Electronic Supporting Information

Biosynthesis of an anti-tuberculosis sesterterpenoid asperterpenoid A

Jia-Hua Huang,‡a Jian-Ming Lv,‡a Qiao-Zhen Wang,a Jian Zou,a Yong-Jun Lu,b Qing-Lin Wang,b Dong-Ni Chen,c Xin-Sheng Yao,a Hao Gao*a and Dan Hu*a

- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong

 Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan

 University, Guangzhou 510632, People's Republic of China. Email: tghao@jnu.edu.cn; thudan@jnu.edu.cn
- b. School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- ^{c.} School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China

Table of Contents

Supplementary Methods	4
Supplementary Tables	10
Table S1. Primers used for constructing recombinant plasmids	10
Table S2. Plasmids used in the study	11
Table S3. NMR assignments for 2 (¹ H for 600 MHz and ¹³ C for 150 MHz in CI	OCl ₃)12
Table S4. NMR assignments for 3 (¹ H for 600 MHz and ¹³ C for 150 MHz in CI	OCl ₃)13
Table S5. NMR assignments for 4 (¹ H for 600 MHz and ¹³ C for 150 MHz in CI	OCl ₃)14
Table S6. The Boltzmann distribution for two possible structures (A and B) of	415
Supplementary Figures	16
Fig. S1. PCR analysis for confirmation of the transformants	17
Fig. S2. Electron impact mass spectrum of 1	19
Fig. S3. Key ¹ H- ¹ H COSY, HMBC and ROESY correlations for 3 (A) and 4 (B)20
Fig. S4. Phylogenetic analysis of the multifunctional P450s in fungi	21
Fig. S5. Representatives of multiple oxidation reactions catalyzed by P450s in f	fungi22
Fig. S6. Most stable conformers of 4A and 4B	23
Fig. S7. Differences between NMR chemical shifts of 4 and theoretical ¹³ C NMF	t chemical
shifts for 4A and 4B	24
Fig. S8. Homologues of the astABC cassette discovered in NCBI database	25
Fig. S9. SDS-PAGE analysis of purified recombinant MptpB	26
Fig. S10. Evaluation of the inhibitory activity against MptpB	27
Fig. S11. ¹ H NMR spectrum of 1 in C ₆ D ₆ at 600 MHz	28
Fig. S12. ¹³ C NMR spectrum of 1 in C ₆ D ₆ at 150 MHz	29
Fig. S13. HRESIMS spectrum of 2	30
Fig. S14. ¹ H NMR spectrum of 2 in CDCl ₃ at 600 MHz	31
Fig. S15. ¹³ C NMR spectrum of 2 in CDCl ₃ at 150 MHz	32
Fig. S16. ¹ H- ¹ H COSY spectrum of 2 in CDCl ₃ at 600 MHz	33
Fig. S17. HSQC spectrum of 2 in CDCl ₃ at 600 MHz	34
Fig. S18. HMBC spectrum of 2 in CDCl ₃ at 600 MHz	35
Fig. S19. ROESY spectrum of 2 in CDCl ₃ at 600 MHz	36
Fig. S20. HRESIMS spectrum of 3	37
Fig. S21. ¹ H NMR spectrum of 3 in CDCl ₃ at 600 MHz	38
Fig. S22. ¹³ C NMR spectrum of 3 in CDCl ₃ at 150 MHz	39
Fig. S23. ¹ H- ¹ H COSY spectrum of 3 in CDCl ₃ at 600 MHz	40
Fig. S24. HSQC spectrum of 3 in CDCl ₃ at 600 MHz	41
Fig. S25. HMBC spectrum of 3 in CDCl ₃ at 600 MHz	42
Fig. S26. ROESY spectrum of 3 in CDCl ₃ at 600 MHz	43
Fig. S27. HRESIMS spectrum of 4	44
Fig. S28. ¹ H NMR spectrum of 4 in CDCl ₃ at 600 MHz	45
Fig. S29. ¹³ C NMR spectrum of 4 in CDCl ₃ at 150 MHz	46
Fig. S30. ¹ H- ¹ H COSY spectrum of 4 in CDCl ₃ at 600 MHz	47
Fig. S31. HSQC spectrum of 4 in CDCl ₃ at 600 MHz	48
Fig. S32. HMBC spectrum of 4 in CDCl ₃ at 600 MHz	49

Fig. S33. ROESY spectrum of 4 in CDCl ₃ at 600 MHz	.50
Supplementary References	.51

Supplementary Methods

General materials and experimental procedures

All the chemicals were purchased from Oceanpak Alexative Chemical Co., Ltd. (Gothenburg, Sweden) or Fine Chemical Co., Ltd. (Tianjin, China). The biochemical reagents and kits used in this work were purchased from TaKaRa Bio Inc. (Dalian, China), Thermo Fisher Scientific Inc. (Shenzhen, China) or Sangon Biotech Co., Ltd. (Shanghai, China), unless noted otherwise. Primer synthesis was performed by Sangon Biotech Co., Ltd. (Shanghai, China). PCR was carried out using a Mastercycler nexus gradient (Eppendorf, Hamburg, Germany) or an A100 Thermal cycler (LongGene, Hangzhou, China).

UV data, IR data and optical rotations were respectively measured on the JASCO V-550 UV/vis spectrometer, JASCO FT/IR-480 plus spectrometer, and JASCO P1020 digital polarimeter from JASCO International Co., Ltd. (Tokyo, Japan). The HRESIMS data were obtained on a Waters Micromass Q-TOF mass spectrometer (Milford, USA). 1D and 2D NMR spectra were recorded with the Bruker AV 600 spectrometer (Faellanden, Switzerland) using the solvent signals (CDCl₃: δ_H 7.26/ δ_C 77.0; C_6D_6 : δ_H 7.16/ δ_C 128.1) as the reference. The semi-preparative HPLC was performed on an Ultimate 3000 HPLC system (Dionex) with a YMC-Pack ODS-A column (10.0 mm i.d. × 250 mm, 5 μ m). The silica gel column chromatography was performed with silica gel (200-300 mesh, Haiyang Chemical Co., Ltd., Qingdao, China). The medium-pressure liquid chromatography (MPLC) was carried out using a dual-pump gradient system (Lisui E-Tech Co., Ltd., Shanghai, China) with ODS (50 μ m, YMC Co., Ltd., Tokyo, Japan).

Strains and media

Talaromyces wortmannii ATCC 26942 purchased from the American Type Culture Collection (ATCC) was cultured in potato dextrose broth for DNA extraction. The quadruple auxotrophic host Aspergillus oryzae NSAR1 (niaD-, sC-, ΔargB, adeA-)^[1] was used for heterologous express of target genes under the amyB promoter in the modified Czapek-Dox (CD) medium (0.3% NaNO₃, 0.2% KCl, 0.05% MgSO₄·7H₂O, 0.1% KH₂PO₄, 0.002% FeSO₄·7H₂O, 1% polypeptone, 2% starch, pH 5.5). Escherichia coli DH5α (TaKaRa) strains carrying recombinant plasmids were grown in LB medium with appropriate antibiotics.

Genome sequencing of *T. wortmannii* ATCC 26942 and analysis

The whole genome of *T. wortmannii* ATCC 26942 was sequenced using an Illumina HiSeq 2500 system by Novogene Co., Ltd (Beijing, China). The raw data were assembled into contigs by the SOAPdenovo (http://soap.genomics.org.cn/soapdenovo.html). Gene prediction was performed with AUGUSTUS (http://bioinf.uni-greifswald.de/augustus/). All the predicted enzymes were used to construct the database for the local BLAST search.

Construction of recombinant plasmids

astA, astB, and astC were amplified from the genomic DNA of T. wortmannii ATCC 26942, and inserted into the linearized vector pTAex3 using T4 DNA ligase or ClonExpress® II One Step Cloning Kit (Vazyme, Nanjing, China) to yield pTAex3-astA, pTAex3-astB, and pTAex3-astC, respectively. Then DNA fragments containing the promoter and terminator amplified from the recombinant pTAex3 plasmids were cloned into the XbaI-digested pAdeA vector to afford pAdeA-astA, pAdeA-astB, and pAdeA-astA-astB. All the primers and plasmids used in this work are listed in Table S1 and S2.

