: 273.0739. Found: 273.0756.

Ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-3-methoxyphenoxy)acrylate **s3g** was obtained as a colorless oil in 79% yield from ethyl (E)-3-(2-formyl-3-methoxyphenoxy)acrylate **s2g** (4 mmol). **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 7.72 (d, J = 12.2 Hz, 1H), 7.34 (dd, J = 8.4, 8.3 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 8.3 Hz, 1H), 5.65 (d, J = 12.2 Hz, 1H), 5.44 (dd, J = 10.7, 10.2 Hz, 1H), 5.08 (qd, J = 6.8, 2.8 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 3.70 (d, J = 11.2 Hz, 1H), 1.30 (d, J = 6.8 Hz, 3H), 1.28 (t, J = 6.8 Hz, 3H). **13C NMR** (100 MHz, $CDCl_3$) δ (ppm) 166.68, 158.44, 157.77, 154.21, 130.81, 116.34, 110.70, 107.94, 103.86, 87.05, 69.38, 60.29, 56.09, 16.31, 14.23. HRMS (ESI): Calcd for $C_{15}H_{19}NNaO_7$ [M+Na]⁺: 348.1054. Found: 348.1026.

Ethyl (E)-3-(3-methoxy-2-(2-nitropropanoyl)phenoxy)acrylate **1g** was obtained as a yellowish oil in 89% yield from ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-3-methoxyphenoxy)acrylate **s3g** (1 mmol). **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 7.67 (d, J = 12.2 Hz, 1H), 7.43 (dd, J = 8.5, 8.4 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H), 6.73 (d, J = 8.3 Hz, 1H), 5.77 (q, J = 7.1 Hz, 1H), 5.59 (d, J = 12.2 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.73 (d, J = 7.2 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H). **13C NMR** (100 MHz, $CDCl_3$) δ (ppm) 191.04, 166.52, 157.84, 157.43, 153.64, 133.21, 117.36, 110.14, 107.77, 104.07, 89.43, 60.22, 56.25, 14.79, 14.19. HRMS (ESI): Calcd for $C_{15}H_{17}NNaO_7$ [M+Na]⁺: 346.0903. Found: 346.0916.

Ethyl (E)-3-(4-methoxy-2-(2-nitropropanoyl)phenoxy)acrylate (1h)

Substrate **1h** was synthesized analogously to **1a**. Ethyl (E)-3-(2-formyl-4-methoxyphenoxy)acrylate **s2h** was obtained as a yellowish oil in 81% yield from 2-hydroxy-5-methoxybenzaldehyde **s1h** (5 mmol). **1H NMR** (400 MHz, $CDCl_3$) δ (ppm) 10.26 (s, 1H), 7.78 (d, J = 12.3 Hz, 1H), 7.36 (d, J = 3.0 Hz, 1H), 7.17 (dd, J = 8.9, 3.1 Hz, 1H), 7.07 (d, J = 9.0 Hz, 1H), 5.48 (d, J = 12.3 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 1.26 (t, J = 7.1

Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 187.86, 166.61, 159.46, 157.04, 151.52, 127.23, 123.26, 120.58, 110.68, 103.08, 60.26, 55.85, 14.22. HRMS (ESI): Calcd for C₁₃H₁₄NaO₅ [M+Na]⁺: 273.0739. Found: 273.0748.

Ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-4-methoxyphenoxy)acrylate **s3h** was obtained as a yellowish oil in 77% yield from ethyl (E)-3-(2-formyl-4-methoxyphenoxy)acrylate **s2h** (4 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.69 (d, *J* = 12.3 Hz, 1H), 7.13 (d, *J* = 2.9 Hz, 1H), 6.95 (d, *J* = 8.9 Hz, 1H), 6.85 (dd, *J* = 8.9, 3.0 Hz, 1H), 5.60-5.59 (m, 1H), 5.47 (d, *J* = 12.3 Hz, 1H), 4.75 (qd, *J* = 6.8, 2.9 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 3.27 (d, *J* = 4.3 Hz, 1H), 1.42 (d, *J* = 6.9 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 167.08, 159.22, 157.13, 145.30, 130.42, 119.13, 114.69, 112.98, 102.23, 84.91, 68.78, 60.30, 55.69, 14.18, 11.47. HRMS (ESI): Calcd for C₁₅H₁₉NNaO₇ [M+Na]⁺: 348.1054. Found: 348.1056.

Ethyl (E)-3-(4-methoxy-2-(2-nitropropanoyl)phenoxy)acrylate **1h** was obtained as a yellowish oil in 87% yield from ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-4-methoxyphenoxy)acrylate **s3h** (1 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.68 (d, *J* = 12.2 Hz, 1H), 7.35 (d, *J* = 3.1 Hz, 1H), 7.16 (dd, *J* = 9.0, 3.1 Hz, 1H), 7.07 (d, *J* = 9.0 Hz, 1H), 5.96 (q, *J* = 7.0 Hz, 1H), 5.67 (d, *J* = 12.2 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 1.79 (d, *J* = 7.1 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 189.13, 166.28, 157.21, 156.86, 148.36, 126.28, 122.31, 119.63, 114.51, 104.69, 87.98, 60.50, 55.91, 15.57, 14.21. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₇ [M+Na]⁺: 346.0903. Found: 346.0892.

Ethyl (E)-3-(5-methoxy-2-(2-nitropropanoyl)phenoxy)acrylate (**1i**)

Substrate **1i** was synthesized analogously to **1a**. Ethyl (E)-3-(2-formyl-5-methoxyphenoxy)acrylate **s2i** was obtained as a yellowish oil in 83% yield from 2-hydroxy-4-methoxy- benzaldehyde **s1i** (5 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 10.18 (s, 1H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 12.2 Hz, 1H), 6.80 (dd, *J* = 8.7, 1.5 Hz, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 5.63 (d, *J* = 12.2 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 186.76, 166.49, 165.84, 159.26, 157.74, 130.71, 120.16, 111.12, 104.21, 103.66, 60.34, 55.93, 14.22. HRMS (ESI): Calcd for C₁₃H₁₄NaO₅ [M+Na]⁺: 273.0739. Found: 273.0751.

Ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-5-methoxyphenoxy)acrylate **s3i** was obtained as a yellowish oil in 74% yield from ethyl (E)-3-(2-formyl-5-methylphenoxy)acrylate **s2i** (4 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.72 (d, *J* = 12.2 Hz, 1H), 7.47 (d, *J* = 8.6 Hz, 1H), 6.76 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.57 (d, *J* = 2.2 Hz, 1H), 5.61 (d, *J* = 12.2 Hz, 1H), 5.54 (t, *J* = 3.4 Hz, 1H), 4.73 (dd, *J* = 6.8, 3.3 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 3.01 (d, *J* = 4.3 Hz, 1H), 1.45 (d, *J* = 6.9 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 166.82, 160.86, 157.74, 152.77, 128.75, 120.70, 110.40, 103.84, 103.54, 85.33, 68.88, 60.37, 55.62, 14.22, 11.94. HRMS (ESI): Calcd for C₁₅H₁₉NNaO₇ [M+Na]⁺: 348.1054. Found: 348.1053.

Ethyl (E)-3-(5-methoxy-2-(2-nitropropanoyl)phenoxy)acrylate **1i** was obtained as a yellowish oil in 92% yield from ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-5-methoxyphenoxy)acrylate **s3i** (1 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.95 (d, *J* = 8.9 Hz, 1H), 7.71 (d, *J* = 12.2 Hz, 1H), 6.81 (dd, *J* = 8.9, 2.3 Hz, 1H), 6.57 (d, *J* = 2.2 Hz, 1H), 5.96 (q, *J* = 7.0 Hz, 1H), 5.78 (d, *J* = 12.2 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 1.78 (d, *J* = 7.0

Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 187.41, 166.09, 165.74, 156.59, 155.65, 134.03, 118.09, 110.91, 105.95, 103.30, 87.96, 60.58, 56.05, 15.67, 14.21. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₇ [M+Na]⁺: 346.0903. Found: 346.0912.

Ethyl (E)-3-(2-methoxy-6-(2-nitropropanoyl)phenoxy)acrylate (1j)

Substrate **1j** was synthesized analogously to **1a**. Ethyl (E)-3-(2-formyl-6-methoxyphenoxy)acrylate **s2j** was obtained as a colorless oil in 82% yield from 2-hydroxy-3-methoxybenzaldehyde **s1j** (5 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 10.21 (s, 1H), 7.77 (d, J = 12.3 Hz, 1H), 7.46 (s, 1H), 7.30 (dd, J = 8.2, 7.8 Hz, 1H), 7.22 (dd, J = 8.1, 1.2 Hz, 1H), 5.27 (d, J = 12.3 Hz, 1H), 4.15 (d, J = 7.1 Hz, 2H), 3.88 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 188.23, 166.76, 161.22, 151.29, 145.83, 128.92, 126.67, 119.63, 118.38, 101.02, 60.13, 56.30, 14.20. HRMS (ESI): Calcd for C₁₃H₁₄NaO₅ [M+Na]⁺: 273.0739. Found: 273.0744.

Ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-6-methoxyphenoxy)acrylate **s3j** was obtained as a yellowish oil in 81% yield from ethyl (E)-3-(2-formyl-6-methoxyphenoxy)acrylate **s2j** (4 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.67 (d, J = 1.2.3 Hz, 1H), 7.25 (dd, J = 8.0, 5.2 Hz, 1H), 7.18 (d, J = 6.9 Hz, 1H), 6.97 (dd, J = 8.0, 1.1 Hz, 1H), 5.56 (t, J = 3.4 Hz, 1H), 5.28 (d, J = 12.3 Hz, 1H), 4.74 (dd, J = 6.9, 3.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 3.31 (d, J = 4.3 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 167.23, 160.73, 150.66, 139.75, 131.98, 126.67, 118.93, 112.63, 100.20, 85.02, 68.86, 60.17, 55.97, 14.14, 11.41. HRMS (ESI): Calcd for C₁₅H₁₉NNaO₇ [M+Na]⁺: 348.1054. Found: 348.1042.

Ethyl (E)-3-(2-methoxy-6-(2-nitropropanoyl)phenoxy)acrylate **1j** was obtained as a yellowish oil in 93% yield from ethyl (E)-3-(2-(1-hydroxy-2-nitropropyl)-6-methoxyphenoxy)acrylate **s3j** (1 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.57 (d, J = 12.3 Hz, 1H), 7.29 (dd, J = 7.9, 1.6 Hz, 1H), 7.23 (dd, J = 8.0, 8.0 Hz, 1H), 7.16 (dd, J = 8.0, 1.5 Hz, 1H), 5.83 (q, J = 7.1 Hz, 1H), 5.36 (d, J = 12.3 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 1.70 (d, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 190.02, 166.58, 160.25, 151.26, 142.62, 128.82, 126.90, 121.83, 117.78, 101.71, 87.93, 60.29, 56.43, 15.52, 14.21. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₇ [M+Na]⁺: 346.0897. Found: 346.0913.

Ethyl (E)-3-(2-(2-nitrobutanoyl)phenoxy)acrylate (1k)

Substrate **1k** was synthesized analogously to **1a**. Ethyl (E)-3-(2-(1-hydroxy-2-nitrobutyl)phenoxy)acrylate **s3k** was obtained as a yellowish oil in 78% yield from ethyl (E)-3-(2-formylphenoxy)acrylate **s2a** (4 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.75 (d, J = 12.2 Hz, 1H), 7.57 (d, J = 7.7 Hz, 1H), 7.37 (dd, J = 8.1, 7.5 Hz, 1H), 7.23 (dd, J = 7.8, 7.4 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 5.62 (d, J = 12.2 Hz, 1H), 5.43 (s, 1H), 4.65 (dt, J = 10.8, 3.5 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.19 (s, 1H), 2.20-2.12 (m, 1H), 1.80-1.74 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.4 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 166.86, 157.85, 152.24, 130.03, 128.66, 128.22, 125.36, 117.30, 103.51, 92.49, 69.42, 60.36, 20.67, 14.23, 10.45. HRMS (ESI): Calcd for C₁₅H₁₉NNaO₆ [M+Na]⁺: 332.1110. Found: 332.1099.

Ethyl (E)-3-(2-(2-nitrobutanoyl)phenoxy)acrylate **1k** was obtained as a yellowish oil in

81% yield from ethyl (*E*)-3-(2-(1-hydroxy-2-nitrobutyl)phenoxy)acrylate **s3k** (1 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.80 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 12.2 Hz, 1H), 7.59 (dd, *J* = 7.7, 7.6 Hz, 1H), 7.26 (dd, *J* = 7.7, 7.3 Hz, 1H), 7.10 (d, *J* = 8.3 Hz, 1H), 5.82 (dd, *J* = 9.2, 4.4 Hz, 1H), 5.73 (d, *J* = 12.2 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.23 (m, 1H), 2.12 (m, 1H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.02 (t, *J* = 7.3 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 188.82, 166.02, 156.02, 154.27, 135.44, 131.56, 125.72, 125.32, 117.48, 105.49, 94.71, 60.43, 23.66, 14.09, 10.69. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₆ [M+Na]⁺: 330.0954. Found: 330.0964.

Methyl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate (1l)

Substrate **1l** was synthesized analogously to **1a**. Methyl (*E*)-3-(2-formylphenoxy)acrylate **s2l** was obtained as a white solid in 85% yield from 2-hydroxybenzaldehyde **s1a** (5 mmol). m.p. 54-56 °C. **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 10.36 (s, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.84 (d, *J* = 12.2 Hz, 1H), 7.63 (dd, *J* = 8.2, 7.4 Hz, 1H), 7.31 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.14 (d, *J* = 8.3 Hz, 1H), 5.64 (d, *J* = 12.2 Hz, 1H), 3.73 (s, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 188.03, 166.90, 158.07, 157.48, 135.97, 128.95, 126.46, 125.36, 118.15, 103.76, 51.49. HRMS (ESI): Calcd for C₁₁H₁₀NNaO₄ [M+Na]⁺: 229.0477. Found: 229.0489.

Methyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3l** was obtained as a yellowish oil in 78% yield from methyl (*E*)-3-(2-formylphenoxy)acrylate **s2l** (4 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 12.2 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.37 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.26 (dd, *J* = 7.8, 7.5 Hz, 1H), 7.05 (d, *J* = 8.1 Hz, 1H), 5.67 (d, *J* = 3.0 Hz, 1H), 5.62 (d, *J* = 12.2 Hz, 1H), 4.78 (dd, *J* = 6.8, 2.9 Hz, 1H), 3.72 (s, 3H), 3.36 (d, *J* = 4.2 Hz, 1H), 1.44 (d, *J* = 6.9 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 167.43, 158.18, 151.81, 129.81, 128.95, 127.93, 125.39, 117.10, 102.83, 85.00, 68.81, 51.49, 11.52. HRMS (ESI): Calcd for C₁₃H₁₅NNaO₆ [M+Na]⁺: 304.0792. Found: 304.0809.

Methyl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate **1l** was obtained as a yellowish oil in 85% yield from methyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3l** (1 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.81 (d, *J* = 7.1 Hz, 1H), 7.70 (d, *J* = 12.1 Hz, 1H), 7.59 (dd, *J* = 7.0, 6.9 Hz, 1H), 7.26 (dd, *J* = 7.2, 7.0 Hz, 1H), 7.10 (d, *J* = 7.9 Hz, 1H), 5.95 (q, *J* = 6.6 Hz, 1H), 5.71 (d, *J* = 12.1 Hz, 1H), 3.68 (s, 3H), 1.73 (d, *J* = 6.4 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 189.32, 166.39, 156.14, 154.29, 135.50, 131.58, 125.41, 125.31, 117.42, 105.00, 88.05, 51.45, 15.34. HRMS (ESI): Calcd for C₁₃H₁₃NNaO₆ [M+Na]⁺: 302.0635. Found: 302.0654.

Butyl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate (1m)

Substrate **1m** was synthesized analogously to **1a**. A catalytic amount of p-TsOH (34 mg, 0.2 mmol) was added to propionic acid (420 mg, 6 mmol, 1.0 equiv) and 1-butanol (488 mg, 6.6 mmol) dissolved in toluene (5 mL). The solution was heated to reflux overnight using a Dean-Stark apparatus, concentrated in vacuo, and the crude product was purified by column chromatography to afford *n*-butyl propionate which was not absolutely pure and thus used for next step directly. Butyl (*E*)-3-(2-formylphenoxy)acrylate **s2m** was obtained as a yellowish oil in 84% yield from 2-hydroxybenzaldehyde **s1a** (5 mmol) and *n*-butyl propionate above. **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 10.35 (s, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.82 (d, *J* = 12.2 Hz, 1H), 7.63 (dd, *J* = 7.9, 7.7 Hz, 1H), 7.30 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.14 (d, *J* = 8.3 Hz,

1H), 5.62 (d, J = 12.2 Hz, 1H), 4.12 (t, J = 6.7 Hz, 2H), 1.63 (quintet, J = 6.8 Hz, 2H), 1.38 (sextet, J = 7.3 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 188.04, 166.57, 157.88, 157.51, 135.96, 128.90, 126.48, 125.31, 118.22, 104.14, 64.24, 30.66, 19.09, 13.65. HRMS (ESI): Calcd for $\text{C}_{14}\text{H}_{16}\text{NaO}_4$ [M+Na] $^+$: 271.0946. Found: 271.0951.

Butyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3m** was obtained as a yellowish oil in 74% yield from butyl (*E*)-3-(2-formylphenoxy)acrylate **s2m** (4 mmol). **^1H NMR** (400 MHz, CDCl_3) δ (ppm) 7.76 (d, J = 12.2 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.38 (dd, J = 7.9, 7.6 Hz, 1H), 7.26 (dd, J = 7.8, 7.2 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 5.67 (s, 1H), 5.62 (d, J = 12.2 Hz, 1H), 4.78 (dd, J = 6.9, 2.8 Hz, 1H), 4.14 (t, J = 6.7 Hz, 2H), 3.03 (s, 1H), 1.64 (quintet, J = 6.8 Hz, 2H), 1.45 (d, J = 6.9 Hz, 3H), 1.40 (sextet, J = 7.3 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 166.95, 157.78, 151.89, 129.90, 128.75, 127.98, 125.40, 117.17, 103.49, 85.00, 68.85, 64.30, 30.67, 19.12, 13.68, 11.69. HRMS (ESI): Calcd for $\text{C}_{16}\text{H}_{21}\text{NNaO}_6$ [M+Na] $^+$: 346.1261. Found: 346.1261.

Butyl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate **1m** was obtained as a yellowish oil in 91% yield from butyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3m** (1 mmol). **^1H NMR** (400 MHz, CDCl_3) δ (ppm) 7.87 (d, J = 7.9 Hz, 1H), 7.73 (d, J = 12.2 Hz, 1H), 7.63 (dd, J = 8.4, 7.2 Hz, 1H), 7.31 (dd, J = 7.6, 7.5 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H), 5.98 (q, J = 7.0 Hz, 1H), 5.76 (d, J = 12.2 Hz, 1H), 4.15 (t, J = 6.7 Hz, 2H), 1.78 (d, J = 7.0 Hz, 3H), 1.64 (quintet, J = 6.8 Hz, 2H), 1.39 (sextet, J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 189.37, 166.26, 155.96, 154.43, 135.57, 131.78, 125.58, 125.39, 117.45, 105.64, 88.13, 64.46, 30.60, 19.07, 15.49, 13.64. HRMS (ESI): Calcd for $\text{C}_{16}\text{H}_{19}\text{NNaO}_6$ [M+Na] $^+$: 344.1105. Found: 344.1104.

