Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Heterologous production of asperipin-2a: Proposal for sequential oxidative macrocyclizations by a fungi-specific DUF3328 oxidase.

Ying Ye,^a Taro Ozaki,^{*a} Myco Umemura,^{b, c} Chengwei Liu,^a Atsushi Minami,^a and Hideaki Oikawa^{*a}

^{a.} Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.

^{b.} Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan.

^{c.} Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tsukuba 305-8566, Ibaraki, Japan.

Table of Contents

Tables

TableS1: Oligonucleotides used for construction of plasmids.	Page S5
TableS2: Summary of the transformants constructed in this study.	Page S6
TableS3: ¹ H- and ¹³ C-chemical shifts of 1. (DMSO- <i>d</i> ₆ , 500 MHz)	Page S7
Table S4: Oligonucleotides used for construction of plasmids.	Page S9

Figures

Figure S1: The biosynthetic gene cluster for 1.	Page S10
Figure S2: Construction of expression plasmids.	Page S11
Figure S3: LC-MS profiles of the metabolites extracted from AO-aprAYRT/Y3F, AO-aprA	<i>AYRT</i> /Y6F.
	Page S12
Figure S4: Sequence alignment of putative AprA orthologs.	Page S13
Figure S5: Conservation analysis of the repeated sequence of putative AprA orthologs.	Page S14
Figure S6. HPLC profile of L-FDLA-derivatized sample.	Page S15
Figure S7: Cyclopeptide alkaloids that are structurally-related to 1.	Page S16

The nucleotide and corresponding amino acid sequences for revised aprA and its variants. Page S17

NMR spectra

Page S19

General

All reagents commercially supplied were used as received. Optical rotations were recorded on JASCO P-2200 digital polarimeter. ¹H- and ¹³C-NMR spectra were recorded on Bruker AMX-500 spectrometer. NMR spectra were recorded in dimethyl Sulfoxide-d₆ (99.9%D with 0.03%TMS, kanto chemical). ¹H chemical shifts were reported in δ value relative to DMSO: δ_{H} 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), and integration. Column chromatography was carried out on C18 open column (Wakosil, 30~50 µm). HPLC-MS analyses were conducted with QDa detector equipped with Acquity UPLC system (Waters). High resolution mass spectra were obtained with a Thermo Scientific Exactive (Thermo Fisher). Oligonucleotides for polymerase chain reactions (PCRs) were purchased from Hokkaido System Science Co., Ltd. PCRs were performed with a BioRad S1000 thermal cycler.

Strains

Escherichia coli HST08 was used for cloning and following standard recombinant DNA techniques. A fungal host strain used in this study was *Aspergillus oryzae* NSAR1, a quadruple auxotrophic mutant (*niaD*⁻, *sC*⁻, $\Delta argB$, $adeA^{-}$)¹, for fungal expression. *Aspergillus flavus* CA14 was used for genomic DNA extraction.

Preparation of expression plasmids

The *aprA*, *aprY*, *aprR*, and *aprT* were amplified from the genomic DNA of *A. flavus* CA14 with the primer set shown in Table S1. The two mutants *aprA*/Y3F and *aprA*/Y6F were amplified from pUC57-Km-*aprA*/Y3F and pUC57-Km-*aprA*/Y6F that are synthesized by GENEWIZ, respectively (see also page S17 for each sequence). Expression plasmids were constructed as follows. Gene *aprA*, *aprA*/Y3F, and *aprA*/Y6F were inserted into the NheI site of pUSA2¹ using an In-Fusion® HD Cloning Kit (Clontech Laboratories) to construct pUSA2-*aprA*. Similary, gene *aprY* was cloned into the KpnI site of pUARA2¹ to five pUARA2-*aprY*. Genes aprR and aprT were cloned NheI and/or KpnI sites of pAdeA2² to construct three plasmids, pAdeA2-*aprR*, pAdeA2-*aprT*, and pAdeA2-*aprRT*. These procedures are summarized in Figure S1.

Transformation of A. oryzae.