Transformation of A. oryzae NSAR1

PEG-mediated protoplast transformation was employed to construct the A. oryzae transformant strain. 100 µL spore suspension of the parent strain was inoculated in 10 mL DPY medium (2% dextrin, 1% polypeptone, 0.5% yeast extract, 0.05% MgSO₄·7H₂O, 0.5% KH₂PO₄) and cultivated for 1-2 days. Then the culture broth was transferred into 100 mL DPY. After growth for 1 day, mycelia were harvested, and the cell walls were removed using the Yatalase enzyme system (1% Yatalase, 0.6 M (NH₄)₂SO₄, 50 mM maleic acid, pH 5.5) at 30 °C for 3 hours. The protoplasts were collected and washed with Solution 2 (1.2 M sorbitol, 50 mM $CaCl_2 \cdot 2H_2O$, 35 mM NaCl, 10 mM Tris-HCl, pH 7.5), and then adjusted to around 1.0×10^7 mL⁻¹ with Solution 2. 10 µg plasmids ($\sim 10 \mu L$) and 200 µL protoplast suspension were gently mixed and placed on ice for 30 min. Subsequently, 1.35 mL PEG solution (60% PEG4000, 50 mM CaCl₂·2H₂O, 10 mM Tris-HCl, pH 7.5) was added. After 20 min at the room temperature, 7 mL Solution 2 was added, and the mixture was subjected to centrifugation at 1500 rpm for 10 min. The precipitate was resuspended in 200 µL Solution 2, and spread on the under-layer medium, which was covered with the upper-layer medium. The selective medium contains 0.2% NH₄Cl, 0.1% (NH₄)₂SO₄, 0.05% KCl, 0.05% NaCl, 0.1% KH₂PO₄, 0.05% MgSO₄·7H₂O, 0.002% FeSO₄·7H₂O, 2% glucose, 1.2 M sorbitol and 0.8-1.5% agar as well as appropriate

ingredients for complementing auxotrophy. And the transformants could be obtained after incubation at 28 °C for 3-5 days and confirmed via PCR (Fig. S1).

Analysis of metabolites from A. oryzae transformants

The spore suspension of the *A. oryzae* transformant was inoculated into 10 mL DPY medium and was cultured at 28 °C and 200 rpm for 2 days as the seed broth. Then the broth was transferred into 100 mL modified CD medium for the induction of genes. After growth at 28 °C and 200 rpm for 6 days, the mycelia were harvested by filtration and extracted with acetone. The extract was dried under reduced pressure, and then partitioned with hexane-water (1/1, v/v) for GC-MS analysis, or resuspended in methanol for HPLC analysis.

GC-MS analysis was performed on Agilent Technologies 7890B GC System coupled with 5977B MSD using an HP-5MS 30 Meter column (0.32 mm i.d., 0.25 µm film thickness). The temperature of the ionization chamber was 230 °C, along with the electron impact ionization voltage of 70 eV. The oven temperature initially kept at 50 °C for 3 min, and then increased to 70 °C at a rate of 20 °C min⁻¹ and held for 1 min, followed by a second ramp from 70 °C to 300 °C at a rate of 15 °C min⁻¹ and holding for 3 min. Helium was used as carrier gas at the rate of 1 mL min⁻¹.

HPLC profile was detected on an Ultimate 3000 HPLC system (Dionex) using a COSMOSIL $3C_{18}$ -EB column (4.6 mm i.d. \times 150 mm, 3 μ m) with a linear gradient of 50-100% H_2O (0.1% formic acid)-CH₃CN (0.1% formic acid) in 25 min followed by 100% CH₃CN (0.1% formic acid) for 35 min at 1 mL min⁻¹.

Purification procedure for each metabolite

Mycelia from 2 L culture of the *A. oryzae* NSAR1 transformant harboring *astC* were extracted with acetone at room temperature. Then the extract (0.68 g) was subjected to silica gel column chromatography with cyclohexane to yield 89.5 mg of 1.

Mycelia from 4 L culture of the *A. oryzae* NSAR1 transformant harboring *astB* and *astC* were extracted with acetone at room temperature. Then the extract (1.7 g) was subjected to silica gel column chromatography and MPLC with stepwise elution in order. Subfraction containing **2** and **3** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL min⁻¹) with isocratic elution of 85% CH₃CN-H₂O containing 0.1% formic acid to yield **3** (t_R : 21.0 min, 3.0 mg) and **2** (t_R : 26.3 min, 15.0 mg).

Mycelia from 5 L culture of the *A. oryzae* NSAR1 transformant harboring astA, astB, and astC were extracted with acetone at room temperature. Then the extract (1.4 g) was subjected to silica gel column chromatography and MPLC with stepwise elution in order. Subfraction containing **4** was further purified by semi-preparative HPLC (YMC-Pack ODS-A column, 3 mL min⁻¹) with isocratic elution of 80% CH₃CN-H₂O containing 0.1% formic acid to yield **4** (t_R : 11.7 min, 25.0 mg).

Conformational analysis and quantum chemical ¹³C NMR calculations of 4

The molecules of (6*S**, 7*R**, 9*R**, 10*S**, 11*S**, 14*S**, 15*S**, 16*R**, 18*R**)—**4A** and (6*S**, 7*R**, 9*R**, 10*S**, 11*S**, 14*S**, 15*S**, 16*R**, 18*S**)—**4B** were converted into SMILES codes before their initial 3D structures were generated with CORINA version 3.4. Conformer databases were generated in CONFLEX version 7.0 by using the MMFF94s force-field with an energy window for acceptable conformers (ewindow) of 5 kcal mol⁻¹ above the ground state, a maximum number of conformations per molecule (maxconfs) of 100, and an RMSD cutoff (rmsd) of 0.5Å. Then each acceptable conformers was optimized with HF/6-31G(d) method in Gaussian09. Further optimization at the B3LYP/6-31G(d) level determined the dihedral angles. From this, (11 for **4A** and 12 for **4B**) most stable conformers were determined (Table S6 and Fig. S6). The optimized conformers (11 for **4A** and 12 for **4B**) were used for ¹³C NMR calculations, which were performed with Gaussian09 (B3LYP/6-31+G(d, p)). The solvent effects were taken into account by the polarizable-conductor calculation model (PCM, chloroform as the solvent). The comparison was judged by DP4+ probability. [3]

Heterologous expression, purification and inhibition assay for MptpB

The coding sequence of MptpB was amplified from the genomic DNA of *M. tuberculosis* H37Ra, and then cloned into the expression vector pET28a. Subsequently, the resulting recombinant vector was transformed into *E. coli* BL21(DE3). The transformant was grown in LB medium supplemented with 50 mg L⁻¹ kanamycin at 37 °C until OD₆₀₀ reached 0.6-0.8. The gene expression was induced with 0.1 mM isopropyl β -D-thiogalactopyranoside (IPTG) at 18 °C for 16 hours. The cells were harvested by centrifugation at 5000 × g for 5 min at 4 °C, and then resuspended in lysis buffer with 0.01% Triton X-100, 5 mL DTT and EDTA-free protease inhibitors cocktail, followed by sonication on ice. After centrifugation at 10000 × g for 30 min at 4 °C, the supernatant was collected and subjected to a Ni²⁺-NTA affinity column. After

elution with washing buffer (25 mM Tris, 500 mM NaCl, 50 mM imidazole, pH 7.8) to remove the non-specific binding proteins, MptpB was eluted with elution buffer (25 mM Tris, 500 mM NaCl, 350 mM imidazole, pH 7.8). The eluate was concentrated and exchanged with the buffer (25 mM Tris, 100 mM NaCl, pH 7.8) using the Amicon Ultra centrifugal filter. MptpB was analyzed by 10% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and its content was determined by Bradford protein assay (Bio-Rad, USA). The purified MptpB was stored at -20 °C.

The phosphatase activity assay of MptpB was performed in triplicate in 96-well microplate in reaction buffer (50 mM Tris, 100 mM NaCl, pH 7.0) using p-nitrophenyl phosphate (pNPP) as a substrate. The MptpB inhibition was evaluated in a reaction mixture (final volume, 200 μ L) containing 1.5 μ g MptpB and 50 μ M sample, and sodium orthovanadate was tested as the positive control. The reaction mixture was incubated for 10 min at room temperature, followed by addition of pNPP to a final concentration of 1.3 mM. The absorbance at 405 nm was measured in the spectrophotometer Infinite 200 PRO (TECAN). The negative control without MptpB was performed to account for the spontaneous hydrolysis of pNPP.

IC₅₀ with more than 60% of inhibitory activity against MptpB was determined at 0.195-100 μ M using two-fold dilution. The data were calculated by fitting the inhibition percentage and inhibitor concentration with Origin 9. Different inhibitor concentrations and different concentrations of *p*NPP were employed to determine the type of inhibition by fitting data to Lineweaver-Burk plot. All assays were performed in triplicate in at least three independent experiments.