Phenyl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate (**1n**)

Substrate **1n** was synthesized analogously to **1a**. A catalytic amount of p-TsOH (34 mg, 0.2 mmol, 0.05 equiv) was added to propionic acid (420 mg, 6 mmol, 1.0 equiv) and phenol (660 mg, 6.6 mmol, 1.1 equiv) dissolved in toluene (5 mL). The solution was heated to reflux overnight using a Dean-Stark apparatus, concentrated in vacuo, and the crude product was purified by column chromatography to afford phenyl propionate which was used for next step directly. Phenyl (*E*)-3-(2-formylphenoxy)acrylate **s2n** was obtained as a white solid in 87% yield from 2-hydroxybenzaldehyde **s1a** (5 mmol) and phenyl propionate above. m.p. 58-60 °C. **^1H NMR** (400 MHz, CDCl_3) δ (ppm) 10.41 (s, 1H), 8.03 (d, J = 12.2 Hz, 1H), 7.96 (dd, J = 7.7, 1.2 Hz, 1H), 7.71-7.65 (m, 1H), 7.42-7.33 (m, 3H), 7.25 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 7.7 Hz, 2H), 5.83 (d, J = 12.2 Hz, 1H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 187.95, 164.99, 159.61, 157.30, 150.44, 136.06, 129.41, 129.16, 126.58, 125.83, 125.69, 121.60, 118.43, 103.26. HRMS (ESI): Calcd for $\text{C}_{16}\text{H}_{12}\text{NaO}_4$ [M+Na] $^+$: 291.0628. Found: 291.0627.

Phenyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3n** was obtained as a yellowish oil in 81% yield from phenyl (*E*)-3-(2-formylphenoxy)acrylate **s2n** (4 mmol). **^1H NMR** (400 MHz, CDCl_3) δ (ppm) 7.94 (d, J = 12.2 Hz, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.45-7.37 (m, 3H), 7.29 (dd, J = 7.5, 7.4 Hz, 1H), 7.24 (dd, J = 8.0, 7.1 Hz, 1H), 7.13 (dd, J = 8.0, 2.9 Hz, 3H), 5.82 (d, J = 12.2 Hz, 1H), 5.40 (dd, J = 8.4, 5.3 Hz, 1H), 4.92-4.80 (m, 1H), 2.94 (d, J = 5.4 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 165.33, 159.76, 152.80, 150.43, 130.54, 129.41, 128.94, 128.52, 126.07, 125.83, 121.60, 117.90,

102.67, 87.90, 70.22, 16.21. HRMS (ESI): Calcd for $C_{18}H_{17}NNaO_6$ [M+Na]⁺: 366.0948. Found: 366.0923.

Phenyl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate **1n** was obtained as a amber oil in 86% yield from phenyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3n** (1 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.92 (d, *J* = 12.1 Hz, 1H), 7.90 (d, *J* = 6.4 Hz, 1H), 7.68-7.64 (m, 1H), 7.41-7.32 (m, 3H), 7.26-7.19 (m, 2H), 7.13 (d, *J* = 7.7 Hz, 2H), 6.01 (q, *J* = 7.1 Hz, 1H), 5.95 (d, *J* = 12.1 Hz, 1H), 1.87 (d, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 189.25, 164.61, 157.65, 154.25, 150.33, 135.59, 131.76, 129.39 (2C), 125.87, 125.71, 125.69, 121.52 (2C), 117.66, 104.65, 88.06, 15.53. HRMS (ESI): Calcd for $C_{18}H_{15}NNaO_6$ [M+Na]⁺: 364.0797. Found: 364.0802.

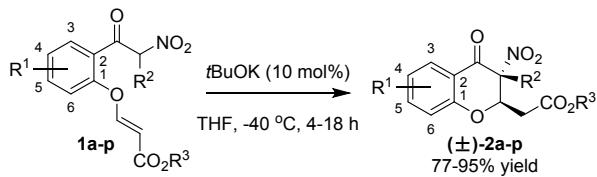
Cyclohexyl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate (**1o**)

Substrate **1o** was synthesized analogously to **1a**. A catalytic amount of p-TsOH (34 mg, 0.2 mmol, 0.05 equiv) was added to propiolic acid (420 mg, 6 mmol, 1.0 equiv) and cyclohexanol (660 mg, 6.6 mmol, 1.1 equiv) dissolved in toluene (5 mL). The solution was heated to reflux overnight using a Dean-Stark apparatus, concentrated in vacuo, and the crude product was purified by column chromatography to afford cyclohexyl propiolate which was used for next step directly. Cyclohexyl (*E*)-3-(2-formylphenoxy)acrylate **s2o** was obtained as a colorless oil in 82% yield from 2-hydroxybenzaldehyde **s1a** (5 mmol) and cyclohexyl propiolate above. **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 10.36 (s, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 12.4 Hz, 1H), 7.66-7.62 (m, 1H), 7.33-7.29 (m, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 5.13 (d, *J* = 12.0 Hz, 1H), 4.85-4.81 (m, 1H), 1.89-1.86 (m, 2H), 1.75-1.72 (m, 2H), 1.57-1.33 (m, 6H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 188.12, 165.96, 157.76, 157.55, 135.98, 128.86, 126.50, 125.29, 118.32, 104.64, 72.67, 31.65 (2C), 25.32, 23.74 (2C). HRMS (ESI): Calcd for $C_{16}H_{18}NaO_4$ [M+Na]⁺: 297.1097. Found: 297.1112.

Cyclohexyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3o** was obtained as a white solid in 80% yield from cyclohexyl (*E*)-3-(2-formylphenoxy)acrylate **s2o** (4 mmol). m.p. 109-112 °C. **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 12.0 Hz, 1H), 7.64 (d, *J* = 7.6, 1H), 7.42-7.38 (m, 1H), 7.30-7.28 (m, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 5.71-5.68 (m, 1H), 5.62 (d, *J* = 12.0 Hz, 1H), 4.87-4.83 (m, 1H), 4.82-4.78 (m, 1H), 3.19 (d, *J* = 4.0 Hz, 1H), 1.91-1.88 (m, 2H), 1.78-1.75 (m, 2H), 1.59-1.56 (m, 2H), 1.47 (d, *J* = 6.8 Hz, 1H), 1.43-1.38 (m, 4H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 166.36, 157.63, 151.85, 129.84, 128.80, 127.93, 125.32, 117.16, 103.90, 84.97, 72.70, 68.82, 31.63 (2C), 25.31, 23.73 (2C), 11.61. HRMS (ESI): Calcd for $C_{18}H_{23}NNaO_6$ [M+Na]⁺: 372.1418. Found: 372.1419.

Cyclohexyl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate **1o** was obtained as a yellowish oil in 87% yield from cyclohexyl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3o** (1 mmol). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.90 (d, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 12.4, 1H), 7.66-7.63 (m, 1H), 7.34-7.30 (m, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 6.99 (q, *J* = 7.2 Hz, 1H), 5.77 (d, *J* = 12.0 Hz, 1H), 4.87-4.83 (m, 1H), 1.91-1.87 (m, 2H), 1.81 (d, *J* = 7.2 Hz, 1H), 1.75-1.74 (m, 2H), 1.58-1.37 (m, 6H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 189.43, 165.60, 155.69, 154.53, 135.61, 131.88, 125.59, 125.39, 117.46, 106.30, 88.20, 72.97, 31.65 (2C), 25.32, 23.76 (2C), 15.56. HRMS (ESI): Calcd for $C_{18}H_{21}NNaO_6$ [M+Na]⁺: 370.1261. Found: 370.1274.

Adamantan-1-yl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate (**1p**)


Substrate **1p** was synthesized analogously to **1a**. A catalytic amount of p-TsOH (34 mg, 0.2 mmol) was added to propionic acid (420 mg, 6 mmol) and 1-adamantanol (1.03 g, 6.6 mmol) dissolved in toluene (5 mL). The solution was heated to reflux overnight using a Dean-Stark apparatus, concentrated in vacuo, and the crude product was purified by column chromatography to afford 1-adamantyl propiolate which was used for next step directly. Adamantan-1-yl (*E*)-3-(2-formylphenoxy)acrylate **s2p** was obtained as a white solid in 85% yield from 2-hydroxybenzaldehyde **s1a** (5 mmol) and 1-adamantyl propiolate. m.p. 83-85 °C. **1H NMR** (400 MHz, CDCl₃) δ (ppm) 10.35 (s, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 12.4, 1H), 7.64-7.60 (m, 1H), 7.30-7.27 (m, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 5.52 (d, *J* = 12.0 Hz, 1H), 2.15 (s, 3H), 2.13 (s, 6H), 1.65 (s, 6H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 188.17, 165.47, 157.64, 157.21, 135.94, 128.76, 126.48, 125.14, 118.30, 105.95, 80.78, 41.39 (3C), 36.12 (3C), 30.77 (3C). HRMS (ESI): Calcd for C₂₀H₂₂NaO₄ [M+Na]⁺: 349.1410. Found: 349.1393.

Adamantan-1-yl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)acrylate **s3p** was obtained as a colorless oil in 78% yield from adamantan-1-yl (*E*)-3-(2-formylphenoxy)acrylate **s2p** (4 mmol). **1H NMR** (400 MHz, CDCl₃) δ (ppm) 7.65 (d, *J* = 12.0 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.38-7.34 (m, 1H), 7.26-7.22 (m, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 5.67-5.65 (m, 1H), 5.52 (d, *J* = 12.0 Hz, 1H), 4.80-4.75 (m, 1H), 3.07 (d, *J* = 4.0 Hz, 1H), 2.16 (s, 3H), 2.13 (s, 6H), 1.66 (s, 6H), 1.44 (d, *J* = 7.2 Hz, 1H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 165.86, 157.03, 151.96, 129.83, 128.74, 127.92, 125.20, 117.15, 105.28, 84.98, 80.83, 68.88, 41.42 (3C), 36.15 (3C), 30.81 (3C), 11.67. HRMS (ESI): Calcd for C₂₂H₂₇NNaO₆ [M+Na]⁺: 424.1731. Found: 424.1750.

Adamantan-1-yl (*E*)-3-(2-(2-nitropropanoyl)phenoxy)acrylate **1p** was obtained as a yellowish oil in 81% yield from adamantan-1-yl (*E*)-3-(2-(1-hydroxy-2-nitropropyl)phenoxy)-acrylate **s3p** (1 mmol). **1H NMR** (400 MHz, CDCl₃) δ (ppm) 7.90 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.63 (d, *J* = 12.0 Hz, 1H), 7.65-7.62 (m, 1H), 7.33-7.29 (m, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 5.99 (q, *J* = 7.2 Hz, 1H), 5.70 (d, *J* = 12.4 Hz, 1H), 2.18 (s, 3H), 2.16 (s, 6H), 1.81 (d, *J* = 7.2 Hz, 1H), 1.68 (s, 6H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 189.52, 165.08, 155.09, 154.65, 135.59, 131.88, 125.58, 125.25, 117.39, 107.71, 88.23, 81.19, 41.43 (3C), 36.15 (3C), 30.83 (3C), 15.55. HRMS (ESI): Calcd for C₂₂H₂₅NNaO₆ [M+Na]⁺: 422.1580. Found: 422.1609.

2.3 General Procedure and Spectral Data of Products

2.3.1 General Procedure

General procedure: A catalytic amount of *t*BuOK (11 mg, 0.1 mmol, 0.1 equiv.) was added to the corresponding α -nitro-acetophenone **1** (1 mmol, 1 equiv.) dissolved in THF (5 mL) at -40 °C. *t*BuOK was insoluble and a suspension was formed, however, as the reaction proceeded, the system turned into a clean solution with light yellow color. The reaction was monitored by TLC analysis and was completed in 4 h. To the crude reaction mixture was added 1N HCl (1 mL) and extracted with EtOAc. The organic phase was combined, dried over Na₂SO₄ and the solvent was evaporated. The diastereomeric ratios were determined by ¹H NMR spectroscopy of the crude reaction mixture. The crude product was purified by column chromatography. The yields are isolated materials for the mixtures of the diastereomers.

2.3.2 Spectral Data of Products

Ethyl 2-((2*R*^{*,3*R*^{*})-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2a)}

Prepared according to the general procedure from **1a** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a colorless solid (95% yield, 20:1 d.r.). m.p. 55-57 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.96 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.61-7.57 (m, 1H), 7.15 (dd, *J* = 7.8, 7.3 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 5.61 (dd, *J* = 10.0, 2.4 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 2.86 (dd, *J* = 16.0, 10.1 Hz, 1H), 2.45 (dd, *J* = 16.0, 2.3 Hz, 1H), 1.75 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 184.88, 168.34, 159.62, 137.48, 128.42, 123.11, 118.18, 118.10, 92.11, 77.96, 61.48, 34.47, 14.30, 14.08. HRMS (ESI): Calcd for C₁₄H₁₅NNaO₆ [M+Na]⁺: 316.0792. Found: 316.0791.

Ethyl 2-((2*R*^{*,3*R*^{*})-3,6-dimethyl-3-nitro-4-oxochroman-2-yl)acetate (2b)}

Prepared according to the general procedure from **1b** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a white solid (92% yield, 12.5:1 d.r.). m.p. 88-92 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72 (s, 1H), 7.39 (dd, *J* = 8.5, 1.7 Hz, 1H), 6.92 (d, *J* = 8.5 Hz, 1H), 5.56 (dd, *J* = 10.1, 2.4 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 2.84 (dd, *J* = 16.0, 10.1 Hz, 1H), 2.43 (dd, *J* = 16.0, 2.3 Hz, 1H), 2.33 (s, 3H), 1.73 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 185.07, 168.42, 157.75, 138.62, 132.84, 127.85, 117.88, 117.81, 92.22, 77.96, 61.45, 34.51, 20.40, 14.33, 14.09. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₆ [M+Na]⁺: 330.0948. Found: 330.0941.

Ethyl 2-((2*R*^{*,3*R*^{*})-3-methyl-3-nitro-4-oxo-6-(trifluoromethyl)chroman-2-yl)acetate (2c)}

Prepared according to the general procedure from **1c** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a colorless oil (92% yield, 10.4:1 d.r.). **1H NMR** (400 MHz, CDCl₃) δ (ppm) 8.25 (s, 1H), 7.82 (d, *J* = 8.7 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 5.68 (dd, *J* = 10.0, 2.2 Hz, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.87 (dd, *J* = 16.2, 10.1 Hz, 1H), 2.49 (dd, *J* = 16.2, 2.2 Hz, 1H), 1.77 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 183.67, 168.00, 161.40, 133.77 (q, *J* = 3.2 Hz), 126.25 (q, *J* = 3.9 Hz), 125.96 (q, *J* = 33.8 Hz), 123.26 (q, *J* = 270.5 Hz), 119.26, 118.26, 91.55, 78.54, 61.70, 34.30, 14.53, 14.10. **19F NMR** (376 MHz, CDCl₃) δ (ppm) 62.50. HRMS (ESI): Calcd for C₁₅H₁₄F₃NNaO₆ [M+Na]⁺: 384.0665. Found: 384.0684.

Ethyl 2-((2*R*^{*,3*R*^{*})-6-fluoro-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2d)}

Prepared according to the general procedure from **1d** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a white solid (92% yield, 10.1:1 d.r.). m.p. 64-68 °C. **1H NMR** (400 MHz, CDCl₃) δ (ppm) 7.60 (dd, *J* = 7.8, 3.1 Hz, 1H), 7.34-7.29 (m, 1H), 7.03 (dd, *J* = 9.1, 4.1 Hz, 1H), 5.59 (dd, *J* = 10.0, 2.2 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 2.84 (dd, *J* = 16.1, 10.1 Hz, 1H), 2.45 (dd, *J* = 16.1, 2.2 Hz, 1H), 1.75 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 184.22, 168.23, 159.24, 156.35 (d, *J* = 92.8 Hz), 125.24 (d, *J* = 24.6 Hz), 120.02 (d, *J* = 7.5 Hz), 118.91 (d, *J* = 7.1 Hz), 113.34 (d, *J* = 23.9 Hz), 91.88, 78.38, 61.59, 34.36, 14.38, 14.11. **19F NMR** (376 MHz, CDCl₃) δ (ppm) 118.53. HRMS (ESI): Calcd for C₁₄H₁₄FNNaO₆ [M+Na]⁺: 334.0697. Found: 334.0714.

Ethyl 2-((2*R*^{*,3*R*^{*})-6-chloro-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2e)}

Prepared according to the general procedure from **1e** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a yellowish solid (92% yield, 11.3:1 d.r.). m.p. 86-89 °C. **1H NMR** (400 MHz, CDCl₃) δ (ppm) 7.90 (d, *J* = 2.5 Hz, 1H), 7.52 (dd, *J* = 8.9, 2.6 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 1H), 5.60 (dd, *J* = 10.0, 2.4 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 2.84 (dd, *J* = 16.1, 10.1 Hz, 1H), 2.45 (dd, *J* = 16.1, 2.4 Hz, 1H), 1.74 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 183.84, 168.17, 157.99, 137.39, 128.85, 127.55, 119.87, 119.16, 91.73, 78.30, 61.61, 34.31, 14.42, 14.09. HRMS (ESI): Calcd for C₁₄H₁₄ClNNaO₆ [M+Na]⁺: 350.0407. Found: 350.0425.

Ethyl 2-((2*R*^{*,3*R*^{*})-6-bromo-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2f)}

Prepared according to the general procedure from **1f** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a white solid (93% yield, 11.4:1 d.r.). m.p. 99-102 °C. **1H NMR** (400 MHz, CDCl₃) δ (ppm) 8.03 (d, *J* = 2.4 Hz, 1H), 7.67 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 5.60 (dd, *J* = 10.0, 2.4 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.84 (dd, *J* = 16.1, 10.1 Hz, 1H), 2.45 (dd, *J* = 16.1, 2.4 Hz, 1H), 1.74 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ (ppm) 183.68, 168.13, 158.41, 140.14, 130.61, 120.15, 119.57, 115.86, 91.65, 78.23, 61.58, 34.27, 14.39, 14.06. HRMS (ESI): Calcd for C₁₄H₁₄BrNNaO₆ [M+Na]⁺: 393.9897. Found: 393.9916.

Ethyl 2-((2*R*^{*,3*R*^{*})-5-methoxy-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2g)}

Prepared according to the general procedure from **1g** (1 mmol) and catalyst *t*BuOK (11

mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a yellowish solid (94% yield, 13:1 d.r.). m.p. 115-119 °C. **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.49-7.45 (m, 1H), 6.62-6.59 (m, 2H), 5.57 (dd, *J* = 10.1, 2.4 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 3H), 2.81 (dd, *J* = 16.0, 10.1 Hz, 1H), 2.43 (dd, *J* = 16.0, 2.4 Hz, 1H), 1.73 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 182.87, 168.45, 161.90, 160.97, 137.60, 109.85, 108.47, 105.29, 92.63, 77.24, 61.43, 56.33, 34.52, 14.63, 14.10. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₇ [M+Na]⁺: 346.0897. Found: 346.0893.