Transformation of *A. oryzae* was performed by the protoplast-polyethylene glycol method reported previlusly³ to construct the following transformants; AO-*aprYRT*, AO-*aprAYR*, AO-*aprART*, AO-*aprAYRT*, AO-*bscAYRT*/Y3F, and AO-*aprAYRT*/Y6F,. Plasmids used for the construction of each transformant are summarized in Table S2.

Extraction of the metabolites from each transformant

Mycelia of *A. oryzae* transformants were inoculated into 20 mL of potato-starch medium (potato infusion from 200 g and 20 g soluble starch for 1 L medium). Each culture was incubated at 30°C, 200 rpm for 3 days. After the fermentation, broth was extracted by 80 mL acetone. After centrifugation, the supernatants were concentrated to give the crude extract. 5-µl Aliquots of each extract were analyzed by LC-MS with Acquity UPLC BEH C18 column (ϕ 2.1 x 50 mm, 1.7 µm) at the following

conditions; CH₃CN and H₂O (each contained 0.1% HCOOH) were used as eluents. The concentration of CH₃CN was linearly increased from 5 to 50% over 2 min, 50 to 95% over 1 min. Flow rate was kept at 0.7 ml min⁻¹. The column temperature was kept at 40°C. Metabolites were analyzed in ESI positive mode.

Isolation of 1 from A. oryzae transformant AO-aprAYRT

Spore suspension of AO-*aprAYRT* was inoculated into 100 mL of potato-maltose medium (potato infusion from 200g and 30 g maltose for 1L medium) in 500 mL Erlenmeyer flasks. Each culture was incubated at 30 °C for 6 days. After filtration, broth was collected and was washed with AcOEt, and then extracted by *n*-butanol. Organic layer was subjected to C18 column chromatography (eluted by CH₃CN/H₂O = 0.1–0.3). The fraction containing asperipin-2a was separated by HPLC (Shimazu Class VP system) equipped with Wakopak Navi C18-5 column (ϕ 10 x 250 mm, 5 µm). MeOH and H₂O (each contained 0.1% RFA) were used as eluents. The concentration of MeOH was linearly increased from 25% to 75% over 10min. Flow rate was kept at 3 mL min⁻¹. After several injections, the fractions containing the pure compound was collected (1.0 mg from 400-mL culture)..

Asperipin-2a (1)

HR-ESIMS analysis (negative); calcd. for $C_{42}H_{42}O_{12}N_5$ [M-H]-: 808.2835, found: 808.2867. The NMR data are shown in page S19–S24. $[\alpha]_D^{26}$: +1162.5 (c = 0.1, DMSO). Solubility of the isolated compound in MeOH was low and we could not prepare solution at the concentration indicated in the literature ($[\alpha]_D^{23}$: +8.3 (c = 0.06, MeOH)⁵). Therefore, we chose DMSO as alternative solvent. The cause of this difference is obscure and is under investigation.

Hydrogenolysis and hydrolysis of 1.

A mixture of 10% Pd/C (1.7 mg), ammonium formate (0.5 g, 7.9 mmol) and **1** (0.34 mg, 0.42 μ mol) in MeOH (1 ml) was stirred at 70 °C until reaction was completed.⁴ The mixture was filtrated through Celite. The filtrate was purified by C18 column chromatography and HPLC equipped with Wakopak Navi C18-5 (ϕ 10 x 250 mm) at the conditions (a linear gradient of MeOH from 25–40% over 25min at a flow rate of 3.0 mL min⁻¹). To solution of the linear peptide (3% MeOH, 500 μ l) was added 12 M HCl solution (500 μ l) and stirred at 110 °C for 13 h.

Chiral separation of (S)- and (R)-3-phenyllactic acid

The resulting 3-phenyllactic acid was analyzed by LC-MS equipped with chiral column (CHIRALPAK®ZWIX(+), $\phi 4 \ge 250$ mm, 3 µm) at the conditions (isocratic elution by 10 mM HCO₂H and 10 mM HCO₂NH₄ in MeOH/H₂O (98/2, v/v) at a flow rate of 0.8 ml min⁻¹). Commercial *S*- and *R*-3-phenyllactic acid were used as references. An ACQUITY QDa MS detector was operated in ESI-negative mode.