Structural characterization

Preasperterpenoid A (1): A white powder; [α]31 D = +100.0 (c 1.5, CHCl₃); NMR spectra see Fig. S11 and S12; 1 H NMR (600 MHz, C₆D₆) $\delta_{\rm H}$ 2.50 (m, 1H), 2.48 (d, J = 13.6 Hz, 1H), 2.44 (m, 1H), 2.11 (m, 1H), 2.09 (m, 1H), 1.98 (br dd, J = 12.6, 7.2 Hz, 1H), 1.88 (m, 1H), 1.86 (m, 1H), 1.70 (m, 2H), 1.66 (m, 1H), 1.65 (s, 3H), 1.54 (m, 1H), 1.52 (m, 1H), 1.44 (m, 1H), 1.39 (m, 1H), 1.33 (m, 1H), 1.29 (t, J = 10.8 Hz, 1H), 1.22 (dd, J = 11.4, 9.6 Hz, 1H), 1.10 (m, 1H), 1.00 (d, J = 6.8 Hz, 3H), 0.99 (s, 3H), 0.93 (s, 3H), 0.88 (d, J = 6.8 Hz, 3H), 0.79 (s, 3H), 0.60 (dd, J = 8.4, 4.2 Hz, 1H), 0.33 (t, J = 4.8 Hz, 1H), 0.19 (ddd, J = 9.6, 8.4, 5.4 Hz, 1H); 13 C NMR (150 MHz, C₆D₆) $\delta_{\rm C}$ 136.2, 131.4, 54.7, 51.6, 47.8, 47.6, 45.8, 43.3, 40.5, 39.8, 39.7,

38.3, 36.5, 30.0, 28.9, 26.6, 25.2, 23.5, 23.0, 22.7, 21.0, 20.6, 17.9, 15.4, 13.7; The NMR data are in good agreement with those of preasperterpenoid A.^[4]

Asperterpenoid A (2): A white powder; $[\alpha]32\ D = +81.7\ (c\ 1.0,\ CHCl_3)$; HRESIMS (positive) $m/z\ 387.2903\ [M + H]^+$ (calcd for $C_{25}H_{39}O_3$, 387.2899), see Fig. S13; NMR spectra see Fig. S14-S19; NMR data are slightly different from the reported values of asperterpenoid A (Table S3).^[5]

Asperterpenoid B (3): A white powder; [α]33 D = +70.5 (c 0.2, CHCl₃); UV (CHCl₃) λ_{max} (log ε) 242 (4.15); IR (KBr) ν_{max} 3444, 2954, 2864, 1687, 1637, 1403, 1091 cm⁻¹; HRESIMS (positive) m/z 801.5319 [2M + H]⁺ (calcd for C₅₀H₇₃O₈, 801.5305), see Fig. S20; NMR spectra see Fig. S21-S26; NMR data see Table S4. 3 is identified as asperterpenoid B.

Asperterpenoid C (4): A white powder; [α]32 D = +37.0 (c 1.0, CHCl₃); UV (CHCl₃) λ_{max} (log ε) 243 (4.34); IR (KBr) ν_{max} 3552, 3412, 2946, 2866, 1688, 1644, 1397, 1257, 1097, 1047 cm⁻¹; HRESIMS (positive) m/z 403.2847 [M + H]⁺ (calcd for C₂₅H₃₉O₄, 403.2848), see Fig. S27; NMR spectra see Fig. S28-S33; NMR data see Table S5. 4 is identified as asperterpenoid C.

Supplementary Tables

Table S1. Primers used for constructing recombinant plasmids

	,	
Sequence (5' to 3')	Usage	
TCGAGCTCGGTACCCATGGAGCAGAGGGAAATTAT	Cloning of astA from T. wortmannii	
CTACTACAGATCCCCTTAAGCACGAACCTCTAACC	ATCC 26942 genome	
TCGAGCTCGGTACCCATGATCGACTCTTTGTCGTT	Cloning of astB from T. wortmannii	
CTACTACAGATCCCCCACACAATTACTCAGTGACT	ATCC 26942 genome	
CCG <u>GAATTC</u> ATGGCTTCTCTAGAGGTATT	Cloning of astC from T. wortmannii	
CCG <u>GAATTC</u> AAGTCTACTTCACATGCAAC	ATCC 26942 genome	
GCAGGTCGACTCTAGACGACTCCAATCTTCAAGAGC		
AACGCGCTCGCGAGCAAGTACCATACAGTACCGCG	Construction of recombinant pAdeA	
GCTCGCGAGCGCGTTCCACTGCATCATCAGTCTAG	plasmids containing one or two genes	
TAGTAGATCCTCTAGAGTAAGATACATGAGCTTCGG		
ATGGAGCAGAGGGAAATTAT	Clarica C 44 Company	
TTAAGCACGAACCTCTAACC	Cloning of astA from transformants	
ATGATCGACTCTTTGTCGTT		
TCAGTGACTTTGATCCGGAT	Cloning of astB from transformants	
ATGGCTTCTCTAGAGGTATT		
AAGTCTACTTCACATGCAAC	Cloning of astC from transformants	
	TCGAGCTCGGTACCCATGGAGCAGAGGGAAATTAT CTACTACAGATCCCCTTAAGCACGAACCTCTAACC TCGAGCTCGGTACCCATGATCGACTCTTTGTCGTT CTACTACAGATCCCCCACACAATTACTCAGTGACT CCGGAATTCATGGCTTCTCTAGAGGTATT CCGGAATTCAAGTCTACTTCACATGCAAC GCAGGTCGACTCTAGACGACTCCAATCTTCAAGAGC AACGCGCTCGCGAGCAAGTACCATACAGTACCGCG GCTCGCGAGCGCGTTCCACTGCATCATCAGTCTAG TAGTAGATCCTCTAGAGTAAGATACATGAGCTTCGG ATGGAGCAGAGCGAAATTAT TTAAGCACGAACCTCTAACC ATGATCGACTTTTGTCGTT TCAGTGACTTTTGATCCGGAT ATGGCTTCTCTAGAGGTATT	

Table S2. Plasmids used in the study

Plasmid	Characteristic Source	
pTAex3	Plasmid containing argB maker gene cassette for gene expression in	Fujii, T. et al.[6]
	A. oryzae NSAR1. (Amp^R)	
pAdeA	Plasmid containing adeA maker gene cassette for gene expression in	Jin, F. et al.[7]
	A. oryzae NSAR1. (Amp^R)	
pTAex3-astA	pTAex3 containing $astA$ under the $amyB$ promoter. (Amp^R)	This work
pTAex3-astB	pTAex3 containing $astB$ under the $amyB$ promoter. (Amp^R)	This work
pTAex3-astC	pTAex3 containing $astC$ under the $amyB$ promoter. (Amp^R)	This work
pAdeA-astA	pAdeA containing $astA$ under the $amyB$ promoter. (Amp^R) This work	
pAdeA-astB	pAdeA containing $astB$ under the $amyB$ promoter. (Amp^R) This work	
pAdeA-astA-astB	pAdeA containing astA and astB under the amyB promoter. (Amp ^R)	This work

Table S3. NMR assignments for 2 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)

No.	δ_{C} , type	$\delta_{ m H}(J{ m in}{ m Hz})^a$	¹ H– ¹ H COSY	HMBC	ROESY
1	43.0, CH ₂	a: 3.49, d (13.2)	1b	2, 3, 6, 10, 11, 12	12a
		b: 1.60, d (13.2)	1a	2, 3, 6, 10, 11, 21	6, 10, 12b
2	160.6, C				
3	127.5, C				
4	32.9, CH ₂	2.60	5a, 5b	2, 3, 5, 6	20
5	26.0, CH ₂	a: 2.02	4, 5b, 6	2, 3, 4, 6, 7	20
		b: 1.96	4, 5a, 6	2, 3, 4, 6, 7	
6	57.0, CH	2.31, br d (8.4)	5a, 5b	1, 2, 3, 4, 5, 7, 8, 20	1b, 8b, 10
7	21.6, C				
8	26.2, CH ₂	a: 0.66, dd (8.4, 4.2)	8b, 9	6, 7, 9, 10, 20	20, 23
		b: 0.37, t (4.8)	8a, 9	6, 7, 9, 10, 20	6, 10, 16
9	28.9, CH	0.12, ddd (10.2, 8.4, 4.8)	8a, 8b, 10	6, 7, 8, 15, 20	15, 20, 21, 23
10	47.9, CH	1.32	9, 15	1, 8, 9, 11, 12, 14, 15, 21	1b, 6, 8b, 16, 22
11	44.6, C				
12	29.8, CH ₂	a: 2.13, br d (13.8)	12b, 13a, 13b	10, 11, 13, 14, 21	1a
		b: 1.24	12a, 13a, 13b,	1, 10, 11, 13, 14, 21	1b
13	35.4, CH ₂	a: 1.45	12a, 12b, 13b	11, 12, 14, 15, 18, 22	
		b: 1.30	12a, 12b, 13a	11, 12, 14, 15, 18, 22	21
14	42.8, C				
15	51.1, CH	1.19	10, 16	9, 10, 11, 13, 14, 16, 17, 18, 22, 23	9, 18b, 21, 25
16	45.5, CH	1.74, br t (10.2)	15, 17a, 17b, 23	10, 15, 17, 18, 23, 24, 25	8b, 10, 22, 24
17	22.2, CH ₂	a: 1.62	16, 17b, 18a, 18b	15, 16, 18, 23	22
		b: 1.44	16, 17a, 18a, 18b	14, 15, 16, 18, 23	24
18	39.8, CH ₂	a: 1.37	17a, 17b, 18b	13, 14, 15, 16, 17, 22	
		b: 1.00	17a, 17b, 18a	13, 14, 22	15
19	170.7, C				
20	20.7, CH ₃	0.91, s		6, 7, 8, 9	4, 5a, 8a, 9, 21
21	61.2, CH ₂	3.60, s		1, 10, 11, 12	9, 13b, 15, 20
22	17.7, CH ₃	0.76, s		13, 14, 15, 18	10, 16, 17a
23	28.4, CH	2.23	16, 24, 25	15, 16, 17, 24, 25	8a, 9
24	23.1, CH ₃	0.85, d (7.2)	23	16, 23, 25	16, 17b
25	15.0, CH ₃	0.75, d (6.6)	23	16, 23, 24	15