Ethyl 2-((2*R*^{*,3*R*^{*})-6-methoxy-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2h)}

Prepared according to the general procedure from **1h** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a yellowish oil (93% yield, 17.3:1 d.r.). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.32 (d, *J* = 3.1 Hz, 1H), 7.17 (dd, *J* = 9.1, 3.1 Hz, 1H), 6.95 (d, *J* = 9.1 Hz, 1H), 5.55 (dd, *J* = 10.1, 2.3 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 2.84 (dd, *J* = 16.0, 10.1 Hz, 1H), 2.42 (dd, *J* = 16.0, 2.3 Hz, 1H), 1.74 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 185.02, 168.40, 155.21, 154.39, 126.88, 119.42, 118.14, 108.21, 92.28, 78.19, 61.45, 55.85, 34.47, 14.33, 14.08. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₇ [M+Na]⁺: 346.0897. Found: 346.0918.

Ethyl 2-((2*R*^{*,3*R*^{*})-7-methoxy-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2i)}

Prepared according to the general procedure from **1i** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a yellow solid (95% yield, 13:1 d.r.). m.p. 97-103 °C. **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.87 (d, *J* = 8.9 Hz, 1H), 6.69 (dd, *J* = 8.9, 2.1 Hz, 1H), 6.45 (d, *J* = 1.8 Hz, 1H), 5.60 (dd, *J* = 9.9, 1.8 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 3H), 2.84 (dd, *J* = 16.1, 10.1 Hz, 1H), 2.43 (dd, *J* = 16.0, 1.8 Hz, 1H), 1.73 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 183.52, 168.47, 167.26, 161.80, 130.17, 111.99, 111.69, 100.95, 92.00, 78.17, 61.48, 55.90, 34.58, 14.47, 14.12. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₇ [M+Na]⁺: 346.0897. Found: 346.0918.

Ethyl 2-((2*R*^{*,3*R*^{*})-8-methoxy-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2j)}

Prepared according to the general procedure from **1j** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a yellow solid (94% yield, 44:1 d.r.). m.p. 110-113 °C. **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.53 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.13 (dd, *J* = 7.9, 0.8 Hz, 1H), 7.07 (dd, *J* = 8.0, 7.9 Hz, 1H), 5.62 (dd, *J* = 9.7, 2.6 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.87 (s, 3H), 2.94 (dd, *J* = 16.0, 9.7 Hz, 1H), 2.48 (dd, *J* = 16.0, 2.7 Hz, 1H), 1.76 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (100 MHz, CDCl₃) δ (ppm) 185.00, 168.37, 149.90, 148.92, 122.80, 119.29, 119.04, 118.73, 92.12, 78.48, 61.51, 56.47, 34.51, 14.30, 14.04. HRMS (ESI): Calcd for C₁₅H₁₇NNaO₇ [M+Na]⁺: 346.0897. Found: 346.0907.

Ethyl 2-((2*R*^{*,3*R*^{*})-3-ethyl-3-nitro-4-oxochroman-2-yl)acetate (2k)}

Prepared according to the general procedure from **1k** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a yellowish oil (92% yield, 14:1 d.r.). **¹H NMR** (400 MHz, CDCl₃) δ (ppm) 7.94 (dd, *J* = 7.9, 1.1 Hz, 1H),

7.57 (dd, J = 8.4, 7.1 Hz, 1H), 7.13 (dd, J = 7.7, 7.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 5.61 (dd, J = 10.3, 2.2 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.85 (dd, J = 16.0, 10.4 Hz, 1H), 2.45 (dd, J = 16.0, 2.2 Hz, 1H), 2.28-2.15 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.4 Hz, 3H). ^{13}C NMR (100 MHz, CDCl_3) δ (ppm) 183.87, 168.44, 159.11, 137.32, 128.10, 122.97, 118.95, 118.10, 95.03, 78.52, 61.51, 34.16, 21.36, 14.09, 8.18. HRMS (ESI): Calcd for $\text{C}_{15}\text{H}_{17}\text{NNaO}_6$ [M+Na] $^+$: 330.0948. Found: 330.0939.

Methyl 2-((2*R*^{*,3*R*^{*})-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2l)}

Prepared according to the general procedure from **1l** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a white solid (92% yield, 20:1 d.r.). m.p. 91-94 °C. ^1H NMR (400 MHz, CDCl_3) δ (ppm) 7.94 (d, J = 7.9 Hz, 1H), 7.58 (dd, J = 8.3, 7.4 Hz, 1H), 7.15 (dd, J = 7.6, 7.5 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 5.61 (dd, J = 10.0, 1.8 Hz, 1H), 3.77 (s, 3H), 2.88 (dd, J = 16.1, 10.1 Hz, 1H), 2.46 (dd, J = 16.0, 1.7 Hz, 1H), 1.75 (s, 3H). ^{13}C NMR (100 MHz, CDCl_3) δ (ppm) 184.85, 168.87, 159.59, 137.50, 128.42, 123.14, 118.14, 118.13, 92.10, 77.86, 52.44, 34.26, 14.27. HRMS (ESI): Calcd for $\text{C}_{13}\text{H}_{13}\text{NNaO}_6$ [M+Na] $^+$: 302.0641. Found: 302.0659.

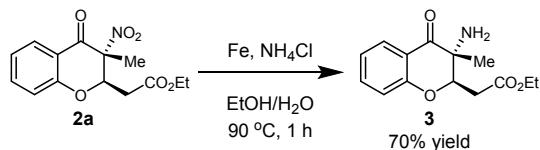
Butyl 2-((2*R*^{*,3*R*^{*})-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2m)}

Prepared according to the general procedure from **1m** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a yellowish oil (92% yield, 11.5:1 d.r.). ^1H NMR (400 MHz, CDCl_3) δ (ppm) 7.95 (d, J = 7.9 Hz, 1H), 7.58 (dd, J = 8.2, 7.4 Hz, 1H), 7.15 (dd, J = 7.6, 7.4 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 5.60 (dd, J = 10.1, 1.8 Hz, 1H), 4.21-4.14 (m, 2H), 2.86 (dd, J = 16.0, 10.1 Hz, 1H), 2.45 (dd, J = 16.0, 1.8 Hz, 1H), 1.75 (s, 3H), 1.66-1.60 (m, 2H), 1.43-1.35 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ^{13}C NMR (100 MHz, CDCl_3) δ (ppm) 184.90, 168.42, 159.62, 137.47, 128.44, 123.12, 118.20, 118.08, 92.12, 78.00, 65.34, 34.50, 30.48, 19.00, 14.30, 13.60. HRMS (ESI): Calcd for $\text{C}_{16}\text{H}_{19}\text{NNaO}_6$ [M+Na] $^+$: 344.1105. Found: 344.1100.

Phenyl 2-((2*R*^{*,3*R*^{*})-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2n)}

Prepared according to the general procedure from **1n** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a white solid (92% yield, 18:1 d.r.). m.p. 98 -102 °C. ^1H NMR (400 MHz, CDCl_3) δ (ppm) 7.98 (d, J = 7.9 Hz, 1H), 7.61 (dd, J = 8.3, 7.3 Hz, 1H), 7.42 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 7.7 Hz, 1H), 7.29-7.25 (m, 1H), 7.18 (dd, J = 7.9, 7.4 Hz, 1H), 7.13 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 8.4 Hz, 1H), 5.73 (dd, J = 10.2, 2.3 Hz, 1H), 3.13 (dd, J = 16.1, 10.2 Hz, 1H), 2.74 (dd, J = 16.1, 2.3 Hz, 1H), 1.79 (s, 3H). ^{13}C NMR (100 MHz, CDCl_3) δ (ppm) 184.73, 166.96, 159.56, 150.27, 137.62, 129.56 (2C), 128.56, 126.27, 123.31, 121.27 (2C), 118.22, 118.09, 92.07, 77.86, 34.66, 14.35. HRMS (ESI): Calcd for $\text{C}_{18}\text{H}_{15}\text{NNaO}_6$ [M+Na] $^+$: 364.0792. Found: 364.0786.

Cyclohexyl 2-((2*R*^{*,3*R*^{*})-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2o)}


Prepared according to the general procedure from **1o** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 4 h to provide the title compound as a colorless gum (86% yield, 16:1 d.r.). ^1H NMR (400 MHz, CDCl_3) δ (ppm) 7.96 (dd, J = 7.6, 1.2 Hz,

1H), 7.61-7.56 (m, 1H), 7.5 (dd, J = 7.8, 7.3 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H), 5.59 (dd, J = 10.0, 2.4 Hz, 1H), 4.89-4.83 (m, 1H), 2.84 (dd, J = 16.0, 10.0 Hz, 1H), 2.44 (dd, J = 16.0, 2.4 Hz, 1H), 1.86-1.83 (m, 2H), 1.75 (s, 3H), 1.73-1.71 (m, 2H), 1.55-1.30 (m, 6H). **^{13}C NMR** (100 MHz, CDCl_3) δ (ppm) 184.95, 167.77, 159.66, 137.48, 128.46, 123.11, 118.25, 118.06, 92.14, 78.16, 74.03, 34.82, 31.48, 31.39, 25.22, 23.62, 23.59, 14.34. HRMS (ESI): Calcd for $\text{C}_{18}\text{H}_{21}\text{NNaO}_6$ [M+Na] $^+$: 370.1267. Found: 370.1269.

Adamantan-1-yl 2-((2*R*^{*},3*R*^{*})-3-methyl-3-nitro-4-oxochroman-2-yl)acetate (2p)

Prepared according to the general procedure from **1p** (1 mmol) and catalyst *t*BuOK (11 mg, 0.1 mmol) in THF (5 mL) at -40 °C for 18 h to provide the title compound as a white solid (77% yield, 9:1 d.r.). m.p. 103-105 °C. **^1H NMR** (500 MHz, CDCl_3) δ (ppm) 7.95 (d, J = 7.9 Hz, 1H), 7.59 (dd, J = 7.9, 7.7 Hz, 1H), 7.15 (dd, J = 7.6, 7.5 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 5.54 (dd, J = 10.0, 2.0 Hz, 1H), 2.75 (dd, J = 15.5, 10.0 Hz, 1H), 2.40 (dd, J = 15.8, 2.1 Hz, 1H), 2.18 (br s, 3H), 2.12 (br s, 6H), 1.74 (s, 3H), 1.67 (br s, 6H). **^{13}C NMR** (126 MHz, CDCl_3) δ (ppm) 185.02, 167.12, 159.73, 137.45, 128.44, 123.04, 118.31, 118.10, 92.16, 82.30, 78.38, 41.25 (3C), 36.06 (3C), 35.72, 30.83 (3C), 14.45. HRMS (ESI): Calcd for $\text{C}_{22}\text{H}_{25}\text{NNaO}_6$ [M+Na] $^+$: 422.1574. Found: 422.1579.

3. Derivatization of the product **2a** and spectral data

A suspension of **2a** (60 mg, 0.2 mmol, 1.0 equiv) in ethanol (5 mL) was heated at reflux. Iron powder (110 mg, 2.0 mmol) and an aqueous solution of NH₄Cl (100 mg dissolved in 0.8 mL of water) were added. The reaction was stirred at reflux to completeness. The warm mixture was filtered through a Celite patch and the remaining solids were washed several times with warm EtOH. The filtrates were combined and concentrated.¹ The residue was purified by column chromatography (petroleum ether/ethyl acetate = 5:1) on silica gel to afford ethyl 2-((2*R*^{*,3*R*^{*})-3-amino-3-methyl-4-oxochroman-2-yl)acetate **3** as a yellowish oil in 70% yield (37 mg). ¹**H** NMR (400 MHz, CDCl₃) δ (ppm) 7.87 (d, *J*=7.8 Hz, 1H), 7.48 (dd, *J*=8.0, 7.5 Hz, 1H), 7.04 (dd, *J*=7.7, 7.3 Hz, 1H), 6.95 (d, *J*=8.3 Hz, 1H), 4.64 (dd, *J*=9.3, 2.5 Hz, 1H), 4.21 (q, *J*=7.0 Hz, 2H), 3.02 (dd, *J*=16.0, 3.0 Hz, 1H), 2.79 (dd, *J*=16.0, 9.3 Hz, 1H), 1.69 (br s, 2H), 1.27 (t, *J*=7.0 Hz, 3H), 1.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.64, 170.83, 160.49, 136.05, 127.81, 121.82, 118.63, 117.73, 80.68, 60.90, 57.46, 34.77, 18.59, 14.15. HRMS (ESI): Calcd for C₁₄H₁₈NO₄ [M+H]⁺: 264.1230. Found: 264.1225.}

Reference

- 1 C. Lu, B. Kirsch, C. K. Maurer, J. C. de Jong, A. Braunshausen, A. Steinbach and R. W. Hartmann, *Eur. J. Med. Chem.*, 2014, **79**, 173.

4. Biology materials and methods

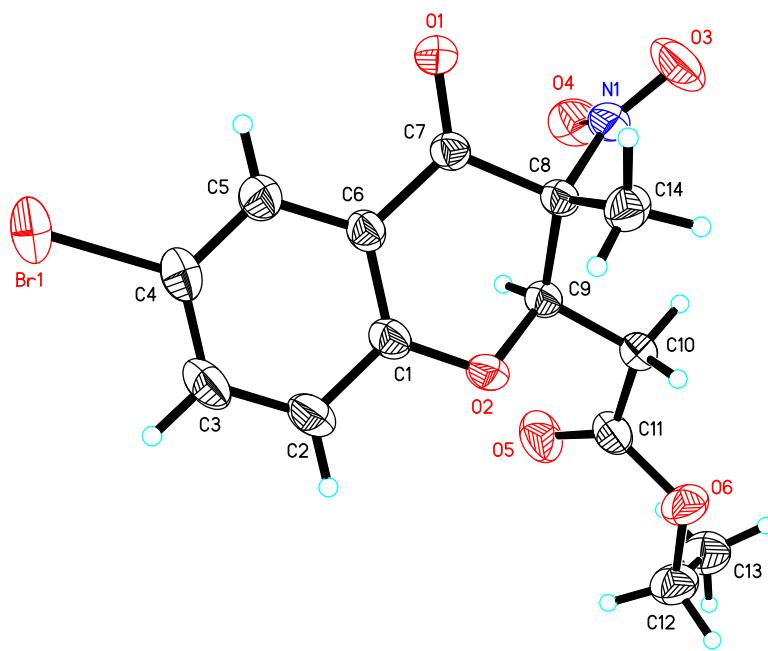
4.1 Cell lines and culture conditions

The cell lines used in this study were obtained from the American Type Culture Collection (ATCC). DU145 and PC3 cell lines were cultured in RPMI 1640 medium, which was supplemented with 10% FBS. Moreover, the human fibroblast cell line HAF was cultured in DMEM medium with 1% glutamine and 10% FBS. All cells were incubated at 37 °C and 5% CO₂ incubator.

4.2 Cell viability assay

The cell viability of cell lines in the presence of this series of compounds was determined by Sulforhodamine B (SRB) assay (Sigma Aldrich) which was described previously.¹ In brief, cells (including DU145, PC3) were seeded into 96-well plates at the appropriate cell densities during the experiment. After 24 h, the cells were treated with various concentrations of the compound for 96 h. Control group were exposed to DMSO at a concentration equivalent to that of the compound-treated cells. After treatment, 25 µL of 50% TCA was added for cell fixation at 4 °C. At least 1 h later or more, the plates were washed by water for five times. The plates were allowed to dry using hair dryer followed by being dyed with 100 µL 0.4% SRB for 10 min. After dying, the plates were washed by 1% acetic acid to remove the dye and allowed to dry using hair dryer. 100 µL of 10 mM Tris-based solution was added to each well, and absorbance was measured using a 96-well plate reader at 515 nm. Three independent experiments were carried out in triplicate. The IC₅₀ was calculated using GraphPad Software.

Reference


- 1 Y. D. He, S. H. Peng, J. H. Wang, H. Chen, X. N. Cong, A. Chen, M. C. Hu, M. Qin, H. G. Wu, S. M. Gao, L. G. Wang, X. Wang, Z. F. Yi and M. Y. Liu, *Nat. Commun.*, 2016, **7**, 13122.

