Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information 1

Pseudo five component reaction towards densely functionalized spiro[indole-3,2'-pyrrole] by picric acid, an efficient *syn*diastereoselective catalyst: An insight to the diastereoselection on $C(sp^3)$ - $C(sp^3)$ axial conformation

Ayon Sengupta, Suvendu Maity, Animesh Mondal, Prasanta Ghosh, Sonali Rudra^{*}, Chhanda Mukhopadhyay^{*}

Table of contents	Pages
Experimental Section	03-04
Spectroscopic and Analytical characterization of compounds (1a-1t)	05-21
Copy of ¹ H and ¹³ C NMR spectra of synthesized compounds (1a-1t)	22-45
Copy of ¹ H spectra of crude mixture of compounds in Table 2 (entries 2, 3,	46-47
13 & 20)	
Copy of HMBC, HSQC and NOE NMR of compound (1b, 1b' and	48-54
1c,Table2)	
Copy of ¹ H NMR and ¹³ C NMR spectra of Intermediate [A] for (1b, Table2)	55
Copy of LCMS-ESI of Intermediate[A], [B] and [C]ofcrude mixture for (1b,	56-57
Table2)	
Copy of ¹ H NMR, LCMS-ESI and HPLCof Crude product for (Scheme 2)	58-60
Density Functional Theory (DFT) Calculations of Optimized geometries of	61-74
(a) syn-60 (RSS), (b) syn-60' (SRS) and (c) syn-60" (SSS)	

Experimental Section

General information of materials and instruments:

All commercially available chemicals were purchased from Aldrich, USA or Spectrochem, India, and used without further purification. All solvents were used as received. All the reactions were performed in a round-bottomed flask with magnetic stir bar at 80 °C without taking precautions to exclude air and moisture. The progress of the reaction was checked by aluminum-backed plates pre-coated TLC with silica gel 60 (with F254 indicator, Merck) and visualized by UV irradiation. All compounds were purified by column chromatography using silica gel (100-200 mesh) and RediSep® normal-phase silica Flash columns in teledyne ISCO Combi Flash system.¹H / ¹³C NMR spectra were recorded in a 400 MHz Bruker instrument using CDCl₃ and DMSO-d₆ solvent with TMS as reference. ¹H NMR spectra were recorded on 400 MHz spectrometers with 13 C operating frequencies of 100 MHz. Chemical shifts (δ) are reported in ppm relative to the residual solvent CDCl₃ signal ($\delta = 7.24$ for 1H NMR and δ = 77.0 for ¹³C NMR), DMSO- d_6 signal (δ = 2.47 for ¹H NMR and δ = 39.4-40.6 for ¹³C NMR). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants and number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), bs (broad singlet). HRMS with an ESI resource were acquired using a Waters XEVO-G2S Q TOF mass spectrometer.LCMSwere acquired from the Applied Biosystem equipped with API 2000 Triple Quadrupole Mass spectrometer. HPLCwere recorded using Agilent 1200 Series autosampler HPLC system. Melting points were recorded with an open capillary on an electrical melting point apparatus and the single crystal structures of the synthesized compounds were confirmed by an X-ray crystallography experiment on a Bruker SMART diffractometer. All DFT calculations were done with the Gaussian 09Wprogram package supported by Gauss View 4.1.

General procedure for synthesis of spiro[indoline-3,4'-pyridine] derivatives *syn*-60 and *syn*-60' (1a-1t):

In a round bottom flask equipped with a condenser was taken a mixture of β -diketoester (1 mmol), amine (2 mmol) and isatin (2 mmol) in ethanol (15 mL) followed by addition of 10 mol% of Picric Acid (50% moist) (w/v). The reaction mixture was stirred at 80 °C for 16 h. The LCMS analysis of the reaction mixture showed the formation of desired products. After completion of the reaction, the mixture was cooled, concentrated and diluted with ethyl acetate and water. Then the organic portion was separated and aqueous portion was extracted with ethyl acetate for three times. The combined organic portion was washed with sat. NaHCO₃ solution, brine solution and dried over Na₂SO₄. The solvent was evaporated in a rotary evaporator to get crude residue which was purified by combi-flash column chromatography (silica gel) using 0-5% methanol in dichloromethane and 0-20% acetone in dichloromethane as eluent to afford the desired products. The obtained products were characterized by ¹H/¹³C NMR, melting point measurements and HRMS and LCMS analysis.

Spectroscopic and Analytical characterization of compounds (1a-1t'):

Tert-Butyl (3R,5'S)-2-oxo-5'-[(3S)-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-phenyl-4'-(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2, 1a): Yield 88% (516 mg); yellow solid; mp 210-213 °C; R_f = 0.42 [5% methanol/dichloromethane]. NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 9.98 (s, 2H, CONH₂), 9.58 (s, 1H, NH), 7.4-7.39 (m, 4H, ArH), 7.29-7.23 (m, 2H, ArH), 7.14-7.03 (m, 3H, ArH), 6.93-6.91 (m, 2H, ArH), 6.81-6.78 (m, 1H, ArH), 6.69-6.53 (m, 5 H, ArH), 6.36 (s, 1H, CH), 5.95 (bs, 1H, ArH), 3.17 (s, 1H, CH), 1.03 (s, 9 H, C(CH₃)₃); ¹³C NMR (400 MHz, DMSO-d₆) $\delta_{\rm C}$: 176.2, 175.1, 164.0, 155.2, 144.1, 144.0, 142.7, 139.0, 132.6, 129.4, 128.2, 127.9, 127.6, 125.2, 125.0, 124.3, 123.7, 123.1, 122.7, 121.9, 121.1, 120.7, 109.1, 109.0, 103.0, 79.5, 76.6, 63.5, 47.7, 27.3; LCMS (ESI) calcd for C₃₆H₃₂N₄O₄: 585.25 (M+H)⁺; found: 585.40.

Ethyl (3R,5'S)-2-oxo-5'-[(3S)-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-phenyl-4'-(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2, 1b): Yield 58% (320 mg); off white solid; mp 214-217 °C; $R_f = 0.45[5\%$

methanol/dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 10.0 (d, *J*=10.9Hz, 2H, CONH₂), 9.55 (s, 1H, NH), 7.42 (d, *J*=4.2 Hz, 4H, ArH), 7.31-7.24 (m, 2H, ArH), 7.18-7.16 (m, 1H, ArH), 7.07-7.02 (m, 2H, ArH), 6.96-6.92 (m, 2H, ArH), 6.82-6.7(m, 2H, ArH), 6.63-6.56 (m, 4H, ArH), 6.39 (s, 1H, CH), 5.91 (bs, 1H, ArH), 3.81-3.76 (m, 2H, CH₂), 3.18 (s, 1H, CH), 0.735 (t, *J*=7.08 Hz, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d6) $\delta_{\rm C}$: 176.3, 175.1, 163.9, 155.7, 144.3, 144.1, 142.6, 139.0, 132.4, 129.5, 129.57, 128.4, 128.1, 127.6, 125.2, 125.1, 124.7, 123.8, 122.8, 122.7, 122.4, 121.2, 120.9, 109.1, 108.9, 101.6, 76.7, 63.6, 58.9, 47.8, 13.2; LCMS (ESI) calcd for C₃₄H₂₈N₄O₄: 557.22 (M+H)⁺; found: 557.20.