 $^{^{}a}$ The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

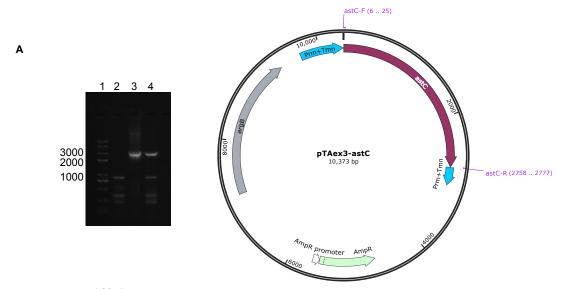
Table S4. NMR assignments for 3 (1 H for 600 MHz and 13 C for 150 MHz in CDCl₃)

No.	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}}(J\mathrm{in}\mathrm{Hz})^a$	¹ H– ¹ H COSY	HMBC	ROESY
1	42.0, CH ₂	a: 3.69, d (14.4)	1b	2, 3, 6, 10, 11, 12, 21	12a
		b: 2.10, d (14.4)	1a	2, 3, 11, 21	6, 10, 12b
2	156.9, C				
3	128.4, C				
4	32.9, CH ₂	2.60	5	2, 3, 5	20
5	26.0, CH ₂	1.95	4, 6	2, 3, 4, 6, 7	20
6	56.1, CH	2.40, br d (5.4)	5	2, 3, 4, 5, 7, 8, 20	1b, 8b, 10
7	21.8, C				
8	24.8, CH ₂	a: 0.64	8b, 9	6, 7, 9, 10, 20	20, 23
		b: 0.40, br s	8a, 9	6, 7, 9, 10, 20	6, 10, 16
9	27.7, CH	0.67	8a, 8b, 10	6, 7, 8, 20	15, 20
10	46.4, CH	1.38	9, 15	1, 7, 8, 9, 11, 14, 15, 16, 21	1b, 6, 8b
11	51.8, C				
12	34.8, CH ₂	a: 1.92	12b, 13	13	1a
		b: 1.63	12a, 13	1, 13, 14, 21	1b
13	35.8, CH ₂	1.53	12a, 12b	11, 12, 15, 18	15
14	42.3, C				
15	50.0, CH	1.85, t (10.8)	10, 16	10, 11, 13, 14, 16, 22, 23	9, 13, 18b, 25
16	45.3, CH	1.74, br t (10.2)	15, 17a, 17b, 23	15, 17	8b, 22, 24
17	21.9, CH ₂	a: 1.61	16, 17b, 18a, 18b	14, 16, 18, 23	22
		b: 1.46	16, 17a, 18a, 18b	14, 23	24, 25
18	39.7, CH ₂	a: 1.39	17a, 17b, 18b	14, 15, 16, 22	
		b: 1.07	17a, 17b, 18a	13, 14, 17, 22	15
19	170.8, C				
20	20.3, CH ₃	0.86, s		6, 7, 8, 9	4, 5, 8a, 9
21	182.0, C				
22	17.7, CH ₃	0.73, s		13, 14, 15, 18	16, 17a
23	28.4, CH	2.32	16, 24, 25	16, 17, 24, 25	8a
24	23.1, CH ₃	0.86, d (6.6)	23	16, 23, 25	16, 17b
25	15.2, CH ₃	0.79, d (6.6)	23	16, 23, 24	15, 17b

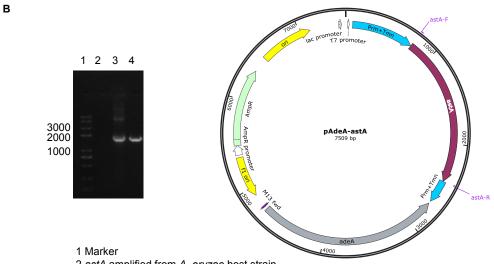
^a The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

.

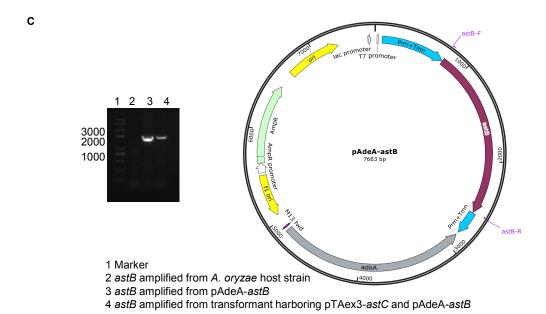
Table S5. NMR assignments for 4 (1 H for 600 MHz and 13 C for 150 MHz in CDCl₃)


No.	$\delta_{\rm C}$, type	δ_{H} (J in Hz) a	¹H–¹H COSY	НМВС	ROESY
1	42.9, CH ₂	a: 3.47, d (13.8)	1b	2, 3, 6, 10, 11, 12	12a
		b: 1.58, d (13.8)	1a	2, 3, 6, 10, 11, 21	6, 10, 12b
2	159.5, C				
3	127.8, C				
4	32.9, CH ₂	2.60	5	2, 3	20
5	26.1, CH ₂	2.00	4, 6	2, 3, 4, 6, 7	20
6	57.0, CH	2.29, br d (8.4)	5	1, 2, 3, 4, 5, 7, 8, 20	1b, 8b, 10
7	21.8, C				
8	26.6, CH ₂	a: 0.68, dd (7.8, 4.2)	8b, 9	6, 7, 9, 10, 20	23
		b: 0.39, t (4.2)	8a, 9	6, 7, 9, 10, 20	6, 10, 16
9	28.9, CH	0.15	8a, 8b, 10	6, 8, 15, 20	15, 20, 21a, 21b, 23
10	47.8, CH	1.40, t (10.8)	9, 15	1, 8, 9, 11, 12, 14, 15, 16, 21	1b, 6, 8b, 16, 22
11	44.6, C				
12	29.3, CH ₂	a: 2.17, br dd (13.2, 3.6)	12b, 13a, 13b	10, 11, 13, 14, 21	1a
		b: 1.20	12a, 13a, 13b	10, 11, 13, 14, 21	1b
13	28.1, CH ₂	a: 1.73	12a, 12b, 13b	11, 12, 14, 15, 18, 22	21a
		b: 1.20	12a, 12b, 13a	11, 12, 14, 15, 22	18
14	47.4, C				
15	45.7, CH	1.64, t (10.8)	10, 16	9, 10, 16, 22, 23	9, 21a, 21b, 25
16	45.7, CH	1.77	15, 17a, 17b, 23	17, 23, 24, 25	8b, 10, 22, 24
17	32.1, CH ₂	a: 2.04	16, 17b, 18	15, 16, 23	22
		b: 1.36, br dd (15.0, 4.8)	16, 17a, 18	14, 15, 16, 18, 23	24, 25
18	78.0, CH	3.66, br d (6.0)	17a, 17b	15, 16, 22	13b, 22
19	170.1, C				
20	$20.7, CH_3$	-		6, 7, 8, 9	4, 5, 9, 21b
21	60.9, CH ₂	a: 3.68, d (12.0)	21b	1, 11, 12	9, 13a, 15
		b: 3.59, d (12.0)	21a	1, 11, 12	9, 15, 20
22	17.7, CH ₃			13, 14, 15, 18	10, 16, 17a, 18
23	27.6, CH	2.32	16, 24, 25	15, 16, 17, 24, 25	8a, 9
24		0.82, d (6.6)	23	16, 23, 25	16, 17b
25	15.6, CH ₃	0.80, d (6.6)	23	16, 23, 24	15, 17b

^a The indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.


Table S6. The Boltzmann distribution for two possible structures (A and B) of 4

	A	В		
Conformers	Contribution (%)	Conformers	Contribution (%)	
1	23.44	1	23.31	
2	23.38	2	19.11	
3	9.86	3	11.51	
4	8.69	4	8.63	
5	7.87	5	7.75	
6	7.50	6	7.49	
7	6.04	7	7.49	
8	5.52	8	6.06	
9	3.26	9	4.94	
10	3.06	10	1.33	
11	1.37	11	1.33	
		12	1.05	


Supplementary Figures

- 1 Marker
- 2 astC amplified from A. oryzae host strain
- 3 astC amplified from pTAex3-astC 4 astC amplified from transformant harboring pTAex3-astC

- 2 astA amplified from A. oryzae host strain
- 3 astA amplified from pAdeA-astA
- 4 astA amplified from transformant harboring pTAex3-astC and pAdeA-astA

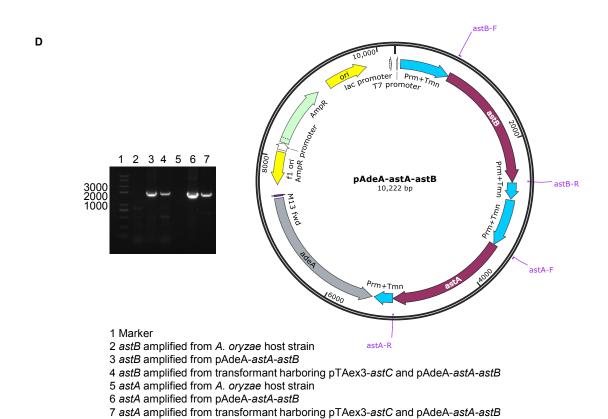


Fig. S1. PCR analysis for confirmation of the transformants

(A) PCR verification of introduction of pTAex3-astC into the A. oryzae host strain (left) and the pTAex3-astC map (right); (B) PCR verification of introduction of pAdeA-astA into the transformant harboring pTAex3-astC (left) and the pAdeA-astA map (right); (C) PCR verification of introduction of pAdeA-astB into the transformant harboring pTAex3-astC (left)

and the pAdeA-astB map (right); (D) PCR verification of introduction of pAdeA-astA-astB into the transformant harboring pTAex3-astC (left) and the pAdeA-astA-astB map (right).