Derivatization of the resultant amino acids with Marfey's reagent.

To aqueous solution of hydrolysate of **2** (50 µl) was added 20 µl of 1 M aq. NaHCO₃ followed by 100 µl of 1% N^{α} -(5-fluoro-2,4-dinitrophenyl)-L-leucinamide (L-FDLA, advanced Marfey's reagent) in acetone.^{6–8} The solution was stirred at 37 °C for 1 h. reaction was quenched by addition of 20 µl of

1M HCl. 1 µl of the resulting solution was diluted with 99 µl of MeOH and aliquot (2 µl) was analyzed by LC-MS. Authentic sample of L- and D-FDLA derivatives of amino acids were prepared under the same conditions. LC-MS was performed using ACQUITYTM UPLC BEH C18 column (50 mm ×2.1 mm, 1.7 µm particle size) at the following conditions: Flow rate; 0. 7 mL/min, Solvent system: A linear gradient from 5 to 50% of CH₃CN with 0.1% TFA in water with 0.1% TFA over 2 min, 50% of CH₃CN with 0.1% HCOOH in water with 0.1% HCOOH for 1 min. An ACQUITY QDa MS detector was operated in ESI-positive mode.

Supplementary references

(1) Tagami, K.; Minami, A.; Fujii, R.; Liu, C.; Tanaka, M.; Gomi, K.; Dairi, T.; Oikawa, H. *ChemBioChem* **2014**, *15*,2076–2080.

(2) Ugai, T.; Minami, A.; Fujii, R.; Tanaka, M.; Oguri, H.; Gomi, K.; Oikawa, H. *Chem. Commun.* **2015**, *51*, 1878–1881.

(3) Liu, C.; Tagami, K.; Minami, A.; Matsumoto, T.; Frisvad, J. C.; Suzuki, H.; Ishikawa, J.; Gomi, K.; Oikawa, H. *Angew. Chem. Int. Ed.* **2015**, *54*, 5748–5752.

(4) Ram, S.; Spicer, L. D. Tetrahedron Lett. 1987, 28, 515-516.

(5) N. Nagano; M. Umemura; M. Izumikawa; J. Kawano; T. Ishii; M. Kikuchi; K. Tomii; T. Kumagai; A. Yoshimi; M. Machida; K. Abe, K; Shin-Ya; K. Asai, *Fungal Genet Biol*, **2016**, *86*, 58–70.

(6) Marfey, P. Carlsberg Research Communications, 1984, 49, 591-596

(7) K. Fujii; Y. Ikai; T. Mayumi; H. Oka; M. Suzuki; K. Harada, *Analytical Chemistry*, **1997**, *69*, 3346–3352.

(8) K. Fujii; Y. Ikai; H. Oka; M. Suzuki; K. Harada, Analytical Chemistry, 1997, 69, 5146–5151.

(9) Corpet, F. Nucleic Acids Res. 1988, 16, 10881–10890.

(10) Robert, X.; Gouet, P. Nucleic Acids Res. 2014, 42, W320–W324.

(11) Schneider, T. D.; Stephens, R. M. Nucleic Acids Res. 1990, 18, 6097-6110.

(12) Crooks, G. E.; Hon G.; Chandonia, J. M.; Brenner, S. E.; *Genome Research*, **2004**, *14*, 1188–1190.

Table S1. Oligonucleotides used for construction of plasmids. Homology arms for In-Fusion HD cloning are underlined.

amplicon	sequence	size
	(from 5' to 3')	vector
aprA	ATCGATTTGAGCTAGATGCATCTCTCGCGCTAC	bp
	TAGTGCGGCCGCTAGTTACTTGTCAAGATCCTCGG	pUSA2
aprY	CGGAATTCGAGCTCGATGGAGCCCTTCTCTAAATT	bp
	ACTACAAGATCCCCGGCTATTCGTGCCTTTTCGTAT	pUARA2
aprR	ATCGATTTGAGCTAGATGACTATCAAAGTGATTGTTG	bp
	TAGTGCGGCCGCTAGTCAACCTTTCAGAATACTAGC	pAdeA2
aprT	CGGAATTCGAGCTCGATGGCTTCCCCTGAACTG	bp
	ACTACAGATCCCCGGTCAATGCGTGCTACCACTG	pAdeA2