Ethyl(3S,5'R)-2-oxo-5'-[(3S)-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-phenyl-4'-

(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate:(Table 2, 1b'): Yield 32% (180 mg); yellowish solid; mp 235-238 °C; $R_f = 0.55[3 \%$ methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 10.3 (bs, 1H, CONH₂), 10.03 (s, 1H, CONH₂), 9.38 (s, 1H, NH), 7.57 (d, *J*=7.2 Hz, 1H, ArH), 7.34-7.30 (m, 2H, ArH), 7.25-7.15 (m, 4H, ArH), 7.07-6.99 (m, 3H, ArH), 6.93 (m, 1H, ArH), 6.82-6.69 (m, 6H, ArH), 6.62-6.59 (m, 1H, ArH), 6.41 (d, *J*=7.6Hz, 1H, ArH), 6.31(s, 1H, CH), 3.87-3.74 (m, 2H, CH₂), 3.53 (s, 1H, CH), 0.73 (t, *J*=7.1 Hz, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) $\delta_{\rm C}$: 176.5, 174.7, 164.1, 156.1, 144.1, 142.7, 142.6, 138.1, 132.3, 129.1, 128.7, 127.8, 127.4, 126.1, 124.8, 124.2, 123.5, 122.5, 121.7, 120.5, 109.3, 108.8, 99.9, 99.8, 75.5, 63.3, 58.8, 48.4, 13;LCMS (ESI) calcd for C₃₄H₂₈N₄O₄: 557.22 (M+H)⁺; found: 557.40.

Benzyl (3R,5'S)-2-oxo-5'-[(3S)-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-phenyl-4'-(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2, 1c): Yield 67% (414 mg); yellowish solid; mp 222-226 °C; $R_f = 0.45$ [5 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 9.97 (d, *J*=3.3 Hz, 2H, CONH₂), 9.70 (s, 1H, NH), 7.46-7.41 (m, 4H, ArH), 7.30-7.25 (m, 2H, ArH), 7.21-7.14 (m, 4H, ArH), 7.07-7.01 (m, 2H, ArH), 6.95-6.91 (m, 2H, ArH), 6.83-6.80 (m, 1H, ArH), 6.75-6.58 (m, 6H, ArH), 6.46 (d, *J*= 7.6 Hz, 1H, ArH), 6.38 (d, *J*=1.7Hz, 1H, CH,), 5.90 (d, *J*=5.6Hz, 1H, ArH), 4.98 (d, *J*=13.3 Hz, 1H, CH₂), 4.80 (d, *J*=13.2Hz, 1H, CH₂), 3.11 (s, 1H, CH); ¹³C NMR (400 MHz, DMSO-d₆) $\delta_{\rm C}$: 176.2, 175.0, 163.9, 157.1, 144.2, 144.1, 142.5, 138.8, 135.9, 132.3, 129.6, 128.5, 128.1, 127.9, 127.6, 127.2, 126.6, 126.5, 125.2, 125.1, 125.0, 124.0, 123.7, 123.2, 122.6, 121.3, 120.8, 109.3, 109.1, 100.6, 76.6, 64.4, 63.7, 47.7;LCMS (ESI) calcd for C₃₉H₃₀N₄O₄: 619.23 (M+H)⁺; found: 619.20.

Benzyl (3S,5'R)-2-oxo-5'-[(3S)-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-phenyl-4'-(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2,

1c'): Yield 21% (141 mg); yellow solid; mp 240-243 °C ; $R_f = 0.58$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 10.19 (bs, 1H, CONH₂), 10.06 (s, 1H, CONH₂), 9.54 (s, 1H, NH), 7.60 (d, *J*=7.2Hz, 1H, ArH), 7.37-7.33 (m, 2H, ArH), 7.24-7.16 (m, 8H, ArH), 7.03 (t, *J*=7.5 Hz, 1H, ArH), 6.89-6.76 (m, 5H, ArH), 6.66-6.58 (m, 5H, ArH), 6.38-6.39 (m, 1H, ArH& CH), 5.02 (d, *J*=13.1Hz, 1H, CH₂), 4.80 (d, *J*= 13.1 Hz, 1H, CH₂), 3.45 (s, 1H, CH); ¹³C NMR (400 MHz, DMSO-d₆) $\delta_{\rm C}$: 176.5, 174.7, 164.1, 157.2, 144.0, 142.6, 138.1, 136.0, 132.4, 129.2, 128.8, 128.0, 127.7, 127.4, 127.3, 126.7, 126.1, 125.0, 124.6, 123.6, 122.7, 121.8, 120.5, 109.6, 108.7, 99.0, 75.5, 64.4, 63.3, 48.4; LCMS (ESI) calcd for C₃₉H₃₀N₄O₄: 619.23 (M+H)⁺; found: 619.50.

Benzyl (3R,5'S)-1'-(4-methylphenyl)-4'-[(4-methylphenyl)amino]-2-oxo-5'-[(3S)-2-oxo-2,3-dihydro-1H-indol-3-yl]-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2, 1d): Yield 78% (502 mg); yellowish solid; mp 230-235 °C; $R_f = 0.44$ [5 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 9.95 (s, 1H, CONH₂), 9.85 (s, 1H, CONH₂), 9.66 (s, 1H, NH), 7.36-7.23 (m, 5H, ArH), 7.19-7.15 (m, 3H, ArH), 6.72-6.6 (m, 5H, ArH), 6.47-6.41 (m, 3H, ArH), 6.27 (bs, 1H, CH), 5.87 (bs, 1H, ArH), 4.99 (d, J=12.8 Hz, 1H, CH₂), 4.78 (d, J=13.2 Hz, 1H, CH₂), 3.06 (s, 1 H, CH), 2.30 (s, 3H, CH₃), 2.10 (s, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) δ_{C} : 176.4, 174.9, 164.0, 157.8, 144.1, 142.5, 141.2, 136.0, 135.9, 134.4, 132.4, 130.0, 128.2, 128.0, 127.9, 127.8, 127.1, 126.6, 126.5, 126.4, 125.2, 124.9, 124.7, 123.9, 122.8, 121.1, 120.7, 109.1, 109.0, 76.5, 64.2, 63.9, 47.6, 20.3, 20.2;LCMS (ESI) calcd for C₄₁H₃₄N₄O₄: 647.27 (M+H)⁺; found: 647.40.