5. X-Ray crystallography of 2f (CCDC1873098)

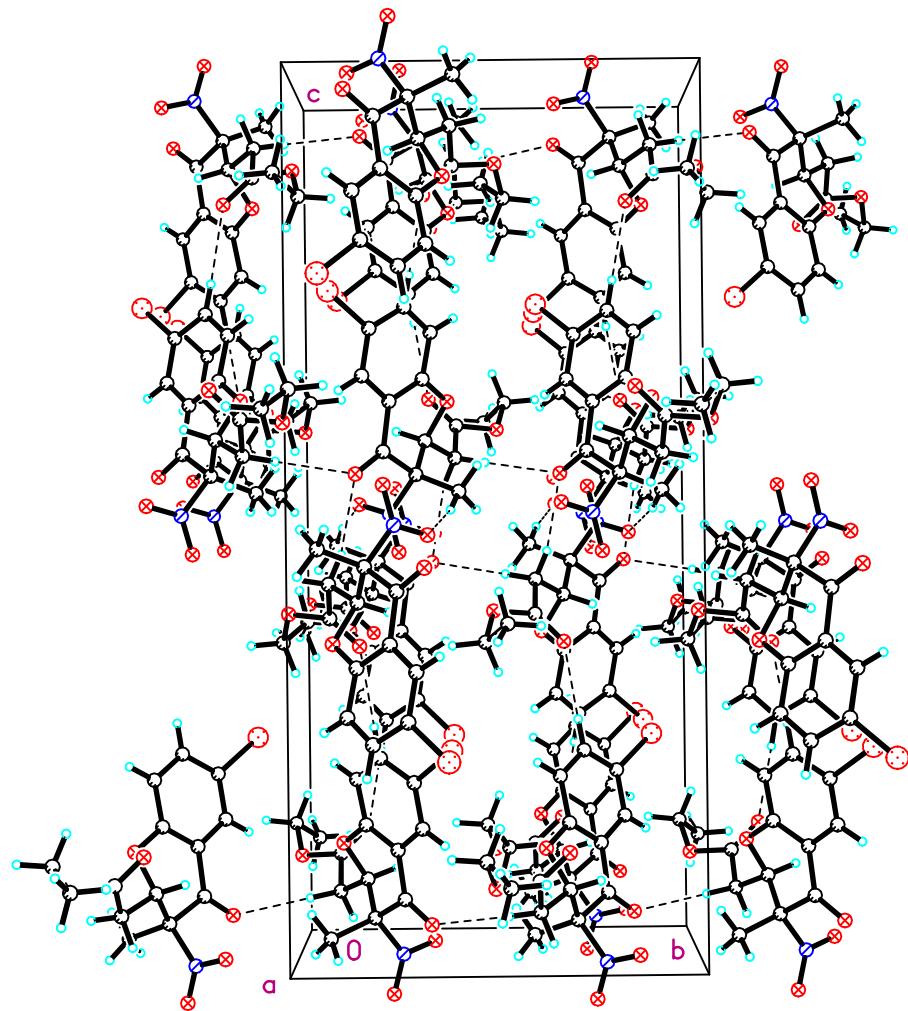
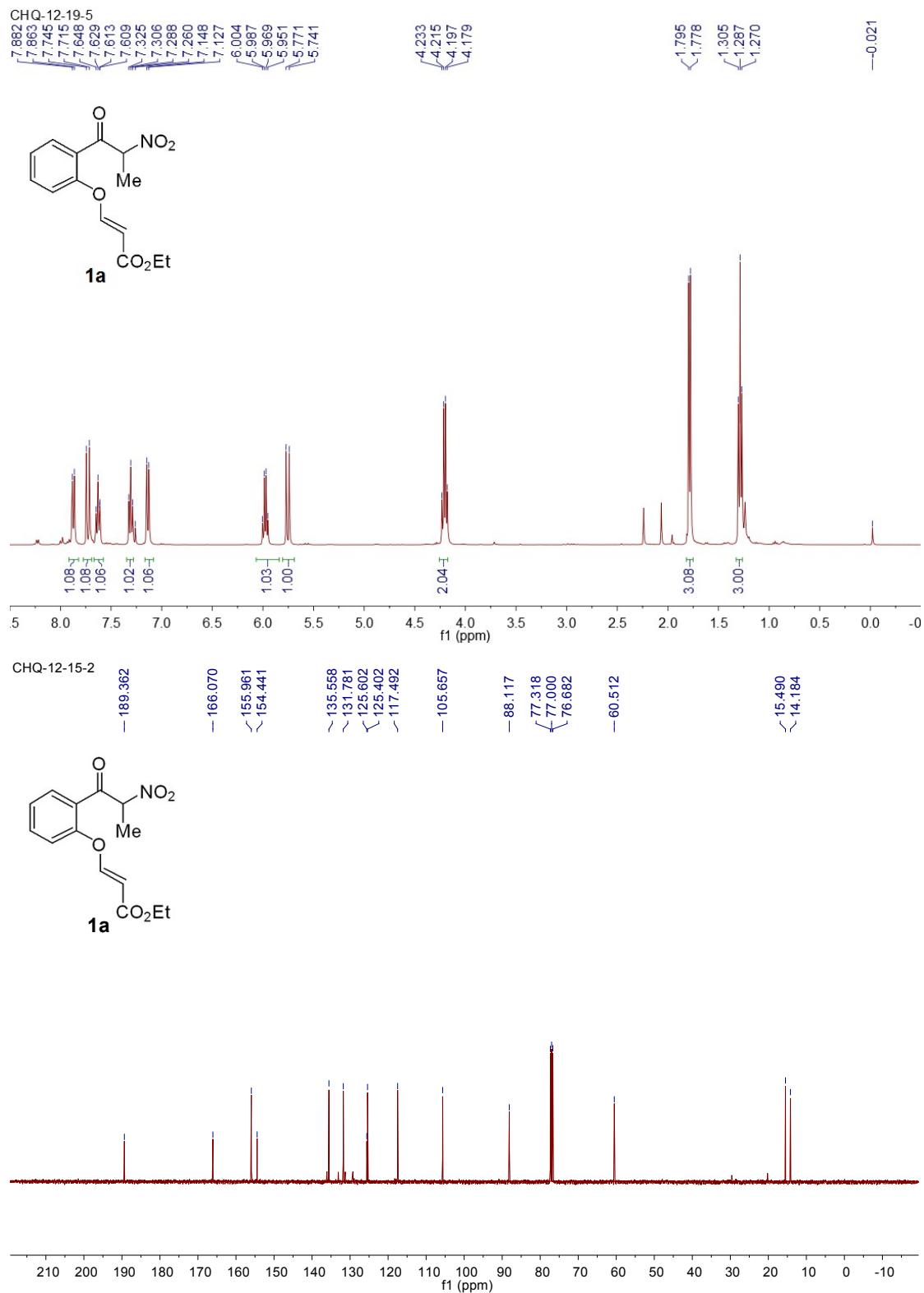
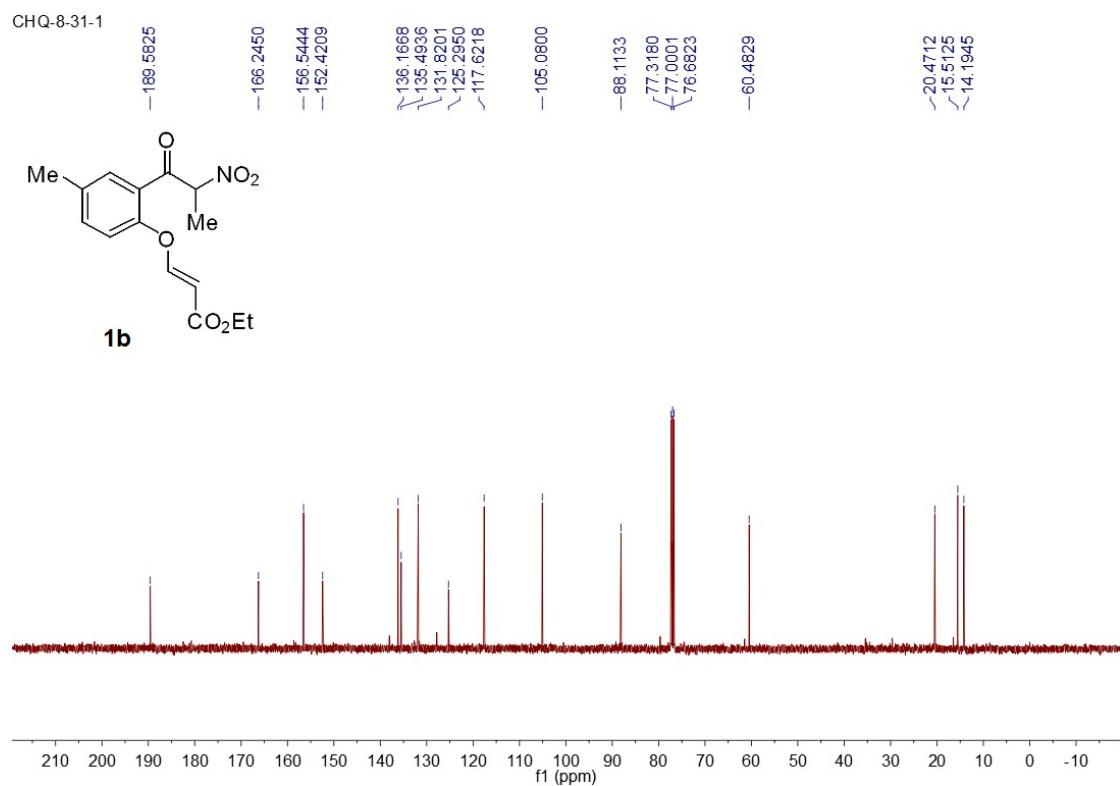
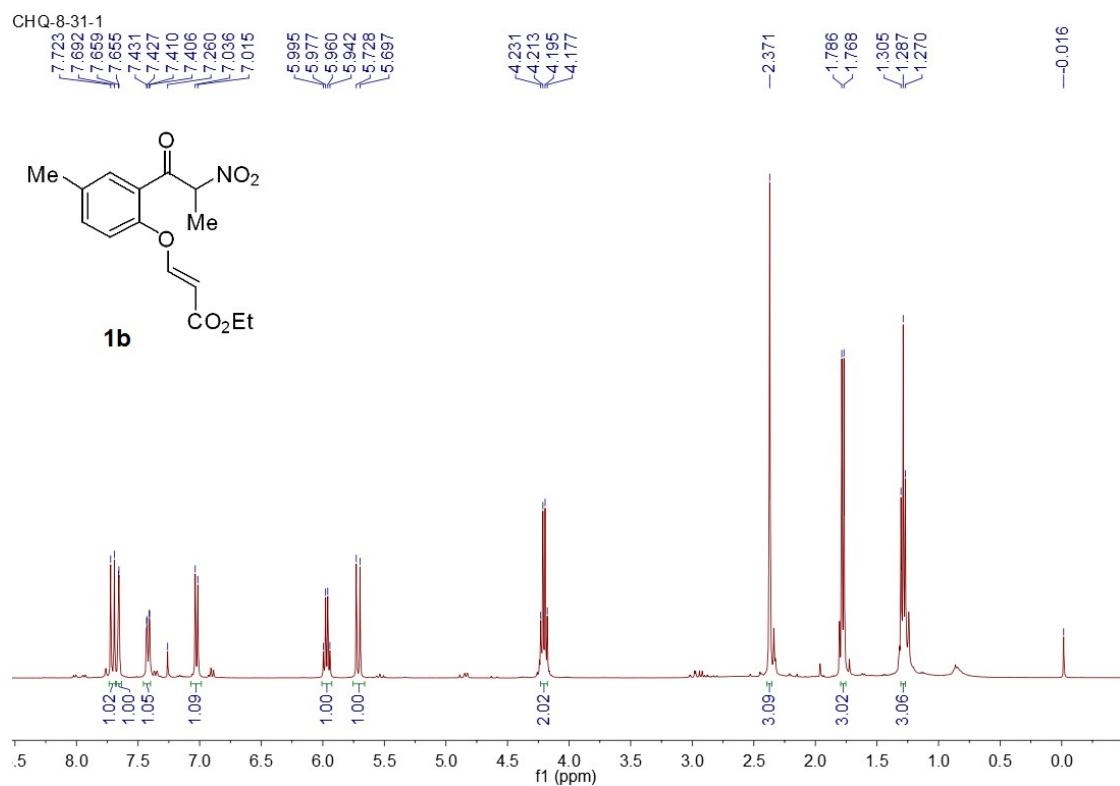
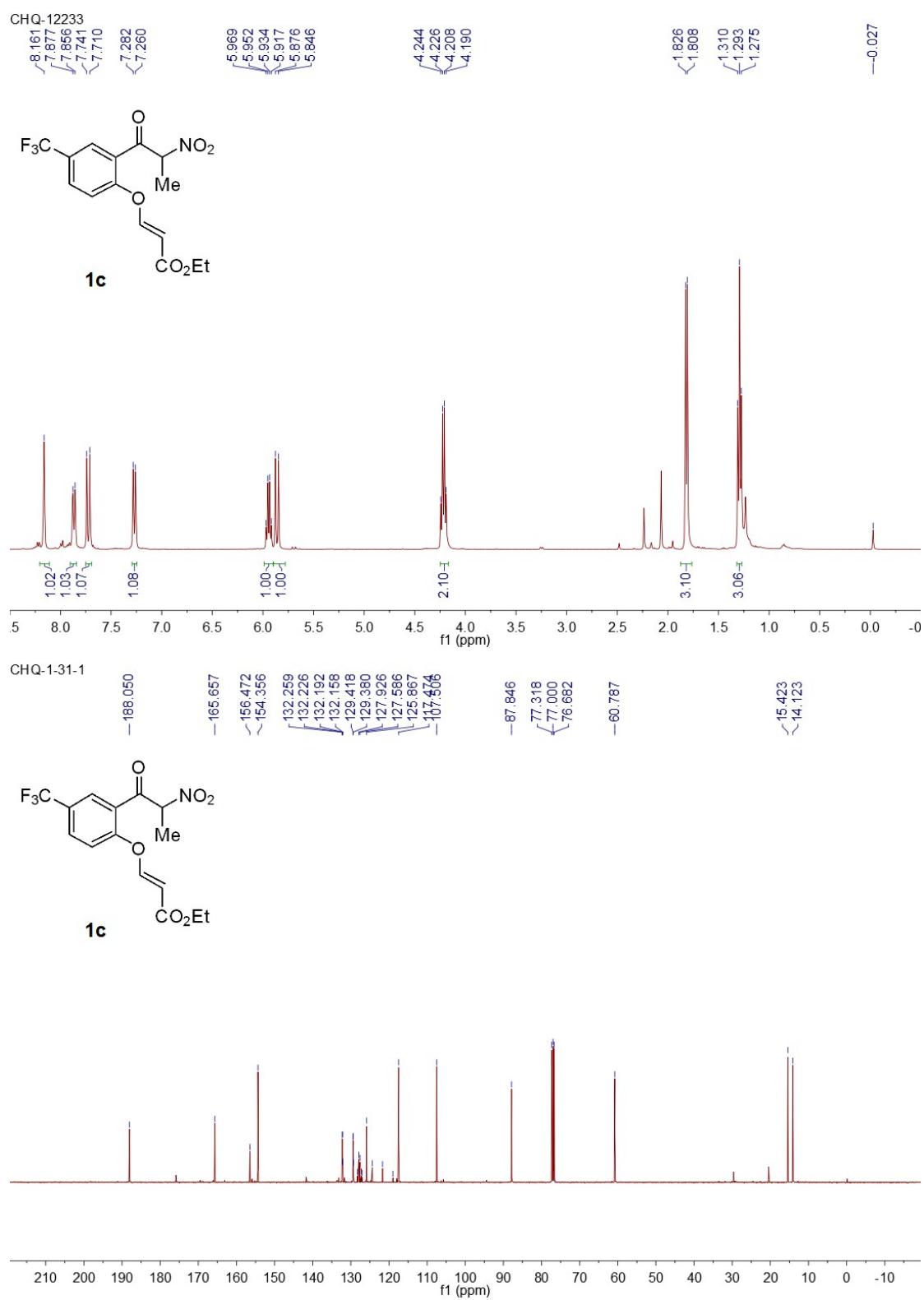

A single crystal of **2f** was obtained from EtOAc solvent at room temperature. Diffraction data were collected on Bruker CCD-APEX X-ray diffractometer. Refinement was carried out on F^2 .

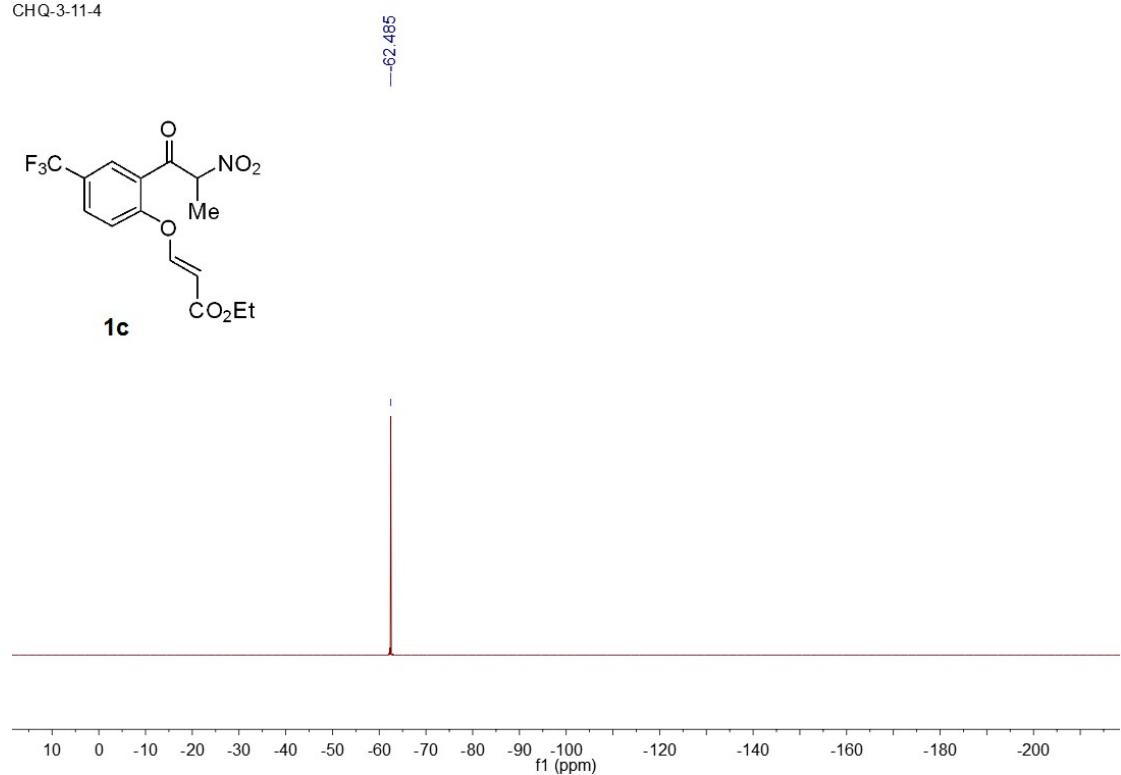
Table S1 Crystal data and structure refinement for 2f (major diastereomer).

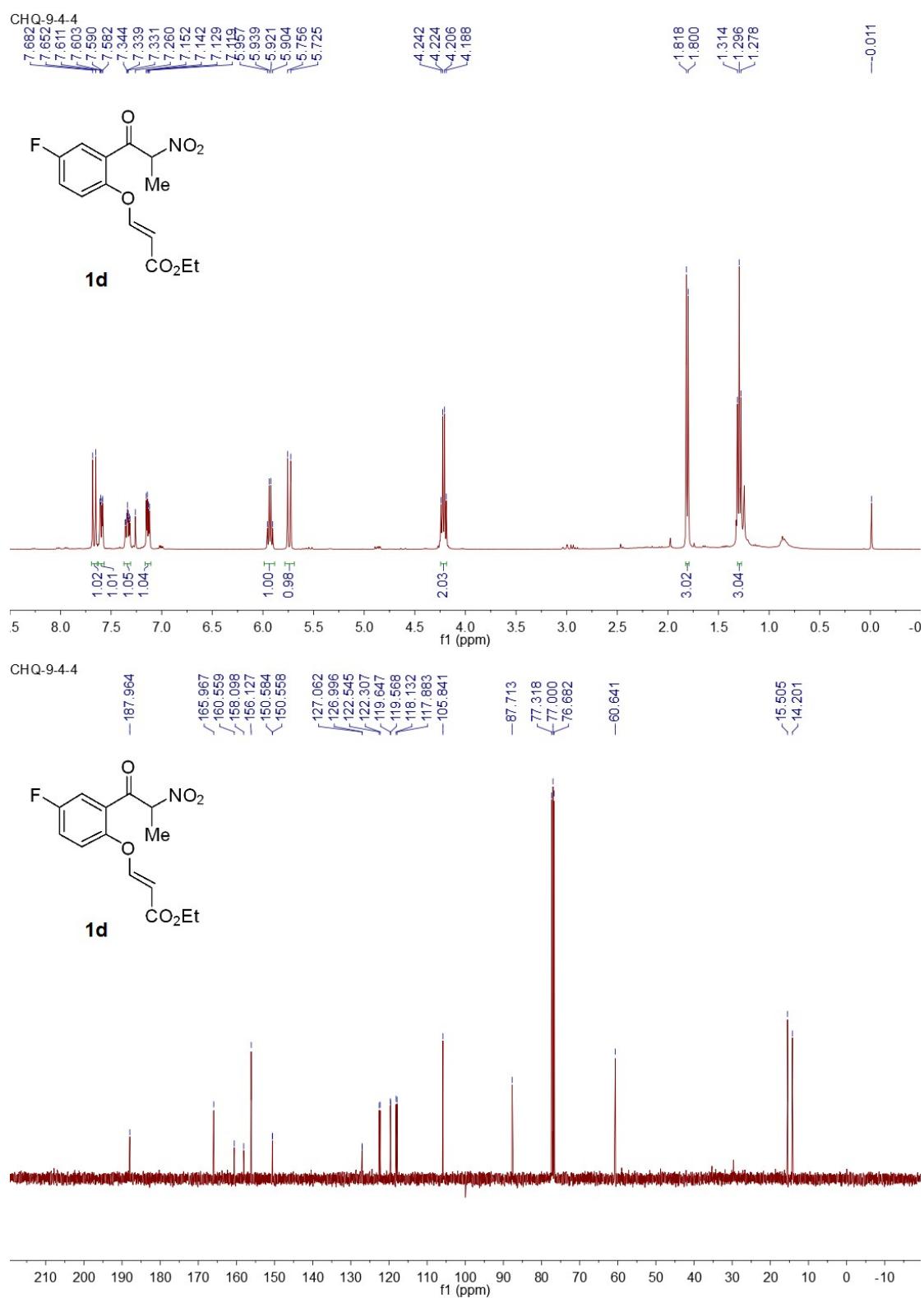
Identification code	mo_d8v17545_0m
Empirical formula	C14 H14 Br N O6
Formula weight	372.17
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P b c a
Unit cell dimensions	$a = 10.1785(3)$ Å $a = 90^\circ$ $b = 11.8901(4)$ Å $b = 90^\circ$ $c = 25.9949(8)$ Å $g = 90^\circ$
Volume	3145.99(17) Å ³
Z	8
Density (calculated)	1.572 Mg/m ³
Absorption coefficient	2.641 mm ⁻¹
F(000)	1504
Crystal size	0.190 x 0.150 x 0.120 mm ³
Theta range for data collection	2.542 to 25.493°.
Index ranges	-12≤h≤12, -14≤k≤14, -31≤l≤31
Reflections collected	48093
Independent reflections	2925 [R(int) = 0.0584]
Completeness to theta = 25.242°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.3875
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2925 / 70 / 230
Goodness-of-fit on F^2	1.033
Final R indices [I>2sigma(I)]	R1 = 0.0501, wR2 = 0.1251
R indices (all data)	R1 = 0.0636, wR2 = 0.1371
Extinction coefficient	0.0136(11)
Largest diff. peak and hole	0.978 and -0.839 e.Å ⁻³