Transformants	Plasmids (selection markers)		
	(argB)	(adeA)	(sC)
AO-aprYRT	pUARA2-aprY	pAdeA2-aprRT	-
AO-aprAYRT	pUARA2-aprY	pAdeA2-aprRT	pUSA2-aprA
AO-aprAYT	pUARA2-aprY	pAdeA2-aprT	pUSA2-aprA
AO-aprAYR	pUARA2-aprY	pAdeA2-aprR	pUSA2-aprA
AO-aprAYRT//Y3F	pUARA2-aprY	pAdeA2-aprRT	pUSA2-aprA/Y3F
AO-aprAYRT/Y6F	pUARA2-aprY	pAdeA2-aprRT	pUSA2-aprA/Y6F

 Table S2. Summary of the transformants constructed in this study.

	measured in this study		reported data ⁵	
No.	δc	$\delta_{ m H}$ (multiplicity, J in Hz)	δc	$\delta_{\rm H}$ (multiplicity, <i>J</i> in Hz)
Phe1				
1	74.5	3.74 (br. s)	74.6	3.73
2	78.4	5.96 (br. s)	78.6	5.93 (br. s)
3	140.7		140.9	
4, 4'	126.8	7.6 (d, 7.5)	127	7.59 (d, 7.5)
5, 5'	128.08	7.41 (t, 7.5)	128.2	7.39 (t, 7.5)
6	127.55	7.33 (t, 7.5)	127.7	7.31 (t, 7.5)
7	170.3		170.5	
Tyr2				
8	52.44	4.3 (m)	52.6	4.30, (ddd, 15.0, 9.5, 7.6)
8-NH		6.58 (d, 9.5)		6.55 (d, 9.5)
9	38.76	2.51 (m)	38.8	2.47 (m)
		2.31 (m)		2.29 (dd, 13.8, 7.6)
10	126.9		127.1	
11, 11'	130.02	6.83 (d, 8.5)	130.2	6.80 (d, 7.2)
12, 12'	114.66	6.52(d, 7.5)	114.9	6.50 (d, 7.2)
13	155.68		156.4	
14	169.79		169.9	
Tyr3				
15	58.02	5.01 (dd, 9.1, 9.4))	58.5	4.95 (dd, 10.2, 8.4)
15-NH		8.22 (d, 10.5)		8.18 (d, 10.2)
16	80.07	5.30 (d, 8.5)	80.9	5.23 (d, 8.4)
17	131.68		132.2	
18	129.73	7.10 (d, 8.5)	129.8	7.10, (d, 7.8)
19	116.37	7.03 (m)	116.6	7.01 (d, 7.8)
20	155.69		156.61	
21	120.64	7.05 (m)	120.8	7.02
22	128.06	7.41 (m)	127.7	7.41 (d, 7.8)
23	169.37		169.3	
Thr4				
24	58.05	4.11 (d, 8.0)	57.9	4.13 (d, 7.0)
24-NH		8.08 (d, 7.5)		8.01 (d, 7.0)
25	66.86	3.85 (m)	67.3	3.83 (m)
26	19.03	0.90 (d, 6.0)	19.6	0.89 (d, 6.0)
27	168.44		168.4	
Gly5				
28	42.91	3.67 (dd, 16.0, 6.7)	42.9	3.72
		3.42 (dd, 17.1, 4.4)		3.3

Table S3. ¹H- and ¹³C-chemical shifts of **1** (DMSO- d_6 , 500 MHz).