Ethyl (3R,5'S)-1'-(4-methoxyphenyl)-4'-[(4-methoxyphenyl)amino]-2-oxo-5'-[(3S)-2-oxo-2,3-dihydro-1H-indol-3-yl]-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2, 1e): Yield 75% (464 mg); off white solid; mp 219-221 °C; R_f = 0.42 [5 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 9.92 (s, 1H, CONH₂), 9.81 (s, 1H, CONH₂), 9.43 (s, 1H, NH), 7.39-7.37 (m, 2H, ArH), 7.31-7.26 (m, 2H, ArH), 7.10-7.06 (m, 1H, ArH), 7.01-6.97 (m, 2H, ArH), 6.71-6.69 (m, 1H, ArH), 6.59-6.55 (m, 1H, ArH), 6.52-6.46 (m, 5H, ArH), 6.09 (s, 1H, CH), 5.87 (bs, 1H, ArH), 3.80-3.73 (m, 5H, CH₃& OCH₂), 3.59 (s, 3 H, CH₃), 2.99 (s, 1H, CH), 0.71 (t, *J*=7.1 Hz, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) $\delta_{\rm C}$: 177.02, 175.1, 164.2, 157.6, 156.8, 155.8, 144.2, 142.6, 136.5, 132.6, 131.5, 128.2, 127.9, 125.4, 125.0, 124.9, 123.7, 121.0, 120.8, 114.7, 112.6, 125.2, 124.9, 124.7, 123.9, 122.8, 109.0, 108.6, 99.7, 76.8, 64.8, 58.6, 55.2, 54.7, 47.5, 13.2;LCMS (ESI) calcd for C₃₆H₃₂N₄O₆: 617.24 (M+H)⁺; found: 617.10.

Ethyl (3R,5'S)-1'-(4-fluorophenyl)-4'-[(4-fluorophenyl)amino]-2-oxo-5'-[(3S)-2-oxo-2,3dihydro-1H-indol-3-yl]-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-

carboxylate:(**Table 2, 1f**): Yield 65% (385 mg); off white solid; mp220-225 °C; $R_f = 0.48$ [5 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 9.97 (d, J= 21.3 Hz, 2H, CONH₂), 9.49 (s, 1H, NH), 7.49-7.28 (m, 6H, ArH), 7.09-7.01 (m, 2H, ArH), 6.78-6.70 (m, 3H, ArH), 6.61-6.51 (m, 4H, ArH), 6.2 (s, 1H, CH), 5.8 (bs, 1H, ArH), 3.76 (q, J=6.6 Hz, 2H, CH₂), 3.06 (s, 1H, CH), 0.72 (t, J=6.5 Hz, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) $\delta_{\rm C}$: 176.4, 175.0, 163.8, 160.5, 159.8, 158.1, 157.4, 156.1, 144.1, 142.6, 140.23, 140.21, 135.43, 135.41, 132.2, 128.5, 128.1, 125.2, 124.8, 123.7, 121.2, 120.9, 114.2, 114.0, 109.1, 108.9, 101.0, 76.9, 64.5, 58.8, 47.7, 14.0, 13.2; LCMS (ESI) calcd C₃₄H₂₆F₂N₄O₄: 593.20 (M+H)⁺; found: 593.20.

Benzyl (3R,5'S)-5-methyl-5'-[(3S)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1'phenyl-4'-(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-

carboxylate:(**Table 2, 1g**): Yield 74% (478 mg); off white solid; mp 210-215 °C; $R_f = 0.44$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 9.92 (d, *J*=15.3 Hz, 2H, CONH₂), 9.68 (s, 1H, NH), 7.44-7.43 (m, 4H, ArH), 7.2-7.16 (m, 4H, ArH), 7.08-7.09 (m, 2H, ArH), 6.92-6.85 (m, 3H, ArH), 6.77-6.71(m, 3H, ArH), 6.62-6.58 (m, 3H, CH), 6.42-6.37(m, ArH&CH), 5.55 (bs, 1H, ArH), 5.09 (d, *J*=13.2 Hz, 1H, CH₂), 4.72 (d, *J*=13.2 Hz, 1H, CH₂), 3.08 (s, 1H, CH), 2.21 (s, 3H, CH₃), 2.07 (s, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) δ_{C} : 176.1, 175.1, 163.7, 156.5, 144.4, 141.8, 140.0, 138.9, 136.2, 132.6, 130.0, 129.5, 128.6, 128.5, 127.9, 127.8, 127.5, 127.1, 126.4, 126.1, 125.2, 124.8, 124.5, 122.68,

122.62, 122.5, 108.7, 101.1, 76.7, 64.1, 63.4, 47.8, 20.6, 20.2;LCMS (ESI) calcd for $C_{41}H_{34}N_4O_4$: 647.27 (M+H)⁺; found: 647.20.

Tert-Butyl (3R,5'S)-5-methyl-5'-[(3S)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1'-phenyl-4'-(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-

carboxylate: (**Table 2, 1h**): Yield 91% (558 mg); yellow solid; mp: 210-215 °C; $R_f = 0.48$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 9.93 (s, 2H, CONH₂), 9.62 (s, 1H, NH), 7.41 (m, 4H, ArH), 7.17-7.07 (m, 3H, ArH), 6.92-6.87 (m, 3H, ArH), 6.77-6.75 (m, 1H, ArH), 6.61-6.60 (m, 3H, ArH), 6.46-6.44 (m, 1H, ArH), 6.36 (s, 1H, CH), 5.57 (bs, 1H, ArH), 3.14 (s, 1H, CH), 2.31(s, 3H, CH₃), 2.08 (s, 3H, CH₃), 1.03 (s, 9H, C(CH₃)₃); ¹³C NMR (400 MHz, DMSO-d₆) δ_{C} : 176.0, 175.2, 164.1, 154.9, 144.6, 141.9, 140.2, 139.1, 132.9, 129.8, 129.54, 129.5, 128.51, 128.29, 127.6, 126.3, 125.2, 124.3, 124.2, 122.3, 122.1, 122.0, 108.9, 108.7, 103.2, 79.5, 76.9, 63.3, 48.0, 30.9, 30.6, 27.3, 22.07, 20.7, 20.1, 13.9; HRMS (ESI) m/z: [M+Na]⁺Calcd. for C₃₈H₃₆N₄O₄Na: 635.2634; Found: 635.2652.