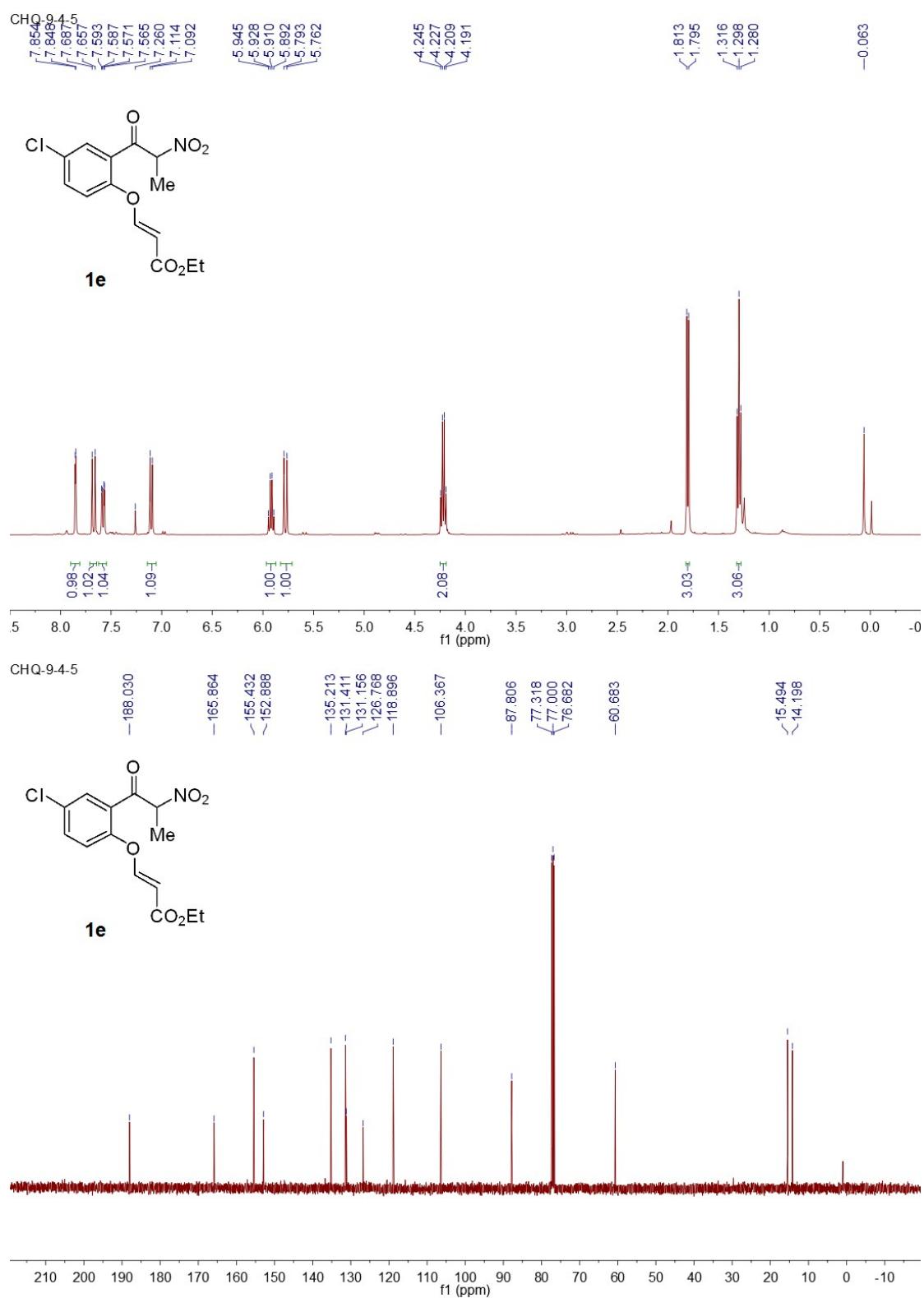


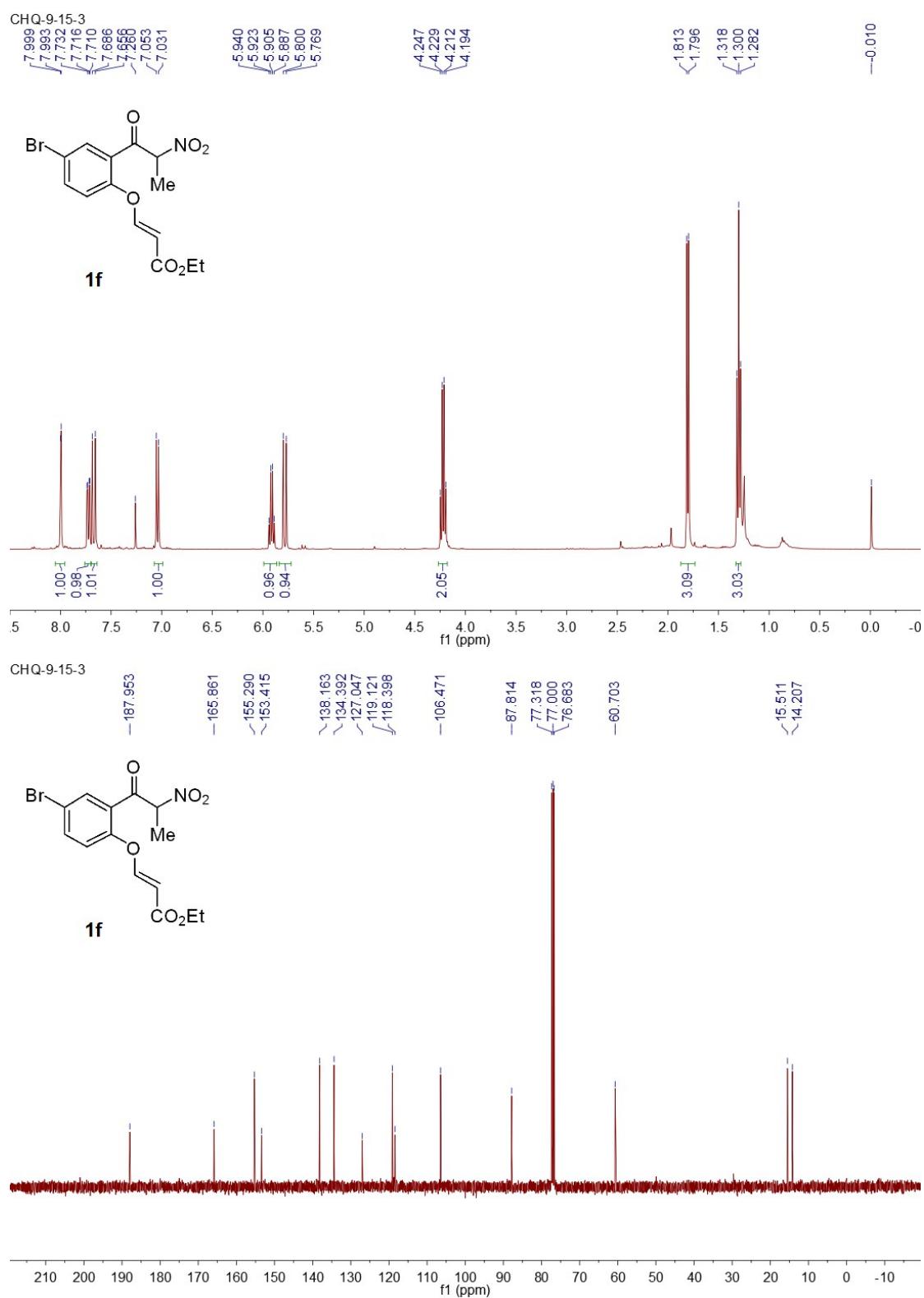


Figure S1: Molecular structure of 2f (major diastereomer)

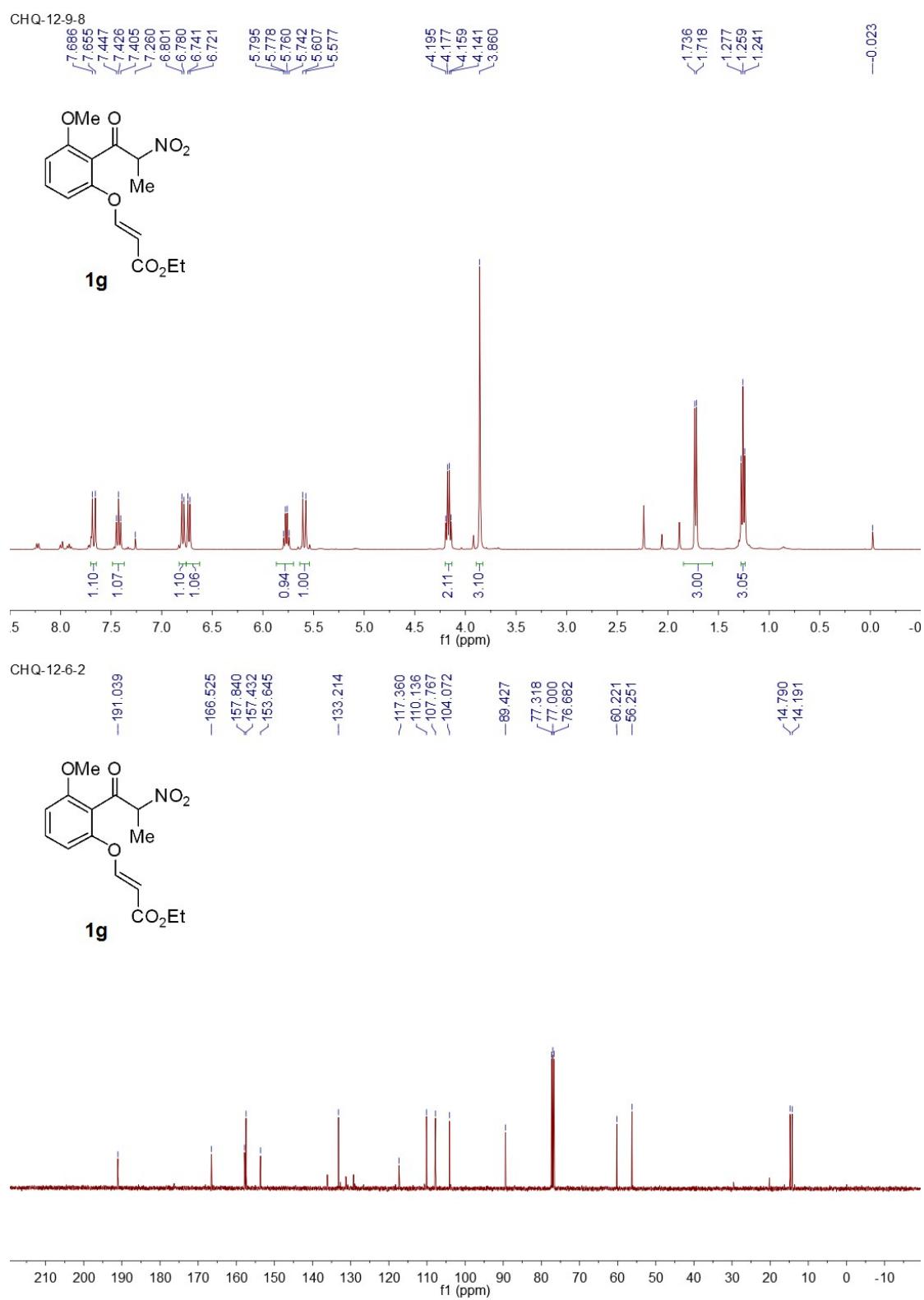


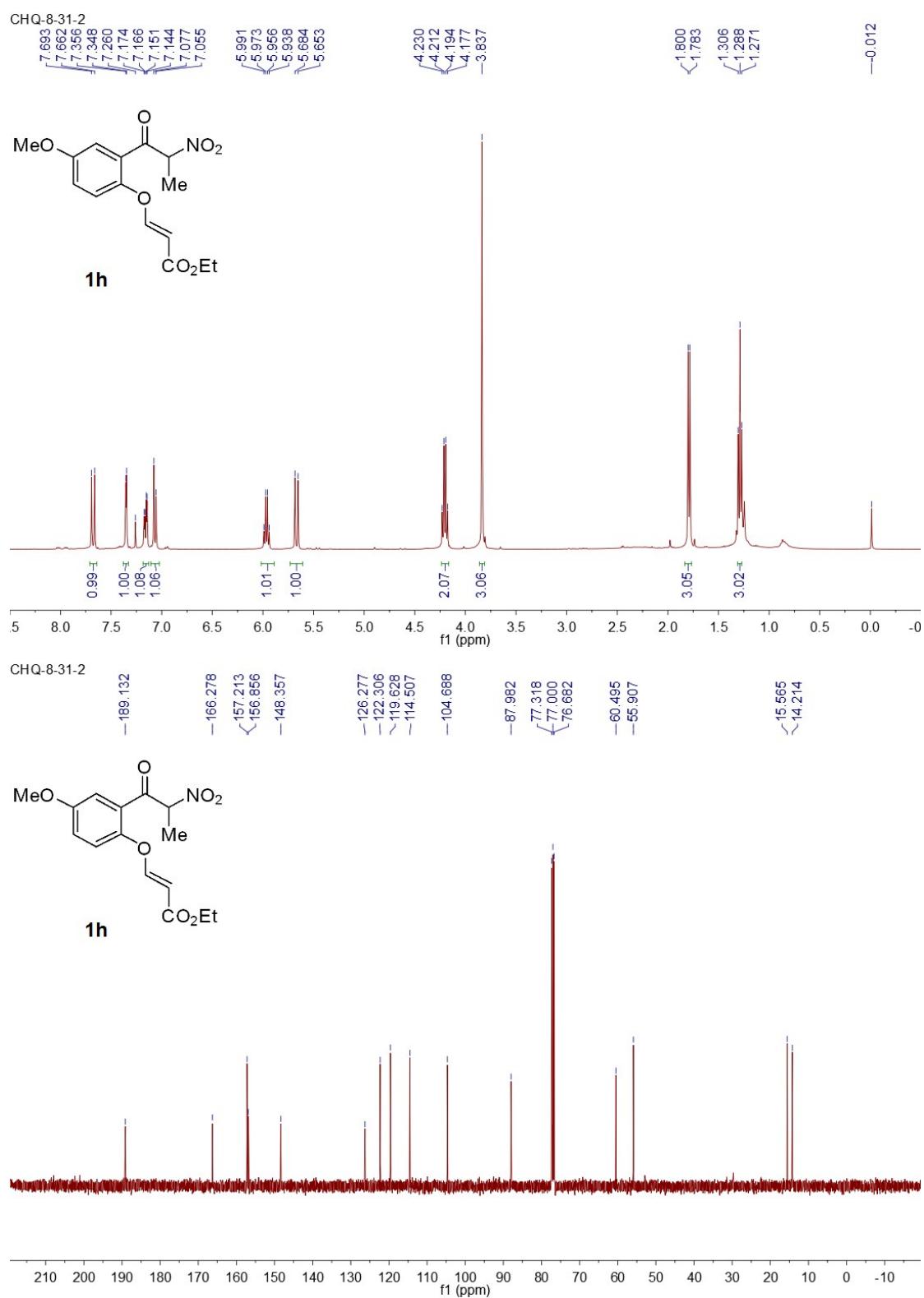

Figure S2: Unit cell molecular packing arrangement of 2f (major diastereomer)