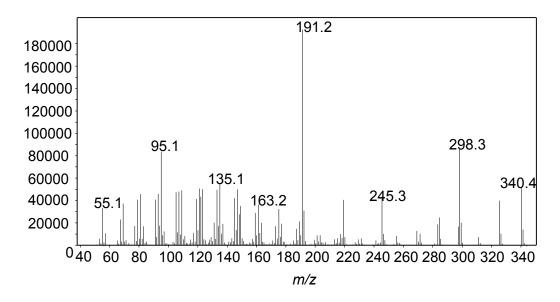


Fig. S2. Electron impact mass spectrum of 1

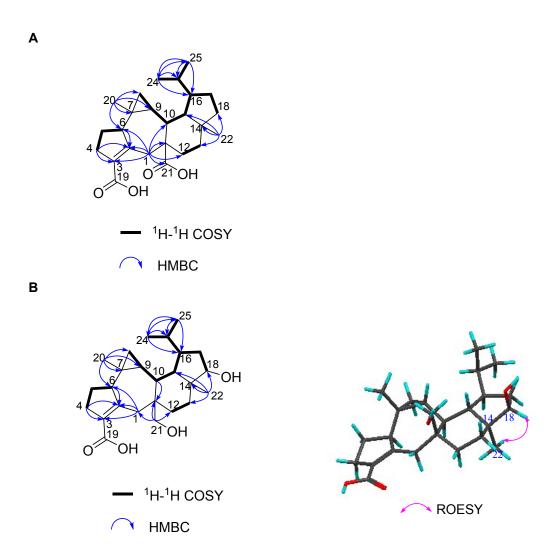


Fig. S3. Key ¹H-¹H COSY, HMBC and ROESY correlations for 3 (A) and 4 (B)

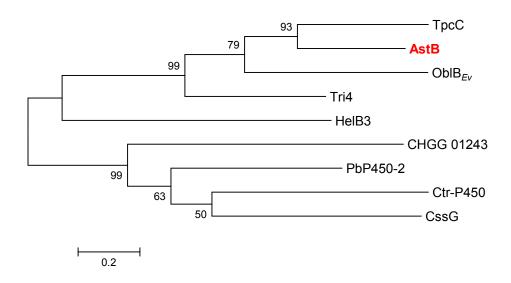


Fig. S4. Phylogenetic analysis of the multifunctional P450s in fungi

The phylogenetic tree was constructed using MEGA 6.0. The sequence data of these proteins can be retrieved according to the Genbank accession TpcC (EMD93706.1), $^{[8]}$ OblB_{Ev} (BAX09283.1), $^{[9]}$ Tri4 (BAF36546.1), $^{[10]}$ HelB3 (XP_751352.2), $^{[11]}$ CHGG 01243 (XP_001220464.1), $^{[12]}$ PbP450-2 (Q6F5E2.1), $^{[13]}$ Ctr-P450 (BAW27598.1), $^{[14]}$ and CssG (XP_001270548.1). $^{[15]}$

Fig. S5. Representatives of multiple oxidation reactions catalyzed by P450s in fungi

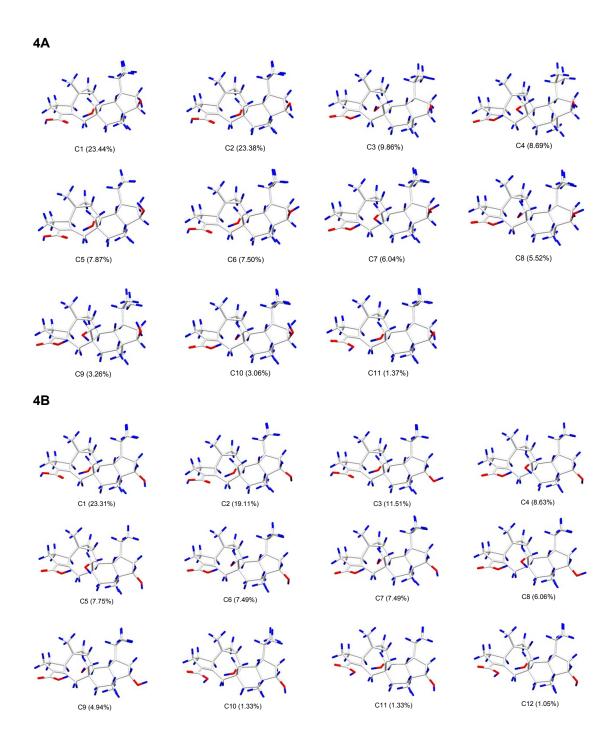


Fig. S6. Most stable conformers of 4A and 4B

(6S*, 7R*, 9R*, 10S*, 11S*, 14S*, 15S*, 16R*, 18R*)-4A and (6S*, 7R*, 9R*, 10S*, 11S*, 14S*, 15S*, 16R*, 18S*)-4B (the relative populations are in parentheses)

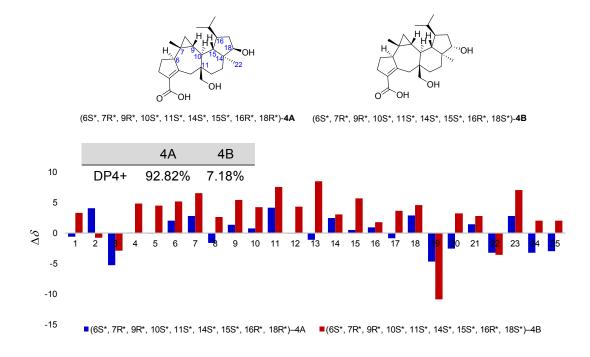


Fig. S7. Differences between NMR chemical shifts of 4 and theoretical ¹³C NMR chemical shifts for 4A and 4B

DP4+ denotes the probability analysis of **4A** and **4B**.

Fig. S8. Homologues of the astABC cassette discovered in NCBI database.

The amino acid sequence similarities between AstA and its homologues, AstB and its homologues, and AstC and its homologues are all above 70%. BHQ10_006895(1) and BHQ10_006895(2), and TCE0_015r02743(1) and TCE0_015r02743(2) are manually revised in this work.

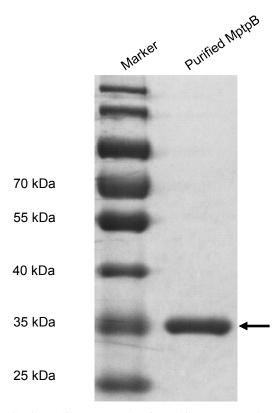


Fig. S9. SDS-PAGE analysis of purified recombinant MptpB

Α	Compound	MptpB inhibition (%)
	1	14.9
	2	96.6
	3	96.5
	4	36.0
	Sodium orthovanadate	94.9

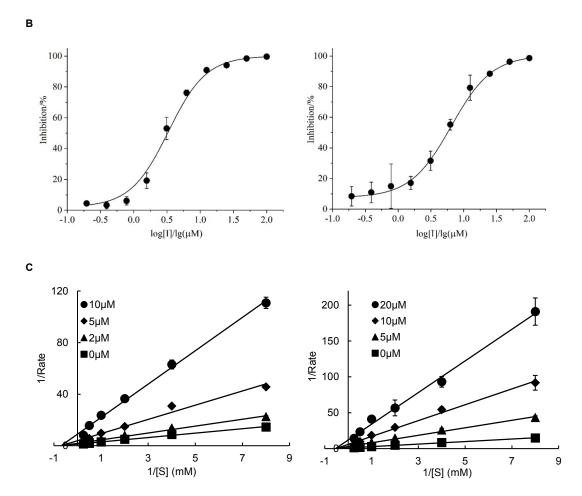


Fig. S10. Evaluation of the inhibitory activity against MptpB

(A) Percentage of inhibition at the concentration of 50 μ M; (B) IC₅₀ curves of **2** (left) and **3** (right); (C) Lineweaver-Burk plots for **2** (left) and **3** (right).