Ethyl (3R,5'S)-5-methyl-5'-[(3S)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1'phenyl-4'-(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate:

(**Table 2, 1i**): Yield 78% (456 mg); yellow solid; mp: 200-210 °C; $R_f = 0.45$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 9.95 (d, *J*=12.8 Hz, 2H, CONH₂), 9.52 (s, 1H, NH), 7.41 (m, 4H, ArH), 7.18-7.08 (m, 3H, ArH), 6.92-6.86 (m, 3H, ArH), 6.77-6.74 (m, 1H, ArH), 6.61-6.41(m, 4H, ArH), 6.35 (s, 1H, CH), 5.65 (bs, 1H, ArH), 3.82-3.75 (m, 2H, CH₂), 3.17 (s, 1H, CH), 2.31(s, 3H, CH₃), 2.05 (s, 3H, CH₃), 0.74 (t, *J*=6.8 Hz, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) $\delta_{\rm C}$: 176.2, 175.2, 163.8, 155.2, 144.6, 141.8, 140.1, 139.2, 132.7, 129.8, 129.57, 129.53, 128.57, 128.53, 127.6, 126.2, 125.2, 124.6, 124.3, 122.3, 122.1, 108.7, 108.6, 76.9, 63.4, 58.8, 47.8, 20.8, 20.2, 13.2; HRMS (ESI) *m/z*: [M+Na]⁺Calcd. for C₃₆H₃₂N₄O₆Na: 607.2321; Found: 607.2351.

Prop-2-en-1-yl (**3R**,**5'S**)-**5-methyl-5'-[(3S)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1'-phenyl-4'-(phenylamino)-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate:(Table 2, 1j)**: Yield 68% (402 mg); yellowish solid; mp 200-210 °C; $R_f = 0.47$ [5% acetone / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 9.92 (d, J= 9.8 Hz, 2H, CONH₂), 9.59 (s, 1H, NH), 7.46-7.42 (m, 4H, ArH), 7.22-7.09 (m, 3H, ArH), 6.94-6.75 (m, 4H, ArH), 6.62-6.57 (m, 3H, ArH), 6.44 (d, J=7.8 Hz, 1H, ArH), 6.35 (bs, 1H, ArH), 5.65 (bs, 1H, ArH), 5.54-5.46 (m, 1 H, CH-allyl), 4.93-4.90 (m, 1H, CH₂), 4.79-4.75 (m, 1H, CH₂-allyl), 4.32-4.38 (m, 1H, CH-allyl), 4.29-4.24 (m, 1H, CH-allyl), 3.14 (s, 1H, CH), 2.31 (s, 3H, CH₃), 2.04 (s, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) $\delta_{\rm C}$: 176.1, 175.1, 163.3, 155.9, 144.4, 141.8, 140.0, 139.0, 132.5, 132.2, 129.8, 129.5, 128.5, 128.4, 127.5, 126.1, 125.2, 124.7, 124.4, 122.6, 122.5, 122.4, 115.72, 115.7, 108.7, 101.4, 76.8, 63.5, 63.0, 47.8, 20.7, 20.19;LCMS (ESI) calcd for C₃₇H₃₂N₄O₄: 597.25 (M+H)⁺; found: 597.20.

Ethyl (3R,5'S)-5-methyl-5'-[(3S)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-(3methylphenyl)-4'-[(3-methylphenyl)amino]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'pyrrole]-3'-carboxylate: (Table 2, 1k): Yield 80% (486 mg); yellowish solid; mp: 215-220 °C; $R_f = 0.48$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 10.0 (s, 1H, CONH₂), 9.96 (s, 1H, CONH₂), 9.42 (s, 1H, NH), 7.32-7.05 (m, 5H, ArH), 6.98-6.76 (m, 3H, ArH), 6.6-6.46 (m, 4H, ArH), 6.32-6.31(m, 2H, ArH& CH), 5.72 (bs, 1H, ArH), 3.85-3.73 (m, 2H, CH₂), 3.32 (s, 1H, CH), 2.32-2.27 (m, 6H, CH₃), 2.08-2.02 (m, 6H, CH₃), 0.75 (t, *J*= 7.0 Hz, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) δ_{C} : 176.3, 175.3, 163.8, 155.2, 144.4, 141.6, 140.1, 139.04, 139.0, 136.5, 132.6, , 129.8, 129.4, 129.2, 128.6, 128.4, 127.5, 126.0, 125.3, 124.5, 122.8, 122.3, 119.2, 117.7, 108.7, 108.6, 102.1, 76.6, 63.0, 58.8, 47.8, 21.2, 20.9, 20.8, 20.3, 13.2;LCMS (ESI) calcd for C₃₈H₃₆N₄O₄: 613.28 (M+H)⁺; found: 613.20.

Ethyl (3R,5'S)-1'-(4-methoxyphenyl)-4'-[(4-methoxyphenyl)amino]-5-methyl-5'-[(3S)-5-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2, 1l): Yield 83% (532 mg); off white solid; mp 210-215 °C; $R_f = 0.55$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 9.83 (s,

1H, CONH₂), 9.71 (s, 1H, CONH₂), 9.40 (s, 1H, NH), 7.37 (d, J=8.4 Hz, 2H, ArH), 7.11 (bs, 2H, ArH), 7.0 (d, J=8.6 Hz, 2H, ArH), 6.8 (d, J=7.5Hz, 1H, ArH), 6.61 (d, J= 8.0 Hz, 1H, ArH), 6.48 (s, 4H, ArH), 6.36 (d, J=7.7 Hz, 1H, ArH), 6.08 (s, 1H, CH), 5.66 (bs, 1H, ArH), 3.85-3.81 (m, 2H, CH₂), 3.76 (s, 3H, CH₃), 3.58 (s, 3H, CH₃), 2.98 (s, 1H, CH), 2.35 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 0.73 (t, J= 7.0 Hz, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) δ_{C} : 176.9, 175.2, 164.2, 157.2, 156.8, 155.6, 141.8, 140.1, 136.8, 132.9, 131.7, 129.6, 129.4, 128.3, 126.6, 126.1, 125.6, 125.1, 124.9, 124.3, 124.1, 114.8, 114.7, 112.6, 108.6, 108.3, 100.1, 76.9, 64.7, 58.6, 55.2, 54.7, 47.7, 20.9, 20.2, 13.3; LCMS (ESI) calcd for C₃₈H₃₆N₄O₆: 645.27 (M+H)⁺; found: 645.50.