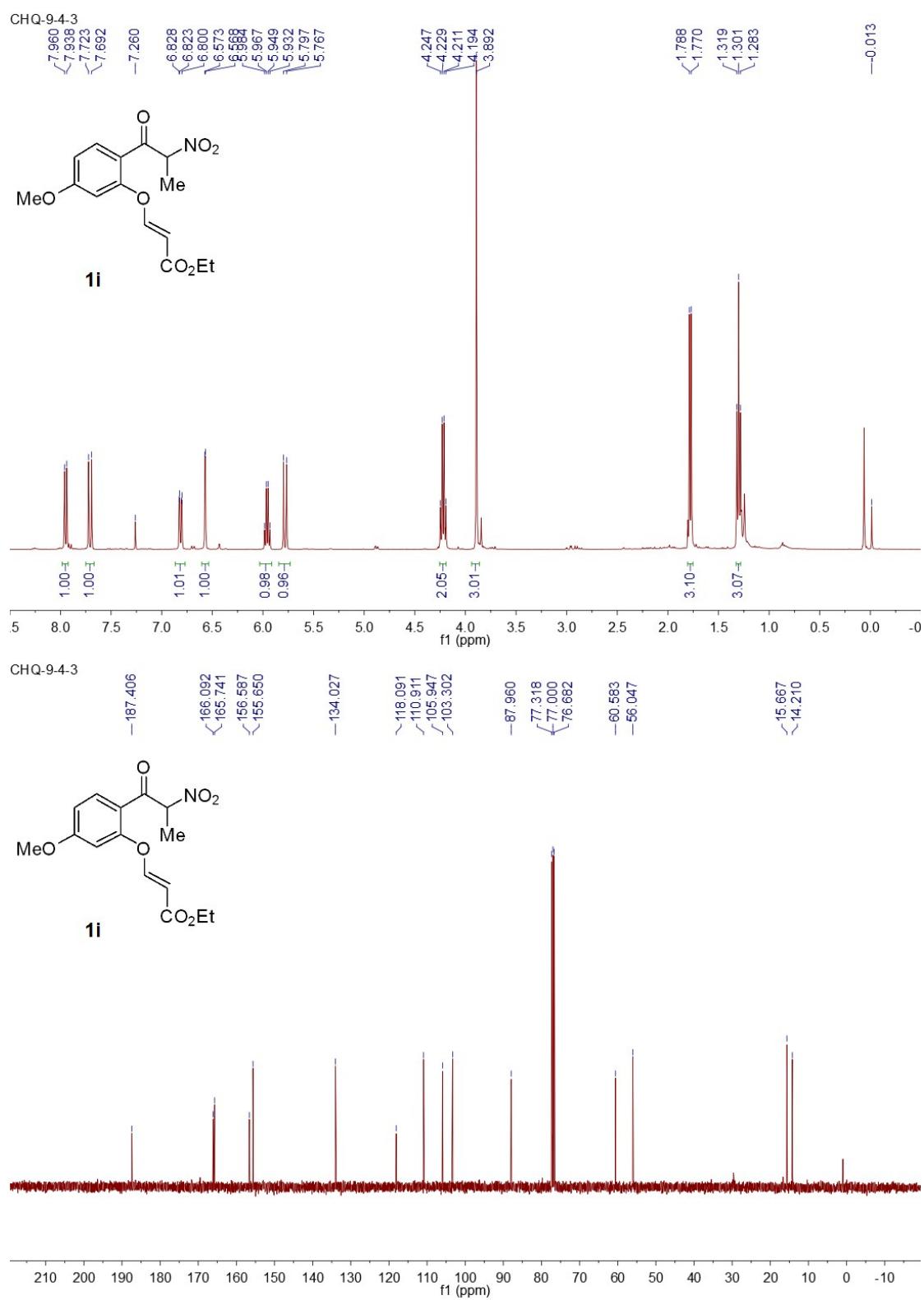

6. NMR charts



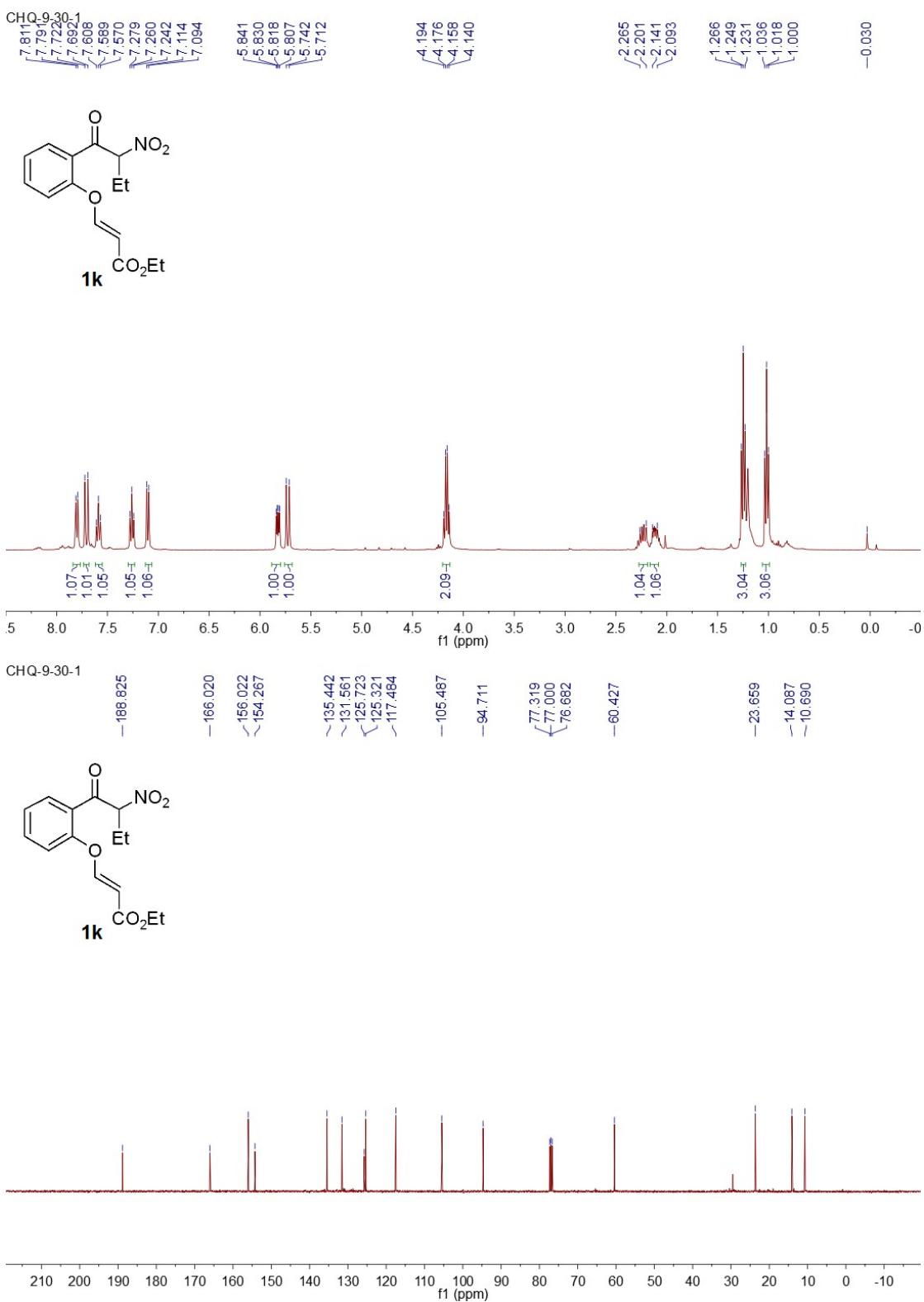


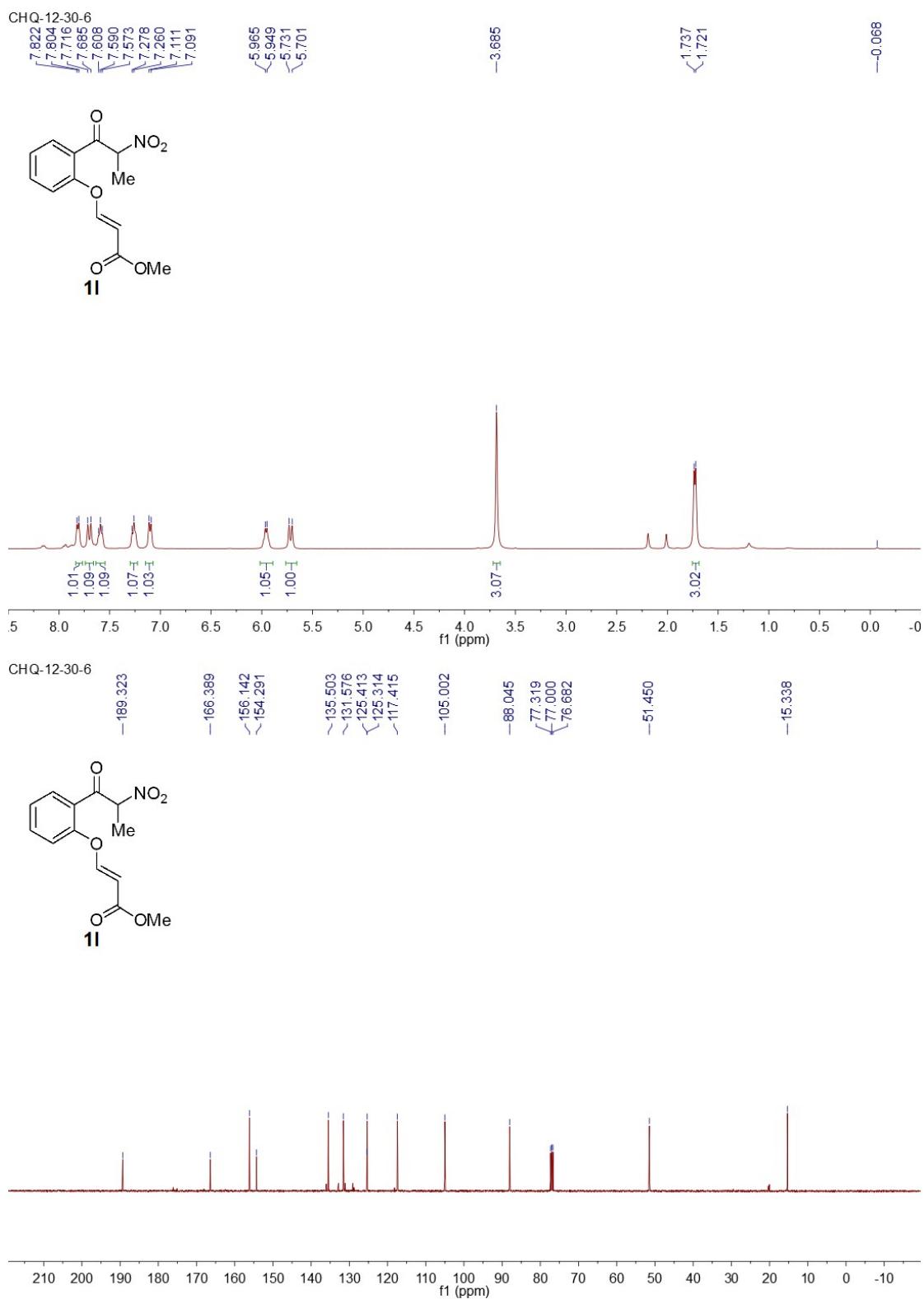


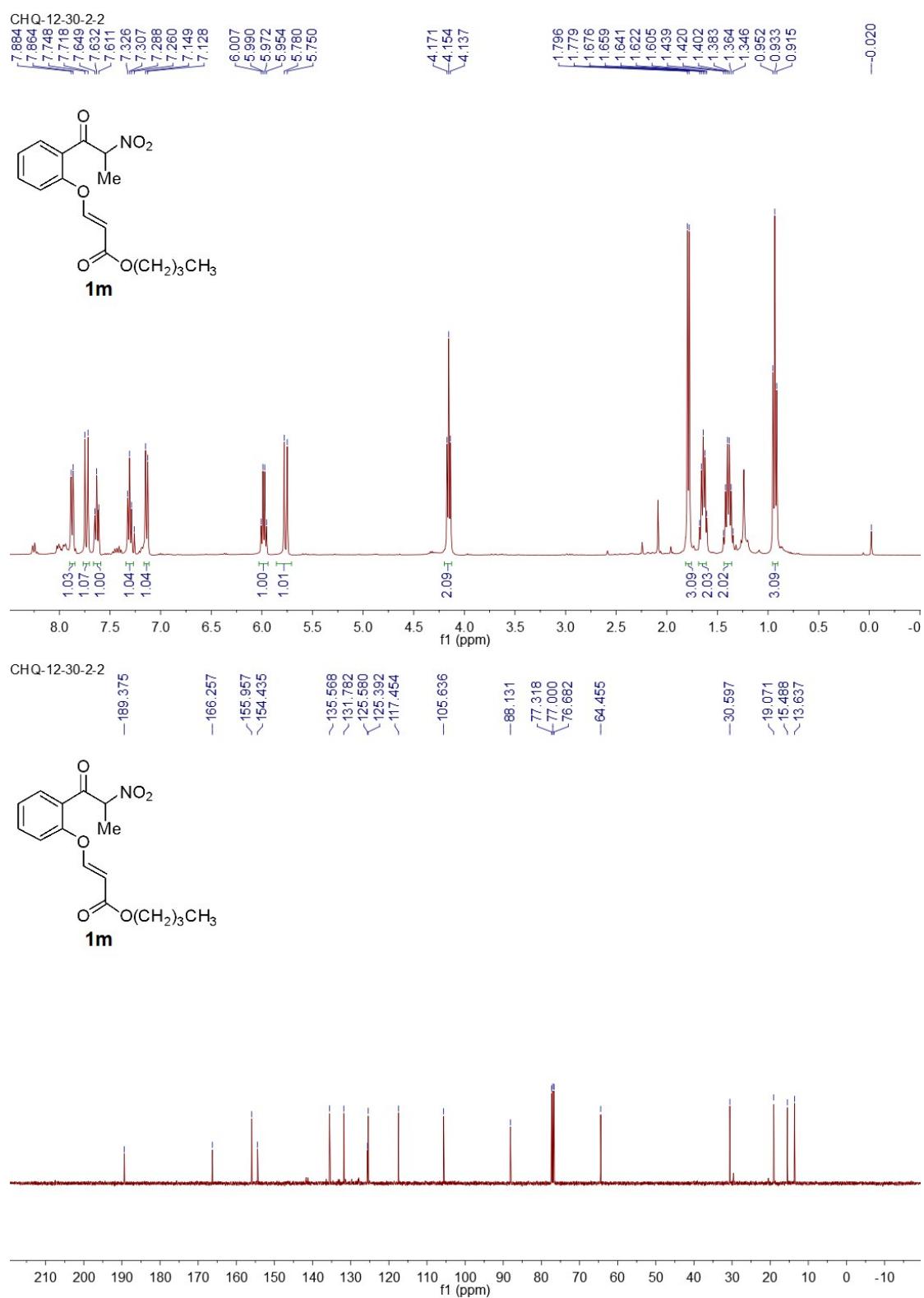


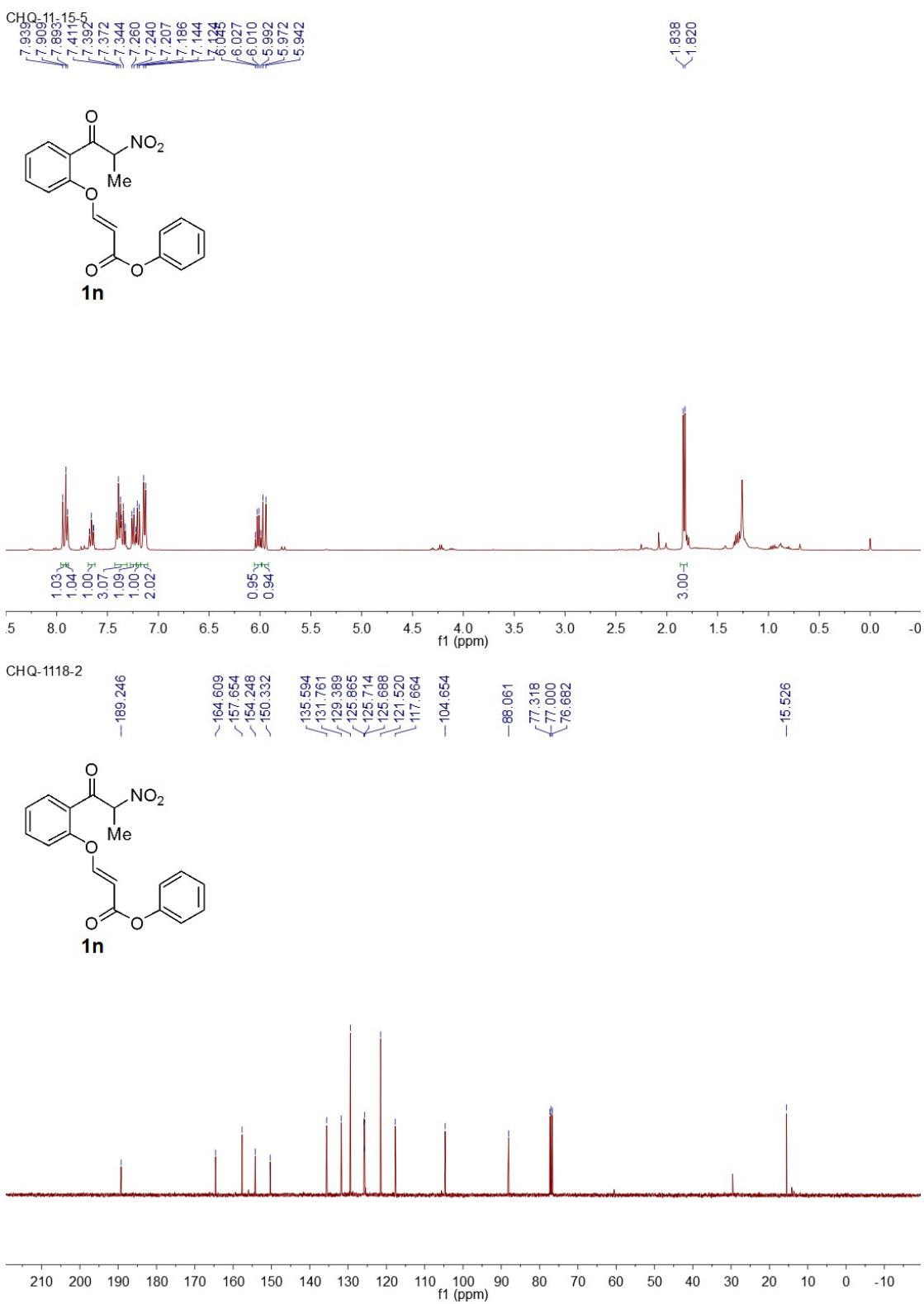


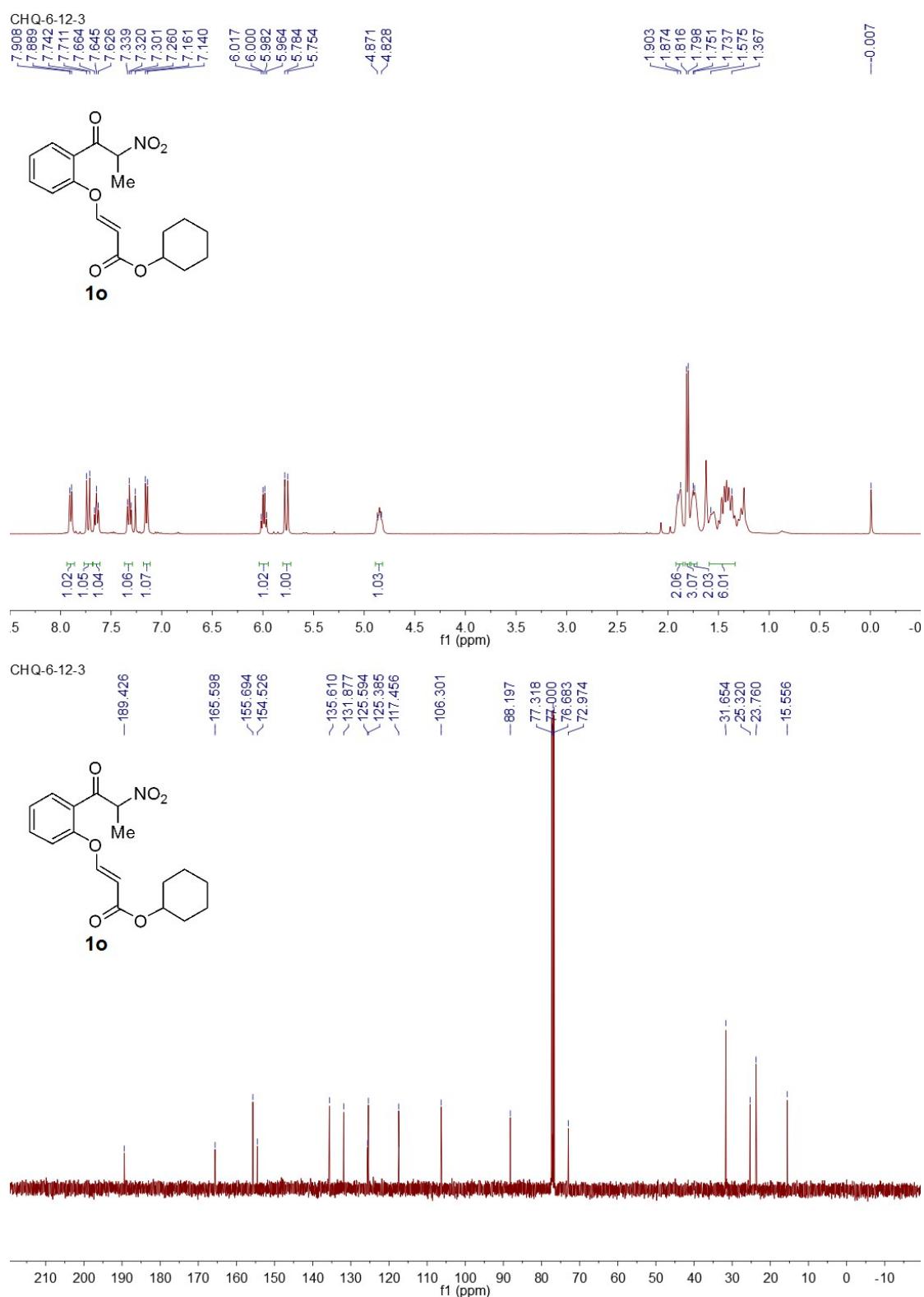