28-NH		7.51 (m)		8.00 d (d, 7.8)
29	168.42		168.8	
Tyr6				
30	52.42	4.39 (m)	54	4.02 (m)
30 NH		7.01 (m)		6.85 (d, 6.5)
31	35.5	3.15 (dd, 13.2, 2.8)	36.2	2.97 (dd, 14.0, 6.4)
		2.67 (12.8, 11.7)		2.90 (dd, 14.0, 10.2)
32	129.84		130.8	
33, 33'	130.02	6.82 (m)	130.2	6.78, d (d, 7.2)
34, 34'	130.02	6.82 (m)	129.9	6.75 d (d, 7.2)
35	155.62		156.4	
36	172.88		173.3	

The differences observed for Gly5 and Tyr6 is likely due to the conformational flexibility of the 17membered ring.

 Table S3. Summary of BLAST results using AprA as a query.

strain	Accession number		
Aspergillus oryzae	00006787		
Aspergillus parasiticus SU-1	KJK61069		
Aspergillus arachidicola	PIG85352		

Figure S1. The biosynthetic gene cluster for 1.

Figure S2. Construction of expression plasmids (A) pUARA2-*aprY*, (B) pAdeA2-*aprR*, pAdeA2-*aprR*, and pAdeA2-*aprRT*, and (C) pUSA2-*aprA*, pUSA2-*aprA*/Y3F, and pUSA2-*aprA*/Y6F.

Figure S3. LC-MS profiles of the metabolites extracted from AO-*aprAYRT*/Y3F, AO-*aprAYRT*/Y6F. The chromatograms were extracted at *m*/*z* 780–820.

Figure S4. Sequence alignment of putative AprA orthologs. The sequences were aligned by MultAlin⁹ and the figure was exported by ESPript 3¹⁰.

Figure S5. Conservation analysis of the repeated sequence of putative AprA orthologs. The logo was constructed by WebLogo 3^{11,12} with sequences listed in Figure S3.

Figure S6. HPLC profile of L-FDLA-derivatized sample.

Chromatogram was extracted at 340 nm. The molar ratio of L-Tyr and Gly was approximately estimated to 3:1.

Figure S7. Cyclopeptide alkaloids that are structurally-related to 1.

The nucleotide and corresponding amino acid sequences of revised aprA, aprA/Y3F and aprA/Y6F. Core sequences were shown by bold letters and mutated residues were colored red.

>Revised *aprA*

ATGCATCTCTCGCGCTACATCGCTGTACTGTTGTCGGCATCGAGCTTTGTCTCTGCTCTTC CACTTCAAAATGATGTGATCTCCGACGACGGATCTAAGCCCATAGATGCGATAATGGCCA CCGCAATGGAGCACAAGGTAGTTAACCCGGAGAACCTTGATGCGACCCCTGCAACCCCT GAGAACCCCGAGGATCTTGACAAACGATTCTACTATACCGGCTATAAACGTAACGCTGAG ACCCCTGAGGATCTTGACAAACGATTCTACTATACCGGCTATAAACGCAACGCTGAGACC CCCGAGGATCTTGATAAACGATTCTACTATACCGGCTATAAACGTAACGCTGAGACCCCC GAGGATCTTGACAAACGATTCTACTATACCGGCTATAAACGCAACGCTGAGACCCCTGAG GATCTTGACAAACGATTCTACTATACCGGCTATAAACGCAATGCTGAGACCCCTGATGATC TTGACAAACGATTTTACTATACCGGCTATAAACGCAATGCTGAGACCCCTGAGGATCTTG ACAAACGATTCTACTATACCGGCTATAAACGCAATGCTGAGACCCCTGAGGATCTTGACA AACGATTCTACTATACCGGCTATAAACGCACCGCTGAGACCCCCCGAGGATCTTGACAAGT AA

>Revised AprA

MHLSRYIAVLLSASSFVSALPLQNDVISDDGSKPIDAIMATAMEHKVVNPENLDATPATPENP EDLDKRFYYTGYKRNAETPEDLDKRFYYTGYKRNAETPEDLDKRFYYTGYKRNAETPED LDKRFYYTGYKRNAETPEDLDKRFYYTGYKRNAETPDDLDKRFYYTGYKRNAETPEDLD **KRFYYTGYKRNAETPEDLDKRFYYTGYKRTAETPEDLDK**