Ethyl (3R,5'S)-1'-(3-bromophenyl)-4'-[(3-bromophenyl)amino]-5-methyl-5'-[(3S)-5methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'pyrrole]-3'-carboxylate: (Table 2, 1m): Yield 55% (408 mg); yellowish solid; mp 228-231 °C; $R_f = 0.42$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 10.29 (s, 1H, CONH₂), 10.04 (s, 1H, CONH₂), 9.37 (s, 1H, NH), 7.40 (bs, 1H, ArH), 7.30-7.27 (m, 4H, ArH), 7.12-6.92 (m, 4H, ArH), 6.75-6.54 (m, 4H, ArH), 6.48 (bs, 1H, ArH), 6.36-6.24 (m, 2H, CH &ArH), 3.84-3.78 (m, 2H, CH₂), 3.55 (s, 1H, CH), 2.28 (s, 3H, CH₃), 2.06 (s, 3H,CH₃), 0.80 (t, J= 6.9 Hz, 1H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) δ_{C} : 175.8, 174.6, 154.4, 145.8, 140.2, 131.9, 130.8, 130.5, 129.5, 129.2, 127.7, 127.0, 126.1, 125.0, 124.7, 124.6, 123.2, 121.8, 121.2, 120.9, 109.2, 108.5, 101.2, 75.8, 63.3, 59.0, 48.4, 20.9, 20.7, 13.2;LCMS (ESI) calcd for C₃₆H₃₀Br₂N₄O₄: 743.07 (M+H)⁺; found: 743.10.

Ethyl (3S,5'R)-1'-(3-bromophenyl)-4'-[(3-bromophenyl)amino]-5-methyl-5'-[(3S)-5methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'pyrrole]-3'-carboxylate: (Table 2, 1m'): Yield 25% (186 mg); yellowish solid; mp 251-255 °C; $R_f = 0.612$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 10.25 (s, 1H, CONH₂), 10.10 (s, 1H, CONH₂), 9.40 (s, 1H, NH), 7.45 (bs, 1H, ArH), 7.31-7.28 (m, 3H, ArH), 7.08-7.05 (m, 2H, ArH), 6.92 (bs, 3H, ArH), 6.75 (bs, 1H, ArH), 6.64-6.56 (m, 3H, ArH), 6.24 (s, 1H, CH), 5.88 (bs, 1H ArH), 3.76 (t, *J*=7.0, 1H, CH₂), 3.43 (s, 1H, CH), 2.27 (s, 3H, CH₃), 2.07 (s, 3H,CH₃), 0.74 (t, *J*= 6.9 Hz, 1H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) δ_{C} : 175.5, 174.5, 162.9, 154.3, 152.6, 146.1, 141.4, 141.3, 140.2, 140.0, 131.6, 130.9, 130.4, 130.1, 129.6, 129.0, 127.7, 126.5, 126.0, 125.0, 124.5, 123.9, 121.9, 121.9, 120.3, 108.9, 108.8, 76.9, 64.8, 63.2, 54.7, 47.9, 20.7, 20.6, 13.1;LCMS (ESI) calcd for C₃₆H₃₀Br₂N₄O₄: 743.07 (M+H)⁺; found: 743.20.

Ethyl (3R,5'S)-1'-(4-methylphenyl)-4'-[(4-methylphenyl)amino]-1-methyl-5'-[(3S)-1methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'pyrrole]-3'-carboxylate: (Table 2, 1n): Yield 85% (521 mg); yellowish solid; mp 215-220 °C ; $R_f = 0.48$ [3 % methanol / dichloromethane]; ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$: 9.88 (s,

1H, CONH₂), 9.82 (s, 1H, CONH₂), 9.47 (s, 1H, NH), 7.32-7.30 (m, 4H, ArH), 7.10-7.08 (m, 2H, ArH), 6.84-6.59 (m, 4H, ArH), 6.47-6.40 (m, 3H, ArH), 6.26 (s, 1H, ArH), 5.62 (bs, 1H, ArH), 3.85-3.72 (m, 2H, CH₂), 3.09 (s, 1H, CH), 2.32-2.3 (m, 6H, CH₃), 2.14-2.04 (m, 6H, CH₃), 0.74 (t, J= 7.1 Hz, 3H, CH₃); ¹³C NMR (400 MHz, DMSO-d₆) δ_{C} : 176.4, 175.2, 164.0, 156.2, 141.9, 141.8, 140.1, 136.4, 134.1, 132.9, 130.0, 129.4, 128.4, 128.1, 126.1, 125.4, 124.3, 122.7, 108.7, 108.4, 101.1, 76.8, 63.7, 58.7, 47.8, 20.8, 20.4, 20.2, 13.2; LCMS (ESI) calcd for C₃₈H₃₆N₄O₄: 613.28 (M+H)⁺; found: 613.40.

Ethyl (38,5'R)-1-methyl-5'-[(3R)-1-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-(4methylphenyl)-4'-[(4-methylphenyl)amino]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'pyrrole]-3'-carboxylate: (Table 2, 10): Yield 85% (520 mg); white solid; mp 230-234 °C; $R_f = 0.43$ [1 % methanol / dichloromethane]; ¹H NMR (400 MHz, CDCl₃) δ_{H} : 9.61 (s, 1H, NH), 7.36 (q, J = 7.2 Hz, 2H, ArH), 7.28-7.25 (m, 2H, ArH), 7.19-7.15 (m, 3H, ArH), 7.08 (t, J = 7.5 Hz, 1H, ArH), 6.73 (q, J = 7.8 Hz, 3H, ArH), 6.635 (d, J = 7.6Hz, 1H, ArH), 6.47 (d, J = 7.6 Hz, 3H, ArH), 6.37 (d, J = 1.4 Hz, 1H, CH), 6.07 (d, J = 7.0Hz, 1H, ArH), 3.79 (q, J = 7.1Hz, 2H, CH₂), 3.36 (s, 1H, CH), 2.82 (m, 3H, CH₃), 2.46 (m, 3H, CH₃), 2.30 (m, 3H, CH₃), 2.12 (m, 3H, CH₃), 0.70 (t, J = 7.1 Hz, 3H, CH₃); ¹³C NMR (400 MHz, CDCl₃) δ_{C} : 176.1, 174.2, 165.5, 158.4, 145.7, 144.3, 140.0, 135.8, 135.3, 134.2, 131.9, 130.0, 128.4, 128.3, 128.0, 126.0, 125.5, 125.1, 124.1, 123.2, 122.1, 121.9, 107.5, 107.0, 100.4, 65.2, 59.0, 47.5, 25.7, 25.3, 20.85, 20.84, 13.4; HRMS (ESI) m/z: [M+Na]⁺Calcd. for C₃₈H₃₆N₄O₄Na: 635.2634; Found: 635.2641.