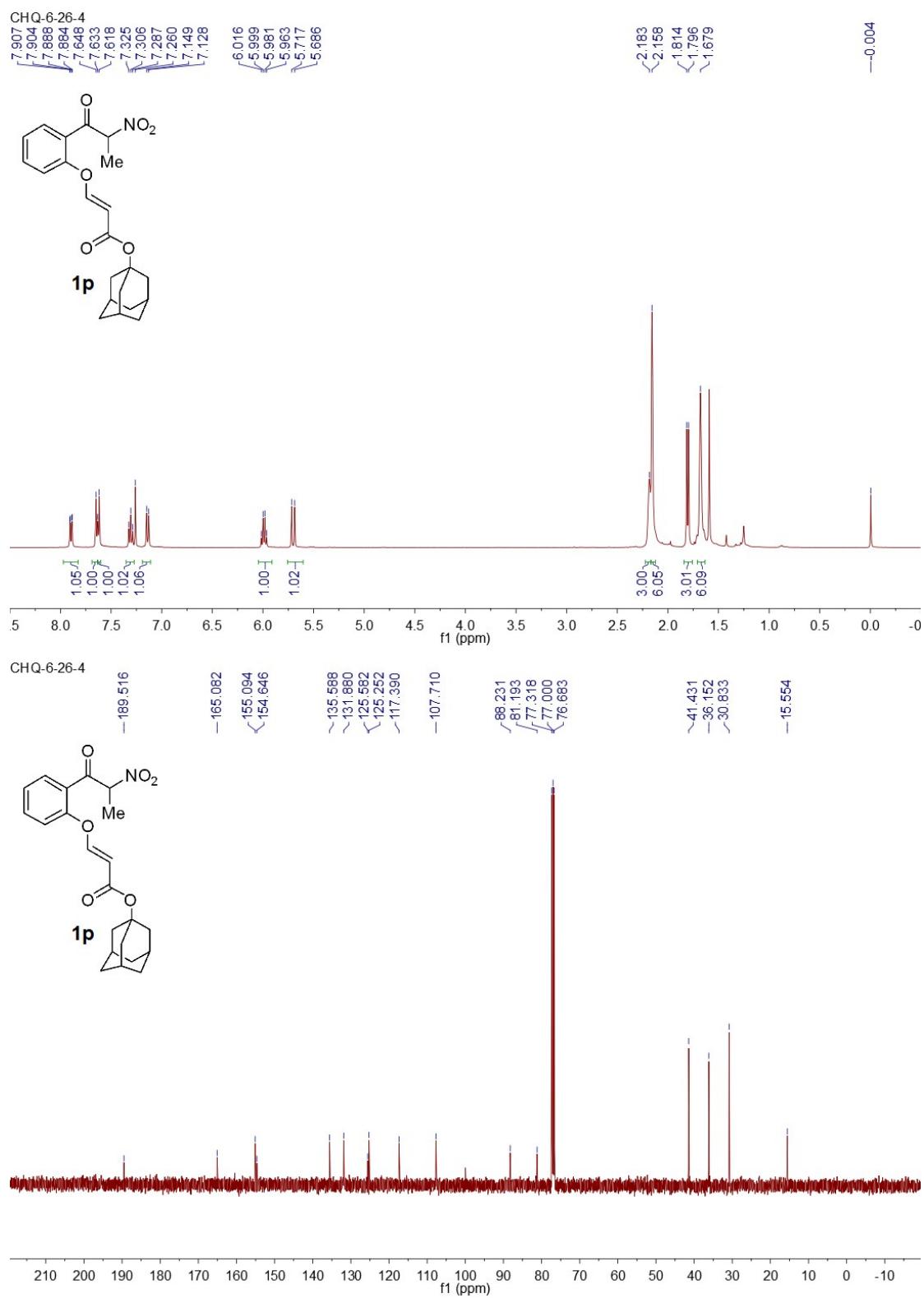


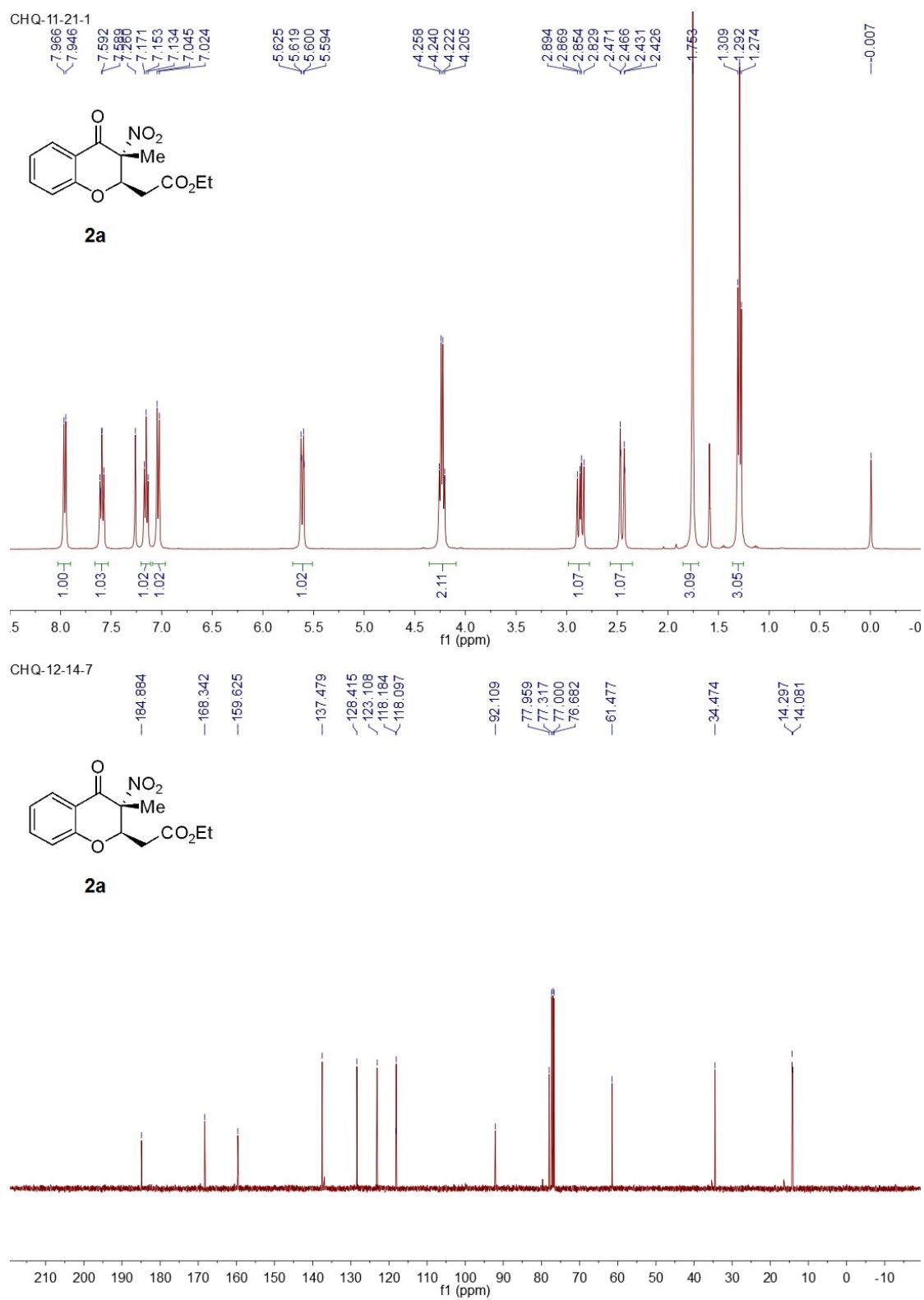


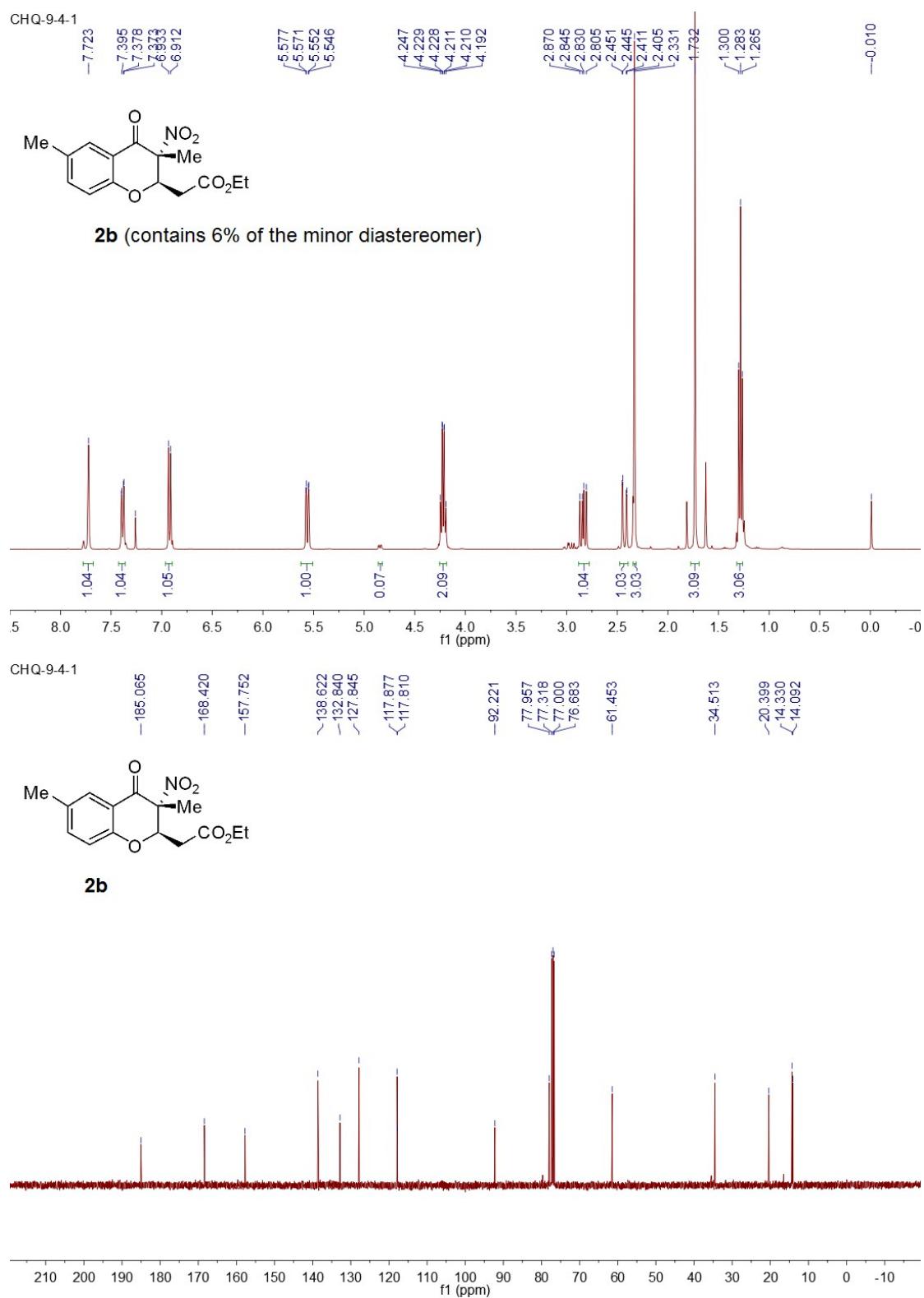


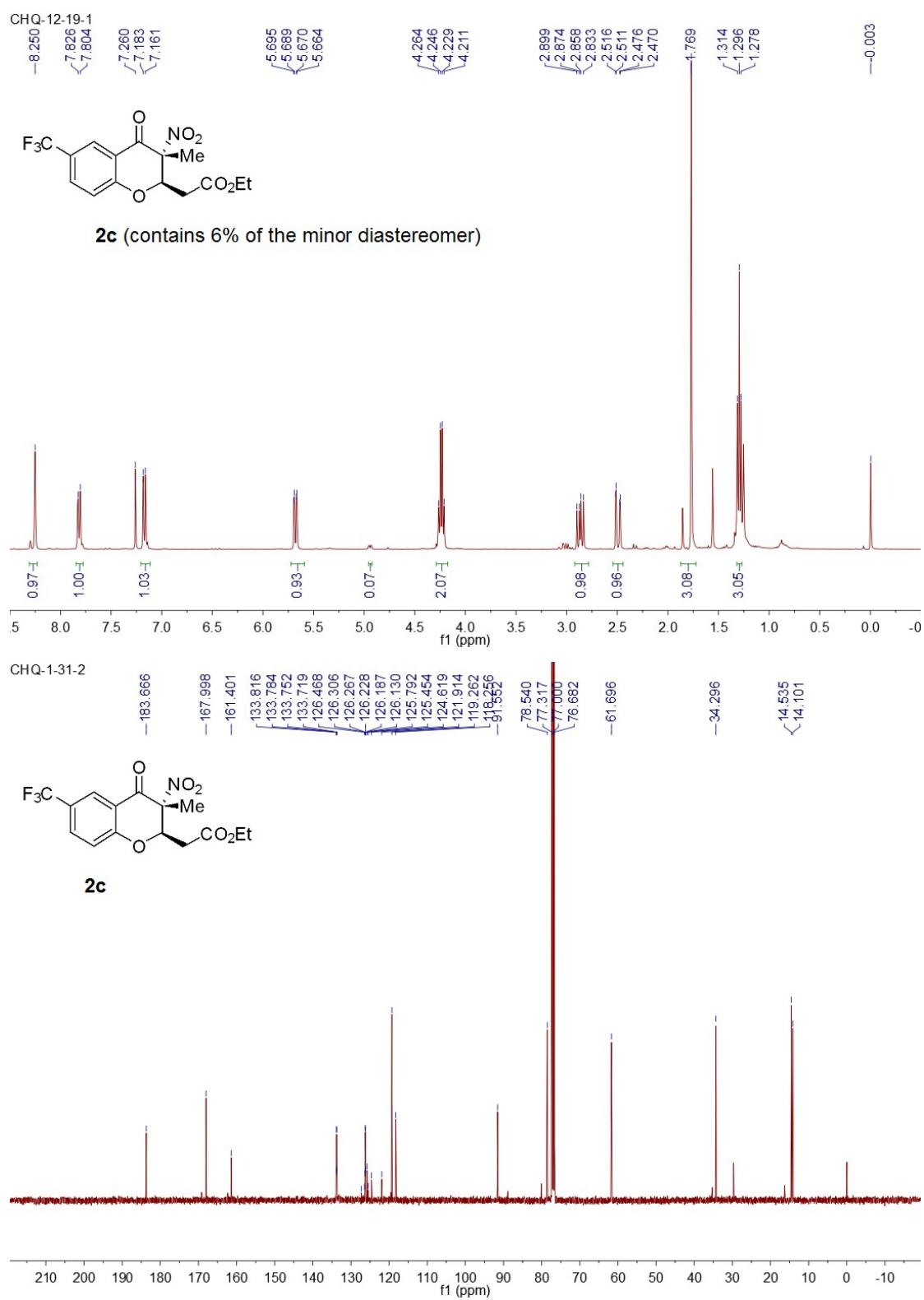


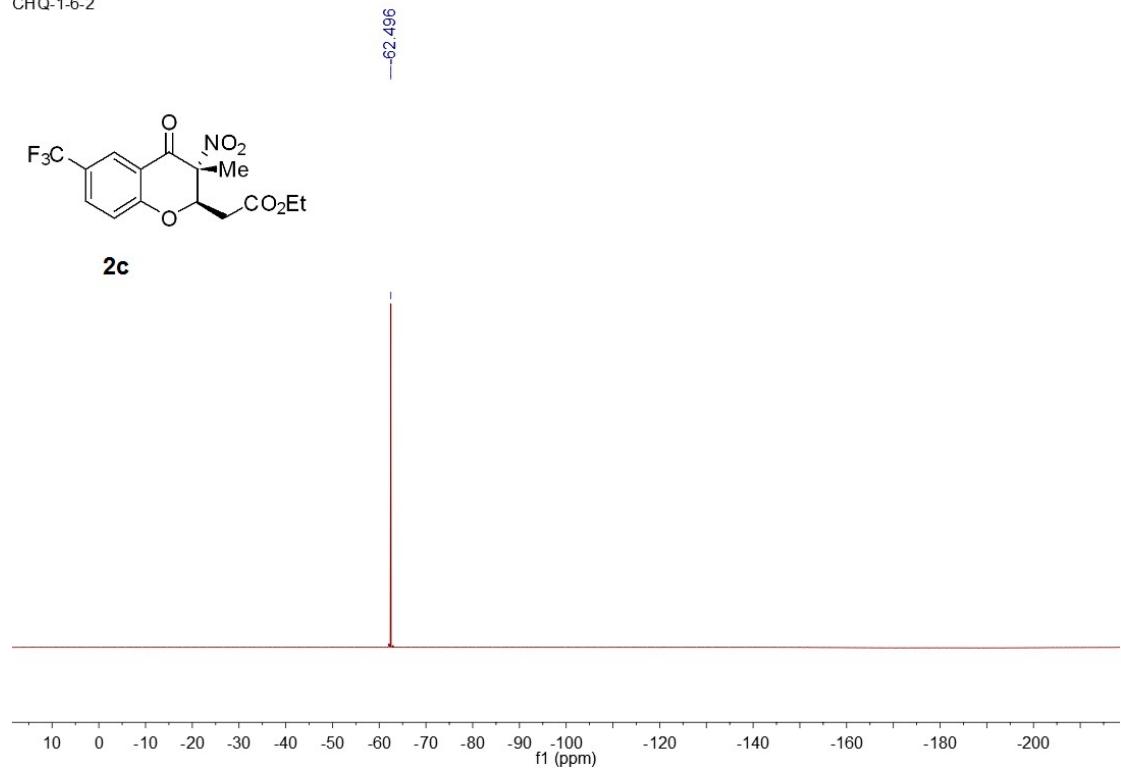


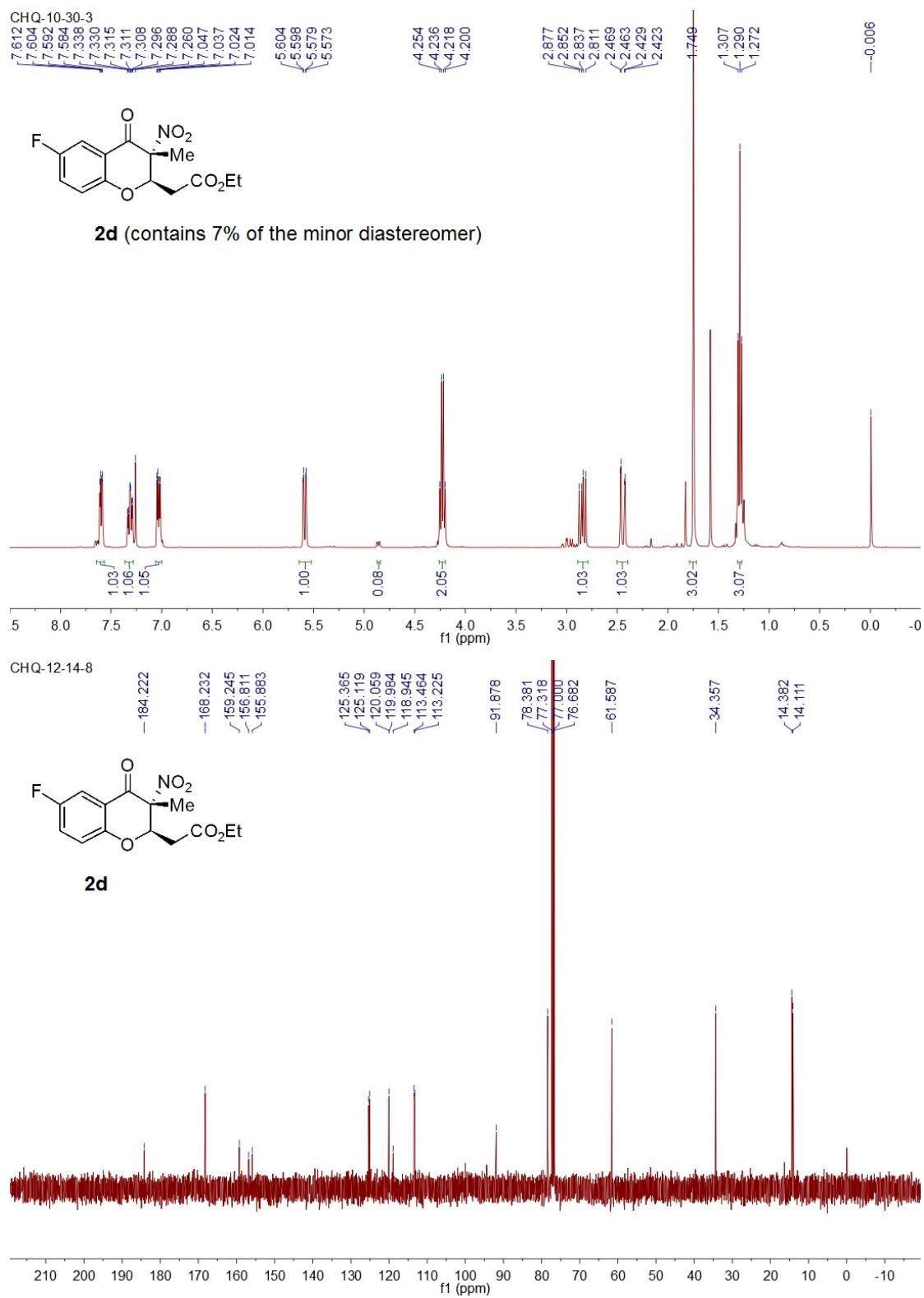