>aprA/Y3F

ATGCATCTCTCGCGCTACATCGCTGTACTGTTGTCGGCATCGAGCTTTGTCTCTGCTCTTC CACTTCAAAATGATGTGATCTCCGACGACGGATCTAAGCCCATAGATGCGATAATGGCCA CCGCAATGGAGCACAAGGTAGTTAACCCGGAGAACCTTGATGCGACCCCTGCAACCCCT GAGAACCCCGAGGATCTTGACAAACGATTCTACTTCACCGGCTATAAACGTAACGCTGAG ACCCCTGAGGATCTTGACAAACGATTCTACTTCACCGGCTATAAACGCAACGCTGAGACC CCCGAGGATCTTGATAAACGATTCTACTTCACCGGCTATAAACGTAACGCTGAGACCCCC GAGGATCTTGACAAACGATTCTACTTCACCGGCTATAAACGCAACGCTGAGACCCCTGA GGATCTTGACAAACGATTCTACTTCACCGGCTATAAACGCAATGCTGAGACCCCTGATGA TCTTGACAAACGATTTTACTTCACCGGCTATAAACGCAATGCTGAGACCCCCTGAGGATCT TGACAAACGATTCTACTTCACCGGCTATAAACGCAATGCTGAGACCCCTGAGGATCTTGA CAAACGATTCTACTTTACCGGCTATAAACGCACCGCTGAGACCCCCGAGGATCTTGACAA GTAA

>AprA/Y3F

MHLSRYIAVLLSASSFVSALPLQNDVISDDGSKPIDAIMATAMEHKVVNPENLDATPATPENP EDLDKRFYFTGYKRNAETPEDLDKRFYFTGYKRNAETPEDLDKRFYFTGYKRNAETPEDL DKRFYFTGYKRNAETPEDLDKRFYFTGYKRNAETPDDLDKRFYFTGYKRNAETPEDLDK **RFYFTGYKRNAETPEDLDKRFYFTGYKRTAETPEDLDK**

>aprA/Y6F

ATGCATCTCTCGCGCTACATCGCTGTACTGTTGTCGGCATCGAGCTTTGTCTCTGCTCTTC CACTTCAAAATGATGTGATCTCCGACGACGGATCTAAGCCCATAGATGCGATAATGGCCA CCGCAATGGAGCACAAGGTAGTTAACCCGGAGAACCTTGATGCGACCCCTGCAACCCCT GAGAACCCCGAGGATCTTGACAAACGATTCTACTATACCGGCTTCAAACGCAACGCTGAGACC CCCGAGGATCTTGACAAACGATTCTACTATACCGGCTTCAAACGCAACGCTGAGACCCC GAGGATCTTGACAAACGATTCTACTATACCGGCTTCAAACGCAACGCTGAGACCCCTGA GGATCTTGACAAACGATTCTACTATACCGGCTTCAAACGCAACGCTGAGACCCCTGA GGATCTTGACAAACGATTCTACTATACCGGCTTCAAACGCAACGCTGAGACCCCTGA GGATCTTGACAAACGATTCTACTATACCGGCTTCAAACGCAATGCTGAGACCCCTGATGA TCTTGACAAACGATTCTACTATACCGGCTTCAAACGCAATGCTGAGACCCCTGAGGATCT TGACAAACGATTCTACTATACCGGCTTCAAACGCAATGCTGAGACCCCTGAGGATCT GAAACGATTCTACTATACCGGCTTCAAACGCAATGCTGAGACCCCTGAGGATCT GAAACGATTCTACTATACCGGCTTCAAACGCAATGCTGAGACCCCTGAGGATCTTGA

>AprA/Y6F

MHLSRYIAVLLSASSFVSALPLQNDVISDDGSKPIDAIMATAMEHKVVNPENLDATPATPENP EDLDKRFYYTGFKRNAETPEDLDKRFYYTGFKRNAETPEDLDKRFYYTGFKRNAETPEDL DKRFYYTGFKRNAETPEDLDKRFYYTGFKRNAETPDDLDKRFYYTGFKRNAETPEDLDK RFYYTGFKRNAETPEDLDKRFYYTGFKRTAETPEDLDK