Ethyl (3R,5'S)-1'-(4-methoxyphenyl)-4'-[(4-methoxyphenyl)amino]-1-methyl-5'-[(3S)-1methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'pyrrole]-3'-carboxylate: (Table 2, 1p): Yield 87% (562 mg); off white solid; mp 215-218 °C; R_f = 0.44 [1 % methanol / dichloromethane]; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 9.51 (s, 1H, NH), 7.42-7.32 (m, 4H, ArH), 7.19 (t, *J*= 7.5 Hz, 1H, ArH), 7.06 (t, *J*= 7.6 Hz, 1H, ArH), 6.91(d, *J*= 8.8 Hz, 2H, ArH), 6.73-6.65 (m, 2H, ArH), 6.49-6.44 (m, 5H, ArH), 6.22 (d, *J*= 1.5 Hz, 1H, CH), 6.07 (d, *J*= 7.2 Hz, 1H, ArH), 3.81-3.77 (m, 5H, OCH₂ & OCH₃), 3.65 (s, 3H, OCH₃), 2.96 (s, 3H, CH₃), 2.49 (s, 3H, CH₃), 0.70 (t, *J*= 7.1 Hz, 3H, CH₃); ¹³C NMR (400 MHz, CDCl₃) $\delta_{\rm C}$: 176.5, 174.1, 165.5, 159.0, 157.6, 156.8, 145.6, 144.2, 135.5, 131.7, 131.2, 128.4, 128.3, 128.08, 126.9, 125.4, 125.3, 125.1, 124.1, 122.1, 121.9, 114.9, 114.2, 112.8, 107.5, 106.9, 99.8, 65.7, 59.0, 55.3, 55.0, 47.3, 25.7, 25.4, 13.4;LCMS (ESI) calcd for C₃₈H₃₆N₄O₆: 645.27 (M+H)⁺; found: 645.30.

Ethyl (3R,5'S)-1-benzyl-5'-[(3S)-1-benzyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-(4methylphenyl)-4'-[(4-methylphenyl)amino]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'pyrrole]-3'-carboxylate: (Table 2, 1q): Yield 71% (545 mg); off white solid; mp 228-231 °C ; $R_f = 0.44$ [5 % acetone / dichloromethane]; ¹H NMR (400 MHz, CDCl₃) δ_{H} : 9.66 (s, 1H, NH), 7.41 (d, J= 7.0 Hz, 1H, ArH), 7.31-7.16 (m, 5H, ArH), 7.12-7.03 (m, 7H, ArH), 6.94-6.84 (m, 5H, ArH), 6.70-6.52 (m, 7H, ArH& CH), 6.28 (d, J= 7.5 Hz, 1H, ArH), 6.12 (bs, 1H, ArH), 4.99 (d, J=15.8Hz, 1H, ArH), 4.27-4..06 (m, 2H, CH₂), 3.89-3.75 (m, 3H, CH₂), 3.52 (s, 1H, CH), 2.34-2.18 (m, 6H, CH₃), 0.65 (t, J= 6.7 Hz, 3H, CH₃); ¹³C NMR (400 MHz, CDCl₃) δ_C: 176.1, 174.2, 165.5, 158.4, 144.9, 143.3, 140.5, 135.8, 135.6, 135.4, 134.4, 131.8, 130.5, 128.8,128.3, 128.2, 128.0, 127.2, 126.9, 126.6, 126.3, 125.3, 125.2, 124.2, 123.1, 122.2, 122.0, 108.8, 108.2, 100.6, 65.1, 59.1, 47.5, 43.5, 43.4, 21.0, 20.9, 13.4;LCMS (ESI) calcd for C₅₀H₄₄N₄O₄: 765.34 (M+H)⁺; found: 765.20.

Ethyl (3R,5'S)-1-benzyl-5'-[(3S)-1-benzyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-1'-(4methoxyphenyl)-4'-[(4-methoxyphenyl)amino]-2-oxo-1,1',2,5'-tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate:(Table 2, 1r): Yield 74% (590 mg); yellowish solid; mp 222-225 °C ; $R_f = 0.46$ [5 % acetone / dichloromethane]; ¹H NMR (400 MHz, CDCl₃) δ_{H} : 9.56 (s, 1H, NH), 7.44 (d, J= 7.1 Hz, 1H, ArH), 7.36 (d, J= 8.7 Hz, 1H, ArH), 7.22-7.12 (m, 5H, ArH), 7.09-7.03 (m, 3H, ArH), 6.98-6.91 (m, 5H, ArH), 6.68 (t, J= 7.5 Hz, 1H, ArH), 6.59-6.56 (m, 3H, ArH), 6.43 (d, J= 7.3 Hz, 2H, ArH), 6.36 (d, J= 1.5 Hz, 1H, CH), 6.25 (d, J=7.7 Hz, 1H, ArH), 6.14 (d, *J*=7.2Hz, 1H, ArH), 5.03-4.99 (m, 1H, ,CH₂), 4.36-4.32 (m, 1H, CH₂), 4.18-4.14 (m, 1H, CH₂), 3.88-3.75 (m, 6H, CH₂& OCH₃),3.72-3.70 (m, 3H, OCH₃), 3.45 (s, 1H, CH), 0.66 (t, *J*=7.1 Hz, 3H, CH₃); ¹³C NMR (400 MHz, CDCl₃) δ_{C} : 176.3, 174.2, 165.6, 159.1, 157.7, 157.2, 144.9, 143.3, 135.8, 135.6, 135.3, 131.7, 131.3, 128.6, 128.4, 128.3, 128.2, 128.0, 127.2, 127.0, 126.5, 126.4, 125.4, 125.2, 124.2, 122.2, 122.0, 115.1, 113.3, 108.7, 108.2, 100.0, 65.7, 59.0, 55.4, 55.0, 47.4, 43.6, 43.2, 13.4;LCMS (ESI) calcd for C₅₀H₄₄N₄O₆: 797.33 (M+H)⁺; found: 797.20.