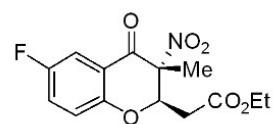


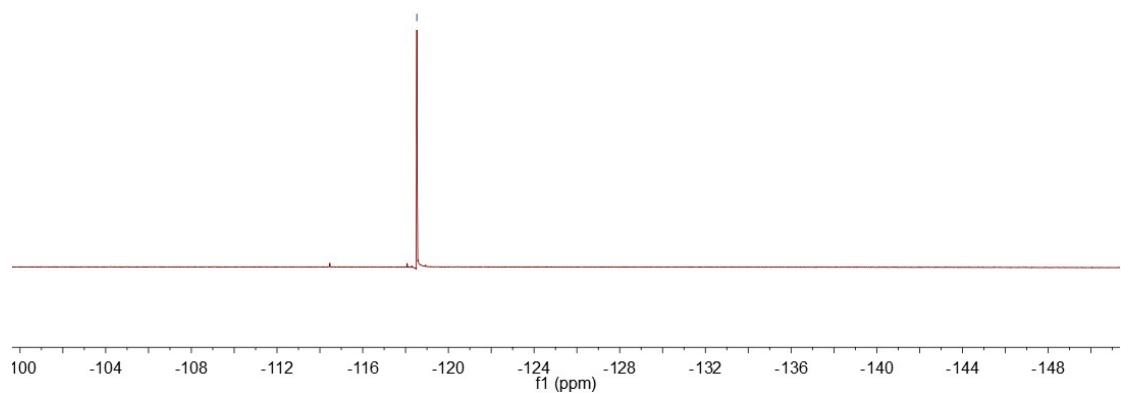




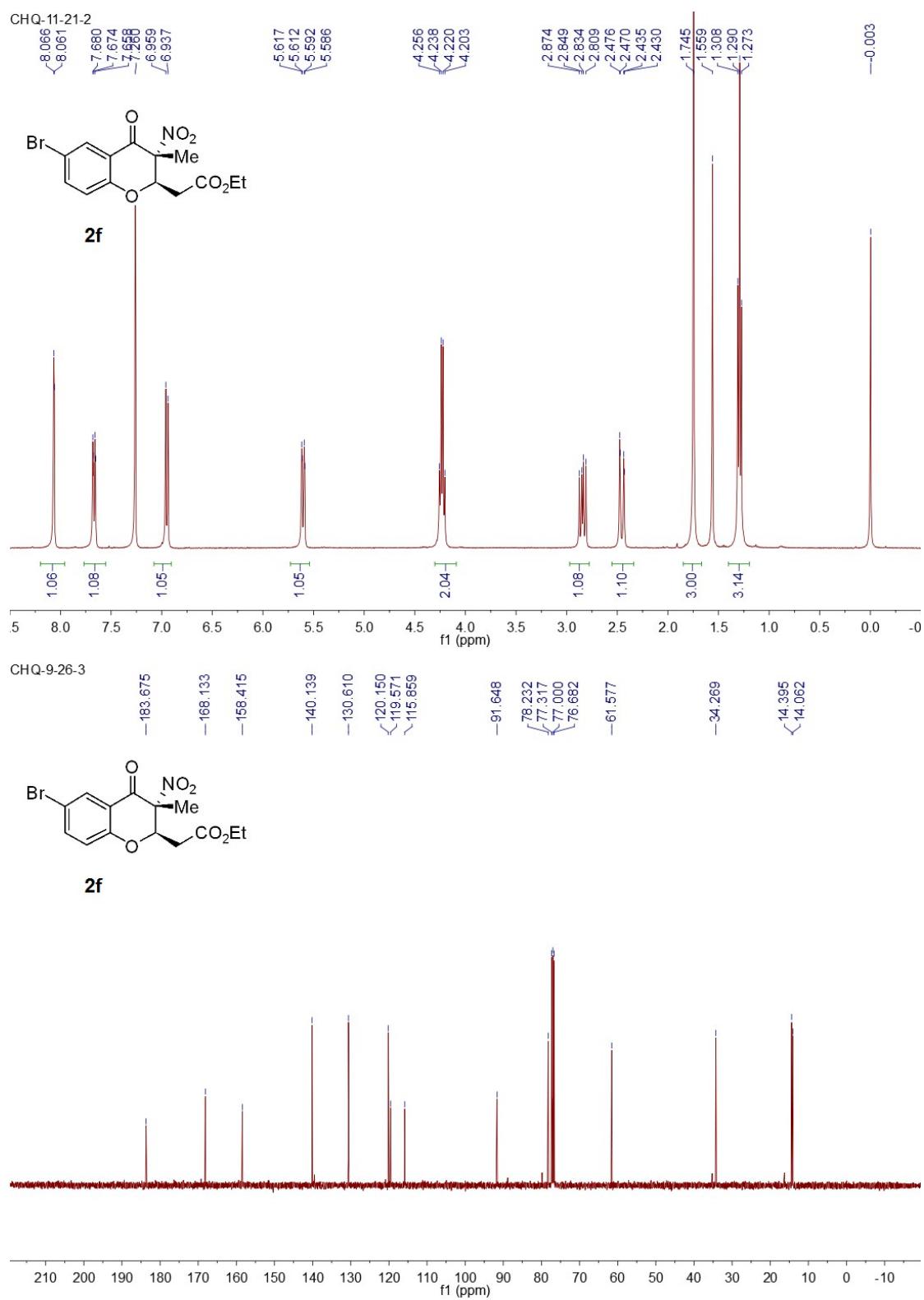


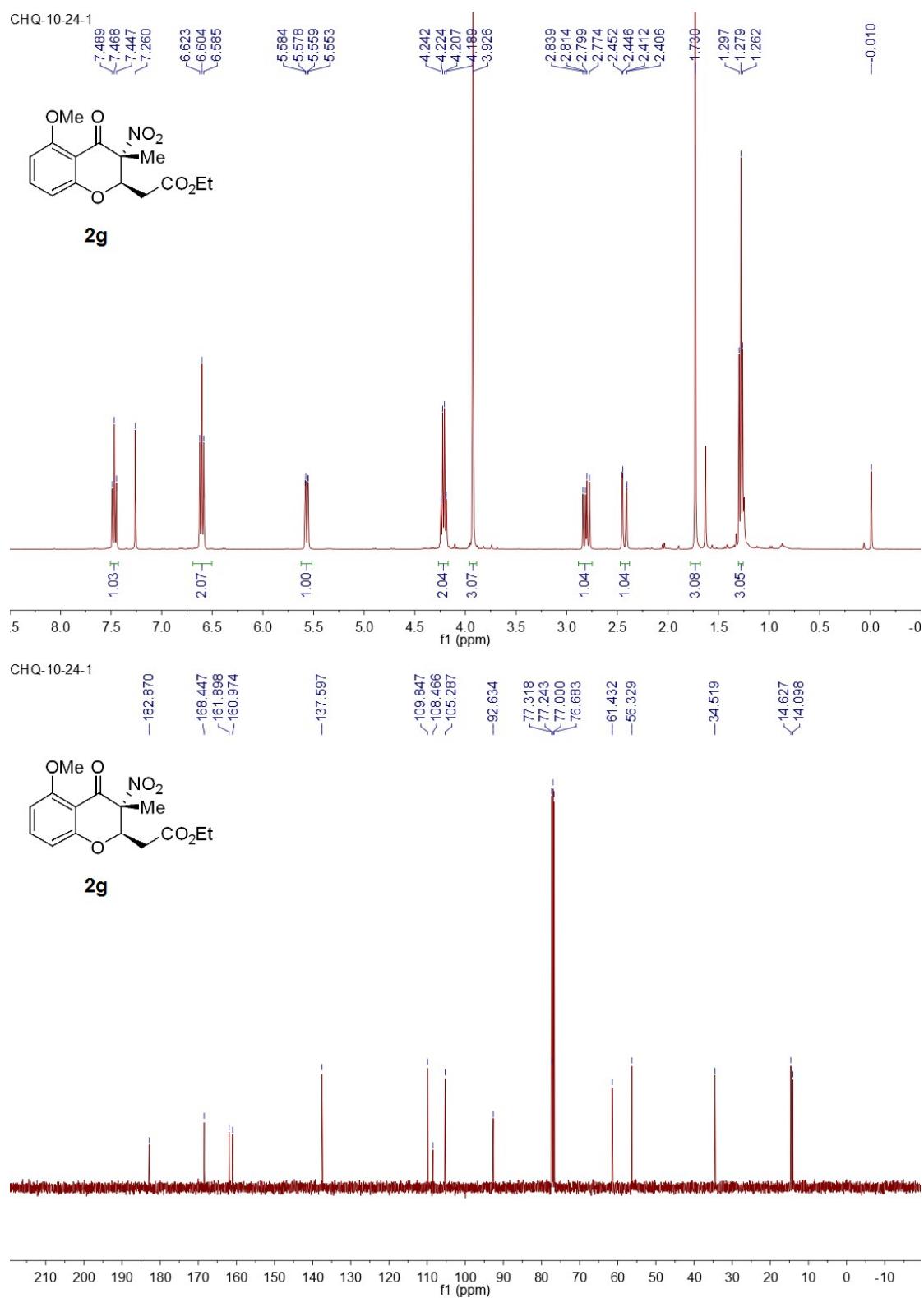


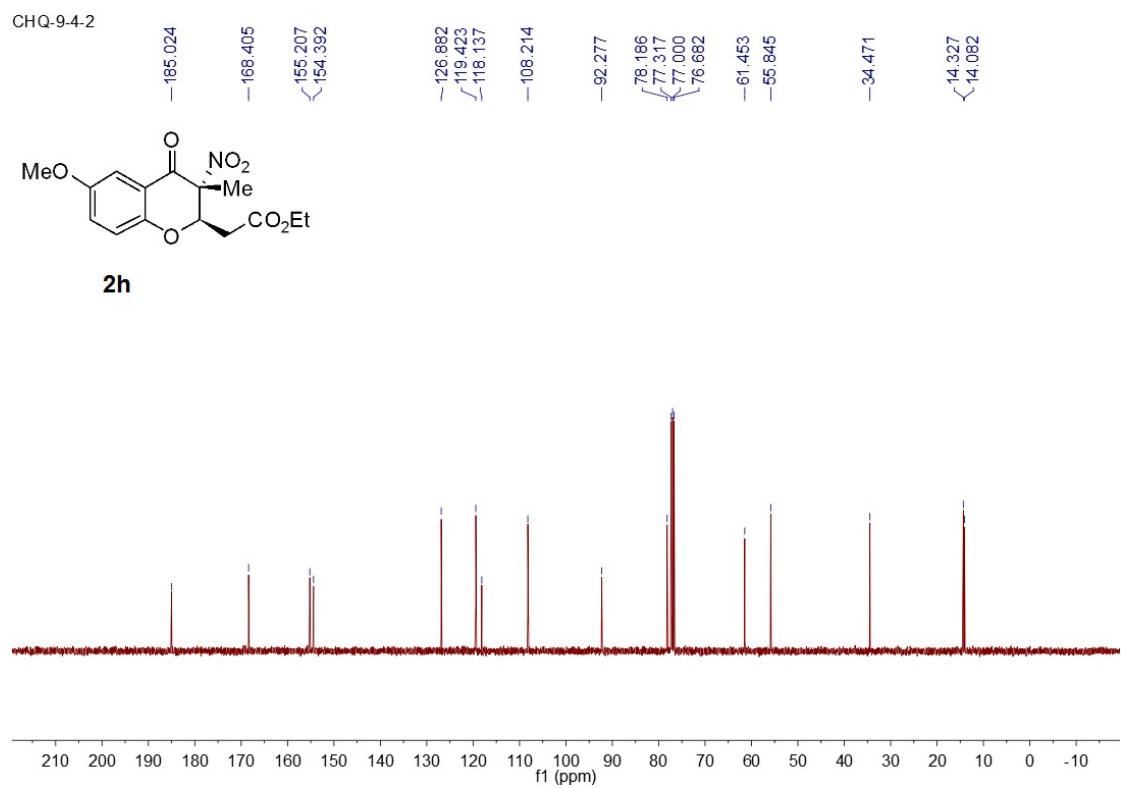
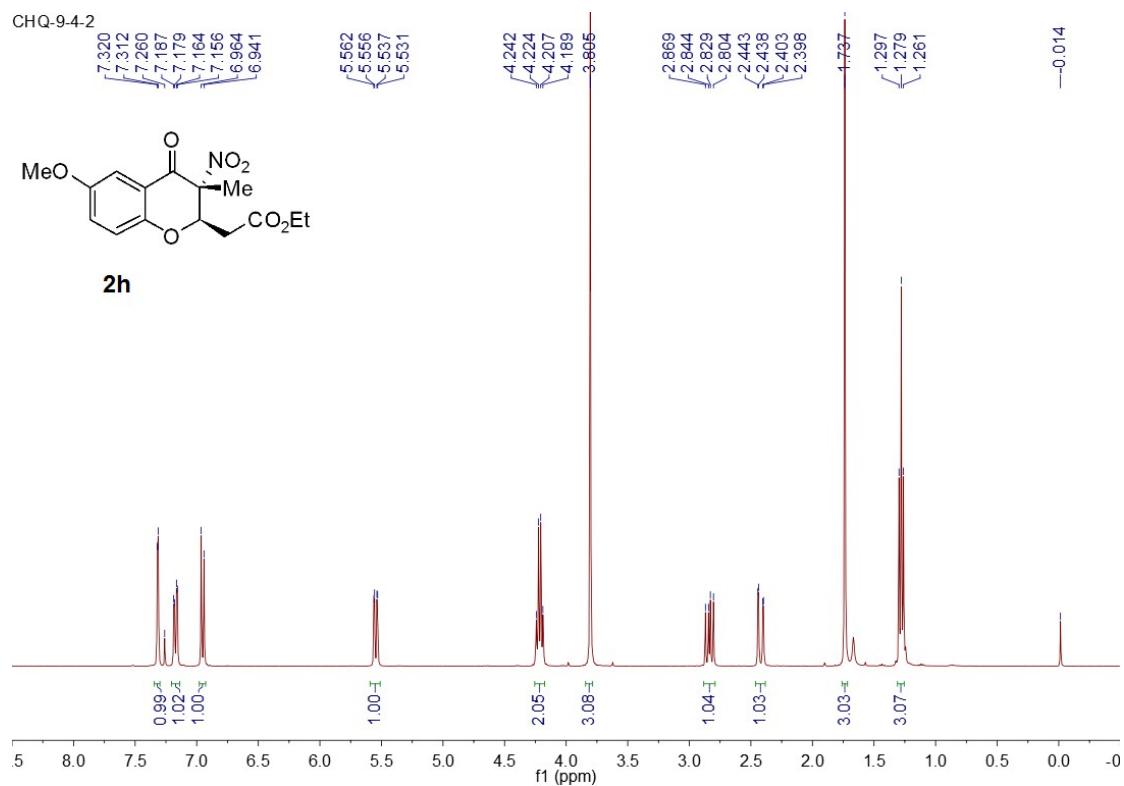







CHQ-3-11-5





2d