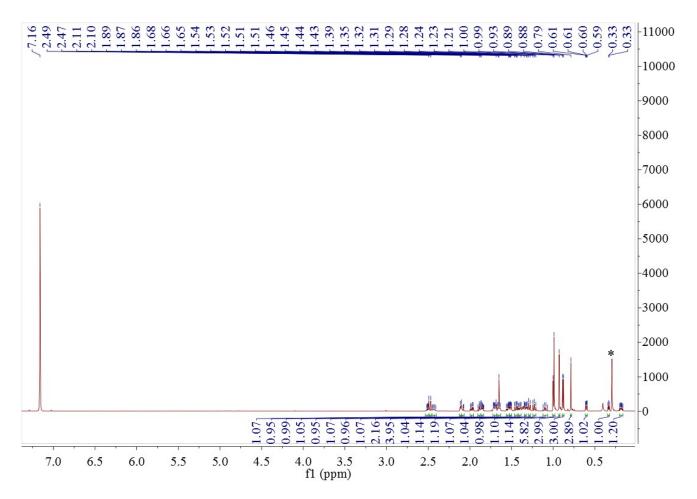


Fig. S11. ¹H NMR spectrum of 1 in C₆D₆ at 600 MHz

Asterisk indicates that the signal is from silicone grease.

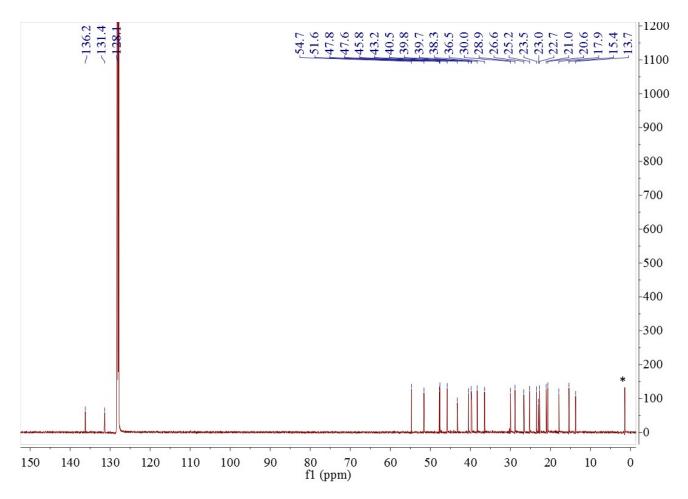


Fig. S12. ¹³C NMR spectrum of 1 in C₆D₆ at 150 MHz

Asterisk indicates that the signal is from silicone grease.

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 86 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-100 O: 0-200 5150-4 2018091051 342 (2.749) Cm (336:342) 1: TOF MS ES+ 2.52e+005 508.5827 100-369.2808 509.5844 387.2903 510.5826 592.6715 606.6378 634.5950 672.4967 341.2888 388.2948 534.5919 488.3613 439.3504 380 500 520 560 340 400 460 480 540 580 Minimum: -1.5Maximum: 5.0 10.0 50.0 Conf(%) Formula i-FIT Mass Calc. Mass mDa PPM DBE Norm 387. 2903 387. 2899 0.4 1.0 6.5 19.0 C25 H39 O3 n/a n/a