Ethyl (3R,5'S)-1'-(4-methylphenyl)-4'-[(4-methylphenyl)amino]-2-oxo-5'-[(3S)-2-oxo-1-(prop-2-en-1-yl)-2,3-dihydro-1H-indol-3-yl]-1-(prop-2-en-1-yl)-1,1',2,5'-

tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate:(Table 2, 1s): Yield 68% (520 mg); brownish solid; mp 219-223 °C ; $R_f = 0.48$ [5 % acetone / dichloromethane]; ¹H NMR (400 MHz, CDCl₃) δ_H: 9.64 (s, 1H, NH), 7.41 (d, *J*=7.0Hz, 1H, ArH), 7.32-7.18 (m, 6H, ArH), 7.04 (t, *J*= 7.1 Hz, 1H, ArH), 6.75-6.65 (m, 4H, ArH), 6.48-6.41 (m, 4H, ArH& CH), 6.18 (d, *J*=6.8Hz, 1H, ArH), 5.33-5.29 (m, 2H, CH₂), 4.95-4.92 (m, 2H, CH₂), 4.75 (d, *J*= 10.1 Hz, 1H, CH), 4.31-4.19 (m, 2H, CH₂), 3.86-3.73 (m, 3H, CH & CH₂), 3.57-3.52 (m, 2H, CH₂), 3.44 (s, 1H, CH), 2.31 (s, 3H, CH₃), 2.13 (s, 3H, CH₃), 0.69 (t, *J*= 7.0 Hz, 3H, CH₃); ¹³C NMR (400 MHz, CDCl₃) δ_C: 175.8, 173.9, 165.5, 158.6, 144.9, 143.4, 140.2, 135.8, 135.3, 134.4, 131.8, 131.6, 130.8, 130.4, 128.5, 128.2, 127.9, 126.2, 125.4, 125.2, 124.2, 123.1, 122.1, 121.8, 117.1, 116.0, 108.5, 107.9, 100.3, 64.8, 59.0, 47.3, 42.1, 41.6, 20.8, 20.7, 13.4; LCMS (ESI) calcd for $C_{42}H_{40}N_4O_4$: 665.31 (M+H)⁺; found: 665.20.

Ethyl (3R,5'S)-1'-(4-methoxyphenyl)-4'-[(4-methoxyphenyl)amino]-2-oxo-5'-[(3S)-2-oxo-1-(prop-2-en-1-yl)-2,3-dihydro-1H-indol-3-yl]-1-(prop-2-en-1-yl)-1,1',2,5'-

tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2, 1t): Yield 45% (313 mg); brownish solid; mp 221-224 °C; $R_f = 0.45$ [5 % acetone / dichloromethane]; ¹H NMR (400 MHz, CDCl₃) δ_H: 9.54 (s, 1H, NH), 7.43 (d, J= 7.0 Hz, 1H, ArH), 7.34-7.30 (m, 3H, ArH), 7.20-7.17 (m, 1H, ArH), 7.05-7.01 (m, 1H, ArH), 6.93-6.91 (m, 2H, ArH), 6.80-6.67 (m, 3H, ArH), 6.49-6.38 (m, 5H, CH₂), 6.27 (s, 1H, CH), 6.20 (d, J=6.8Hz, 1H, ArH), 5.36-5.28 (m, 2H, CH₂), 5.04-4.95 (m, 3H, CH & CH₂), 4.33-4.17 (m, 4H, CH₂), 3.86-3.76 (m, 6H, CH₃), 3.66-3.64 (m, 4H, CH₃ & CH), 3.69-3.44 (m, 1H, CH), 3.36 (s, 1H, CH), 0.69 (t, J= 7.0 Hz, 3H, CH₃); ¹³C NMR (400 MHz, CDCl₃) δ_C: 176.1, 173.8, 165.5, 159.1, 157.6, 157.0, 144.8, 143.3, 135.5, 131.6, 131.5, 131.4, 131.1, 130.7, 130.6, 128.5, 128.3, 128.2, 127.9, 125.3, 125.24, 125.20, 122.1, 121.8, 117.2, 117.1, 116.0, 114.9, 113.0, 108.5, 107.9, 99.6, 65.3, 59.09, 59.04, 55.4, 55.3, 55.2, 55.1, 47.2, 42.1, 41.6, 13.4;LCMS (ESI) calcd for C₄₂H₄₀N₄O₆: 697.30 (M+H)⁺; found: 697.40.

Ethyl (3S,5'R)-1'-(4-methoxyphenyl)-4'-[(4-methoxyphenyl)amino]-2-oxo-5'-[(3S)-2-oxo-1-(prop-2-en-1-yl)-2,3-dihydro-1H-indol-3-yl]-1-(prop-2-en-1-yl)-1,1',2,5'-

tetrahydrospiro[indole-3,2'-pyrrole]-3'-carboxylate: (Table 2, 1t'): Yield 16% (110 mg); brownish solid; mp 248-252 °C ; R_f = 0.58 [1 % methanol / dichloromethane] ; ¹H NMR (400 MHz, CDCl₃) δ_H: 9.25 (s, 1H, NH), 7.60 (d, *J*= 7.0 Hz, 1H, ArH), 7.21-6.96 (m, 3H, ArH), 6.80-6.60 (m, 6H, ArH), 6.41 (s, 1H, CH), 6.17 (s, 1H, ArH), 5.64-5.44 (m, 2H, CH), 5.20-5.078 (m, 2H, CH₂), 4.87 (bs, 1H, CH), 4.60-4.51 (m, 1H, CH), 4.29-4.17 (m, 2H, CH₂), 3.88-3.78 (m, 8H, CH₃&CH₂), 3.59 (s, 3H, CH₃), 3.52 (s, 1H, CH), 0.74 (t, *J*= 6.8 Hz, 3H, CH₃); ¹³C NMR (400 MHz, CDCl₃) δ_C: 176.2, 173.3, 165.3, 158.7, 157.4, 155.7, 143.5. 143.2, 136.6, 132.4, 131.7, 131.1, 128.5, 127.3, 125.9, 125.6, 124.8, 123.5, 122.6, 121.6, 117.5, 116.5, 114.3, 113.5, 108.2, 98.5, 58.9, 55.3, 55.2, 48.1, 42.1, 41.9, 13.6; HRMS (ESI) *m*/*z*: [M+Na]⁺Calcd. for C₄₂H₄₀N₄O₆Na: 719.2846; Found: 719.2852.