Fig. S13. HRESIMS spectrum of 2

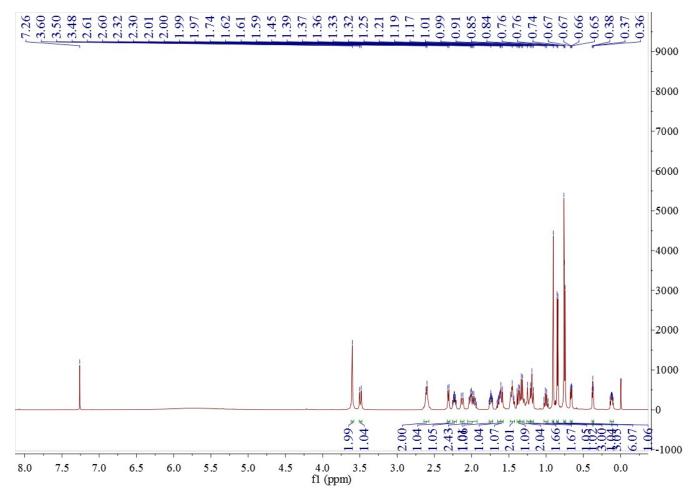


Fig. S14. ¹H NMR spectrum of 2 in CDCl₃ at 600 MHz

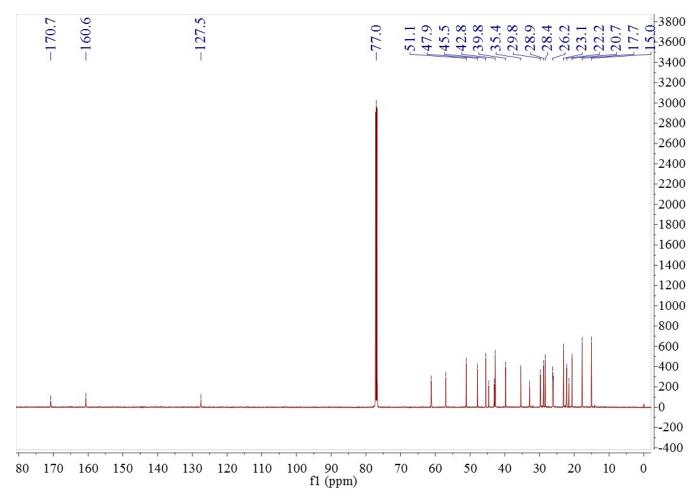


Fig. S15. ¹³C NMR spectrum of 2 in CDCl₃ at 150 MHz

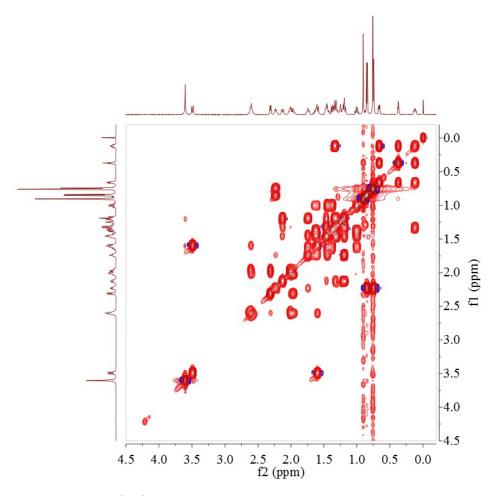


Fig. S16. ¹H-¹H COSY spectrum of 2 in CDCl₃ at 600 MHz

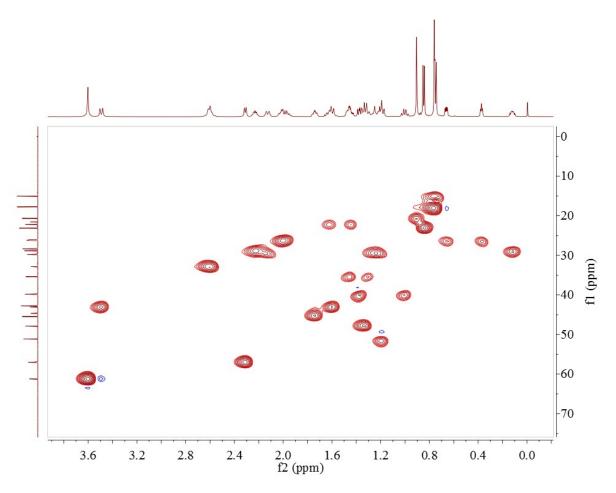


Fig. S17. HSQC spectrum of 2 in CDCl₃ at 600 MHz

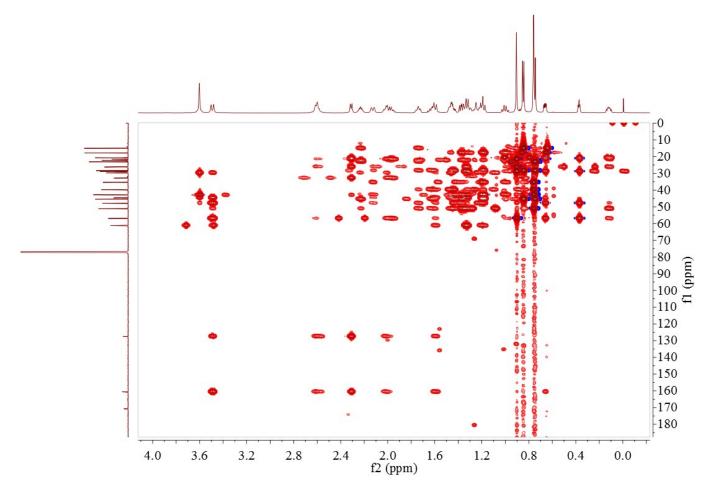


Fig. S18. HMBC spectrum of 2 in CDCl $_3$ at 600 MHz

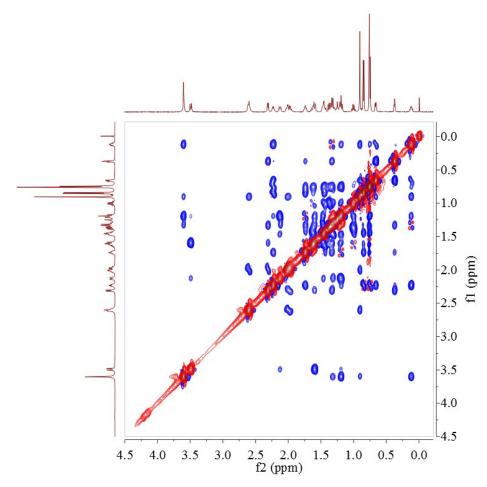


Fig. S19. ROESY spectrum of 2 in CDCl₃ at 600 MHz

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 260 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-100 O: 0-200 5150-3 2018091052 289 (2.330) Cm (287:299) 1: TOF MS ES+ 5.08e+006 355.2668 100-801.5319 356.2701 802.5355 337.2546 526,4345,570,4608,614,4864 1140.8168 1201.7949 803.5391 986.6045 177.1252 500 300 700 400 600 900 100 800 1300 200 1000 1100 1200 1400 1500 Minimum: -1.55.0 Maximum: 10.0 50.0 Calc. Mass mDa PPM DBE Mass i-FIT Norm Conf(%) Formula 801. 5319 801.5305 1.4 1.7 14.5 38.2 0.000 99.99 C50 H73 08 801.5364 -4.5-5.65. 5 47.5 9. 287 0. 01 C43 H77 013 801.5247 7.2 9.0 23.5 49.0 10.783 0.00 C57 H69 03

Fig. S20. HRESIMS spectrum of 3

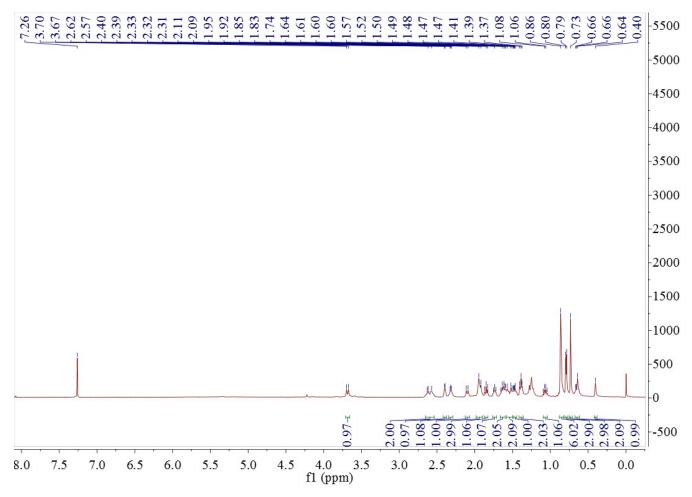


Fig. S21. ¹H NMR spectrum of 3 in CDCl₃ at 600 MHz

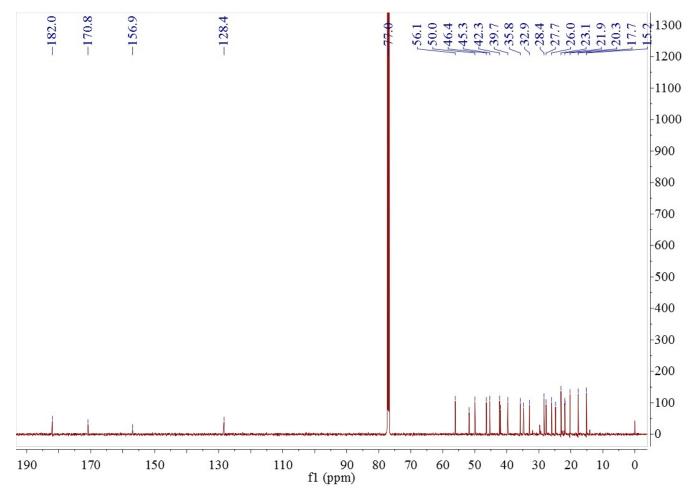


Fig. S22. ¹³C NMR spectrum of 3 in CDCl₃ at 150 MHz

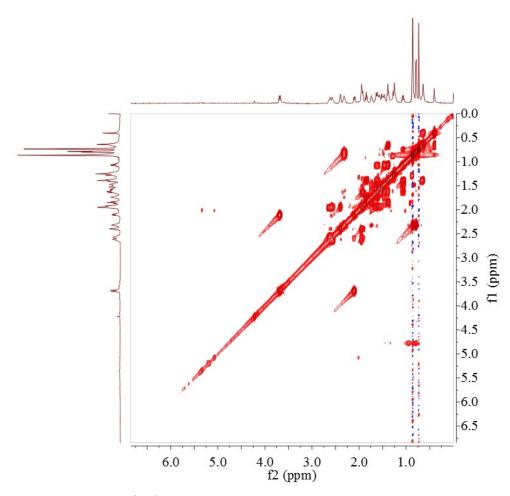


Fig. S23. ¹H-¹H COSY spectrum of 3 in CDCl₃ at 600 MHz

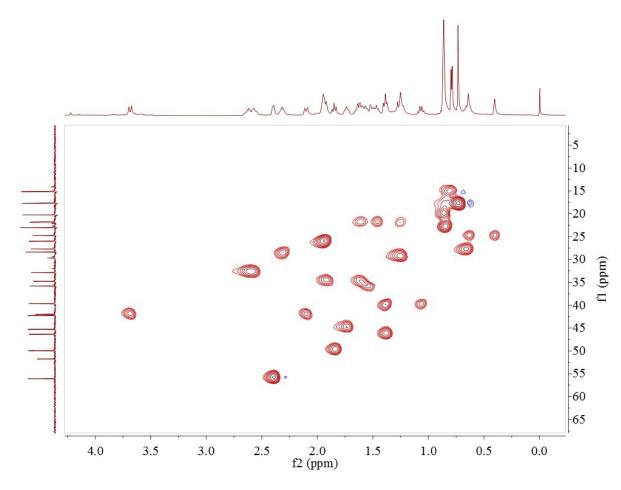


Fig. S24. HSQC spectrum of 3 in CDCl₃ at 600 MHz

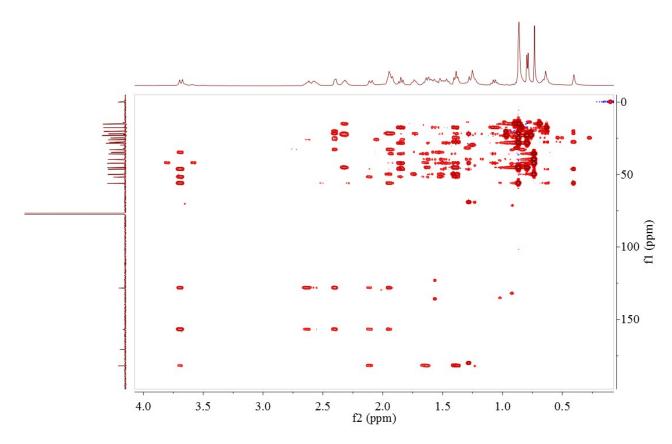


Fig. S25. HMBC spectrum of 3 in CDCl₃ at 600 MHz

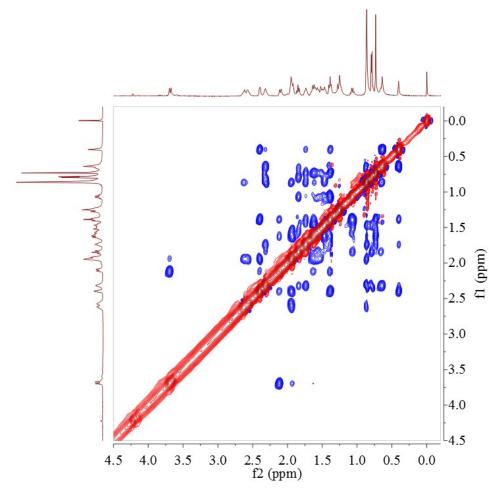


Fig. S26. ROESY spectrum of 3 in CDCl₃ at 600 MHz

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 92 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-200 O: 0-100 3651-2 2018052930 264 (2.132) 1: TOF MS ES+ 1.36e+006 805.5615 100-806.5656 807.5685 385.2738 149.1337 187.1483 404.2880 808.5708 905.6631 999.0579 355.2632 787.5524 601.8439 1141.5117 300 400 500 200 600 700 800 900 1000 1100 Minimum: -1.5Maximum: 5.0 10.0 50.0 Calc. Mass PPM Conf(%) Formula Mass mDa DBE i-FIT Norm

Fig. S27. HRESIMS spectrum of 4

n/a

C25 H39 04

-0.2

-0.1

403. 2848

403. 2847

6.5

234.4

n/a

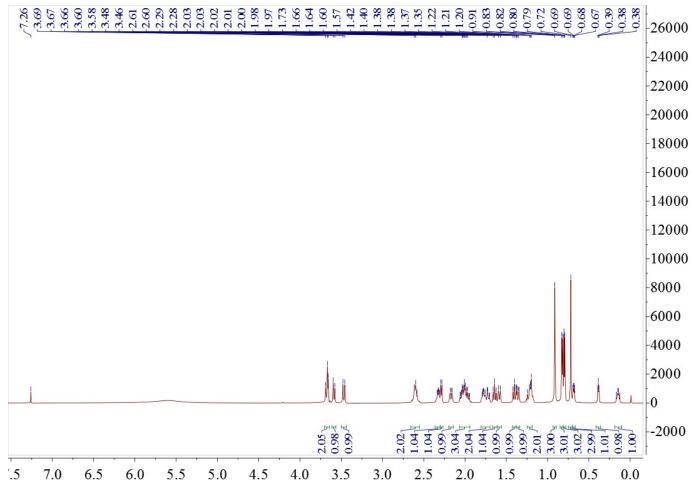


Fig. S28. ¹H NMR spectrum of 4 in CDCl₃ at 600 MHz

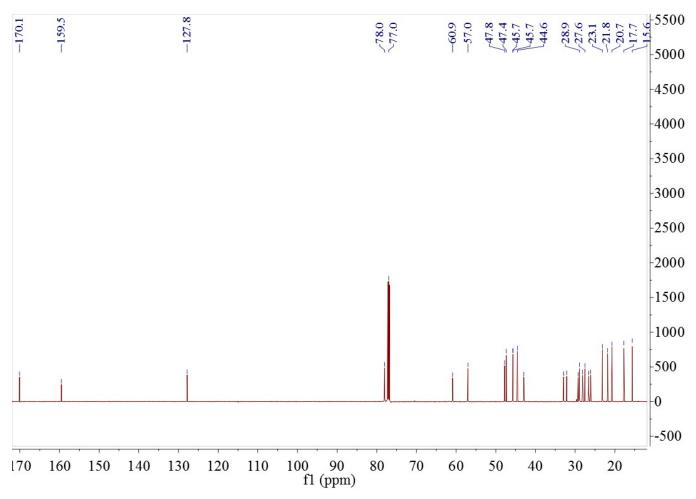


Fig. S29. ¹³C NMR spectrum of 4 in CDCl₃ at 150 MHz

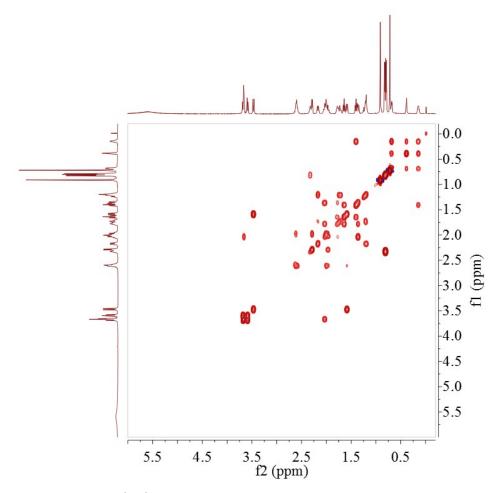


Fig. S30. ¹H-¹H COSY spectrum of 4 in CDCl₃ at 600 MHz

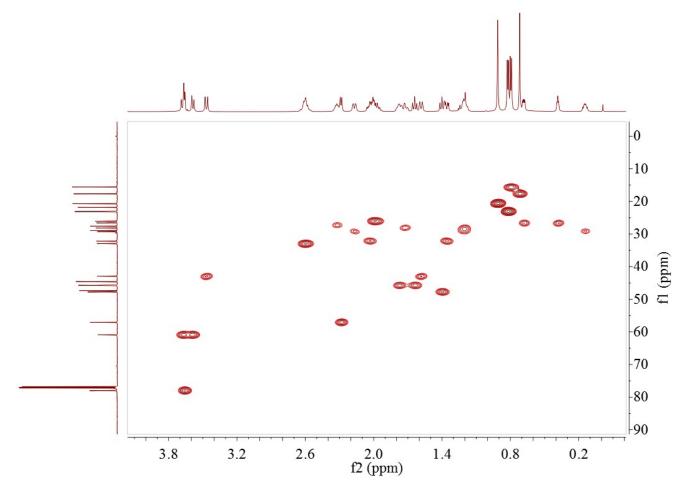


Fig. S31. HSQC spectrum of 4 in CDCl₃ at 600 MHz

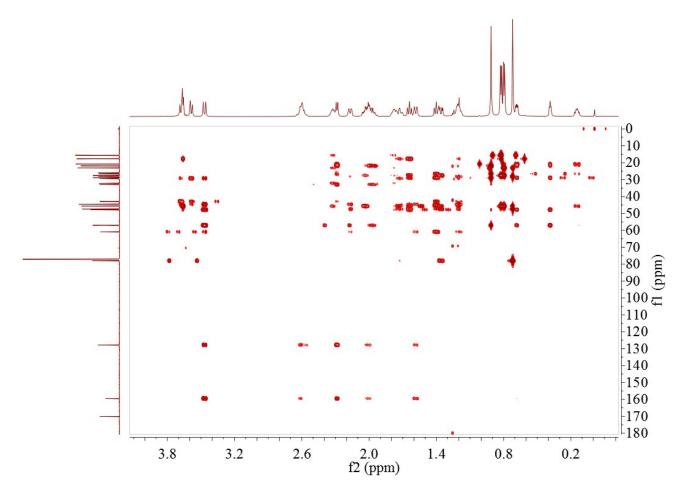


Fig. S32. HMBC spectrum of 4 in CDCl₃ at 600 MHz

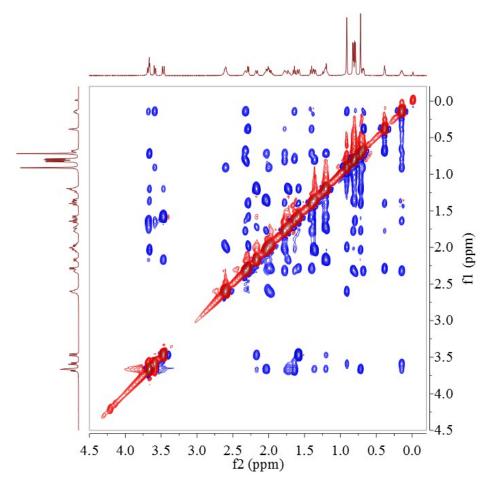


Fig. S33. ROESY spectrum of 4 in CDCl₃ at 600 MHz

Supplementary References

- [1] Jin, F. J.; Maruyama, J.; Juvvadi, P. R.; Arioka, M.; Kitamoto, K. *FEMS Microbiol Lett* **2004**, *239*, 79-85.
- [2] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C1; Gaussian, Inc., Wallingford CT, 2010.
- [3] Grimblat, N.; Zanardi, M. M.; Sarotti, A. M. J Org Chem 2013, 25, 243–249.
- [4] Mitsuhashi, T.; Rinkel, J.; Okada, M.; Abe, I.; Dickschat, J. S. *Chem Eur J* **2017**, *23*, 10053-10057.
- [5] Huang, X.; Huang, H.; Li, H.; Sun, X.; Huang, H.; Lu, Y.; Lin, Y.; Long, Y.; She, Z. *Org Lett* **2013**, *15*, 721-723.
- [6] Fujii, T.; Yamaoka, H.; Gomi, K.; Kitamoto, K.; Kumaga, C. *Biosci Biotechnol Biochem* **1995,** *59*, 1869–1874.
- [7] Jin F. J.; Maruyama, J.; Juvvadi, P. R.; Arioka, M.; Kitamoto, K. *Biosci Biotechnol Biochem* **2004**, *68*, 656-662.
- [8] Narita, K.; Minami, A.; Ozaki, T.; Liu, C.; Kodama, M.; Oikawa, H. *J Org Chem* **2018**, *83*, 7042-7048.
- [9] Narita, K.; Chiba, R.; Minami, A.; Kodama, M.; Fujii, I.; Gomi, K.; Oikawa, H. *Org Lett* **2016**, *18*, 1980-1983.
- [10] Tokai, T.; Koshino, H.; Takahashi-Ando, N.; Sato, M.; Fujimura, M.; Kimura, M. *Biochem Biophys Res Commun* **2007**, *353*, 412-417.

- [11] Lv, J. M.; Hu, D.; Gao, H.; Kushiro, T.; Awakawa, T.; Chen, G. D.; Wang, C. X.; Abe, I.; Yao, X. S. *Nat Commun* **2017**, *8*, 1644.
- [12] Ishiuchi, K.; Nakazawa, T.; Yagishita, F.; Mino, T.; Noguchi, H.; Hotta, K.; Watanabe, K. *J Am Chem Soc* **2013**, *135*, 7371-7377.
- [13] Fujii, R.; Minami, A.; Tsukagoshi, T.; Sato, N.; Sahara, T.; Ohgiya, S.; Gomi, K.; Oikawa, H. *Biosci Biotechnol Biochem* **2011**, *75*, 1813-1817.
- [14] Matsuda, Y.; Quan, Z.; Mitsuhashi, T.; Li, C.; Abe, I. Org Lett 2016, 18, 296-299.
- [15] Qiao, K.; Chooi, Y. H.; Tang, Y. Metab Eng 2011, 13, 723-732.