Copy of ¹H and ¹³C NMR spectra of synthesized compounds in Table2 (entries 1 to20):

¹³C NMR of compound **1a**

¹³C NMR of compound **1b**

¹H NMR of compound **1b**'

¹³C NMR of compound **1b**'

¹³C NMR of compound **1**c

¹H NMR of compound **1**c'

¹³C NMR of compound **1c**

¹H NMR of compound **1d**

¹³C NMR of compound **1d**

¹H NMR of compound **1e**

¹³C NMR of compound **1e**

¹³C NMR of compound **1f**

¹H NMR of compound **1g**

¹³C NMR of compound **1g**

¹H NMR of compound **1h**

¹³C NMR of compound **1h**

¹³C NMR of compound **1i**

¹H NMR of compound **1**j

¹³C NMR of compound **1j**

¹H NMR of compound **1**k

¹³C NMR of compound **1k**

¹H NMR of compound **1**l

¹³C NMR of compound **11**

¹H NMR of compound **1m**

¹³C NMR of compound **1m**

¹³C NMR of compound **1m**'

¹H NMR of compound **1n**

¹³C NMR of compound **1n**

¹³C NMR of compound **10**

¹³C NMR of compound **1p**

¹H NMR of compound **1**q

¹³C NMR of compound **1**q

¹H NMR of compound **1**r

¹³C NMR of compound **1r**

¹³C NMR of compound **1s**

¹H NMR of compound **1**t

¹³C NMR of compound 1t

¹H NMR of compound **1t**'

¹³C NMR of compound 1t'

<u>Copy of ¹H NMR spectra of crude mixture of compounds in Table2 (entries 2,3,13 & 20):</u>

¹H NMR of Crude mixture of **1b** and **1b**'

¹H NMR of Crude mixture of **1c** and **1c**'

¹H NMR of Crude mixture of **1m** and**1m**'

¹H NMR of Crude mixture of **1t and 1t**'

Copy of HMBC, HSQC and NOE NMR of compoundsinTable2 (entry 2& 3)

HMBC NMR of compound 1b

HSQC NMR of compound 1b

HSQC NMR of compound 1b

HMBC NMR of compound 1b'

ppm

HSQC NMR of compound 1b'

COSY NMR of compound $1c\,$

NOE NMR of compound 1c

Copy of ¹H NMR and ¹³C NMR spectra of Intermediate [A] for (1b, Table2)

¹H NMR of Intermediate [A]for(1b, Table 2)

¹³C NMR of Intermediate [A] for(1b, Table2)

Copy of LCMS-ESI of Intermediate [A], [B] and [C] of crude mixturefor (1b, Table 2)

LCMS-ESI of Intermediate [A]for(1b, Table2)

LCMS-ESI of Intermediate[A], [B] and [C] forcrude mixture of(1b, Table2)

Copy of ¹H NMR, LCMS-ESI and HPLC of Crude product for (Scheme2)

¹H NMR of Crude product for **Scheme2**

LCMS-ESIof Crude product for Scheme2

HPLC of Crude product for Scheme 2

Density Functional Theory (DFT) Calculations

Figure 5. Optimized geometries of (a) syn-60 (SSR), (b) syn-60' (SRS) and (c) syn-60" (SSS)

The DFT calculations were employed to elucidate the relative ground state energies of *syn-60* (SSR), *syn-60* (SRS) and *syn-60*" (SSS) diastereomers of product 1h (entry 8, **Table 2**). All DFT calculations were performed with the ORCA program package.³⁰Gas phase geometries of the diastereomers using singlet spin state were successfully optimized using pure density functional BP86 method.³¹ The calculated energies are summarized in Table S1 and the coordinates are listed in Table S2-S4 (SI 1). For all calculations, the all-electron valence double-zeta, def2-SVP,³² basis set with "new" polarisation function developed by Karlsruhe group was used for N, O, C and H atoms. Resolution of Identity (RI)³³ approximation with def2/J auxiliary basis set for Coulomb and HF exchange integral for HF DFT method was employed for self-consistent field (SCF) gradient calculations.³⁴ The geometry optimizations

were carried out in redundant internal coordinates without imposing symmetry constraints. The SCF calculations were converged tightly. The calculated energies of these isomers are notably different. It is observed that *syn*-60 (SSR) is the most stable conformer, while *syn*-60' (SRS) is 2.26 kJ/mol higher in energy than *syn*-60 (SSR). The *syn*-60'' (SSS) is the least stable and the ground state energy of it is 12.34 kJ/mol higher than that of *syn*-60 (SSR). This provides a preliminary idea about their energetics and the *syn*-60 (SSR) was isolated with all substituents. The energy minimized structures are shown in (**Figure 5**).

Table S1.

Isomer	Energy/HF
Original Isomer (SSR)	-1988.3079929968296000
SRS	-1988.3071385918356000
SSS	-1988.3032965011143000

Table S2. Optimized Coordinates of syn-60 (SSR)

Atoms	X	Y	Z
O (1)	4.3767	14.4205	8.8736
O(2)	3.5924	12.6791	1.2797
O(3)	3.3231	15.9722	3.2015
N(4)	2.6738	13.9016	5.3167
O(5)	5.5567	11.9306	2.1885
N(6)	1.4826	14.9544	2.199
H(7)	1.2167	15.731	1.5912

N(8)	2.7934	12.723	9.1047
H(9)	2.4355	13.0061	10.018
N(10)	6.0589	12.6394	4.7125
H(11)	6.2758	12.1902	3.7947
C(12)	4.0554	12.6919	7.1193
H(13)	5.1083	12.342	7.1942
C(14)	3.1242	11.5056	7.1804
C(15)	3.7945	13.4281	8.4537
C(16)	1.7989	14.8337	5.9269
C(17)	4.7689	13.0762	4.6997
C(18)	4.0073	13.6512	5.8711
H(19)	4.4915	14.603	6.1951
C(20)	2.9692	10.3982	6.3449
H(21)	3.5634	10.322	5.4204
C(22)	2.3955	11.5789	8.395
C(23)	0.7793	13.7475	2.3174
C(24)	1.3854	12.9297	3.3012
C(25)	7.1375	12.7983	5.6001
C(26)	2.6152	13.6546	3.8553
C(27)	2.5599	15.034	3.0658
C(28)	3.9528	12.9917	3.581
C(29)	0.8342	11.6888	3.6101
H(30)	1.2943	11.0713	4.3966
C(31)	2.2423	15.7372	6.925

H(32)	3.2867	15.7396	7.2595
C(33)	2.0648	9.3603	6.692
C(34)	1.3308	9.4814	7.8904
H(35)	0.6256	8.6812	8.168
C(36)	1.4862	10.581	8.7598
H(37)	0.9211	10.6358	9.7022
C(38)	-0.3355	11.2385	2.9432
C(39)	7.1718	13.696	6.6962
H(40)	6.3223	14.3466	6.9395
C(41)	4.4462	12.4823	2.3081
C(42)	-0.3712	13.3341	1.6395
H(43)	-0.8482	13.9724	0.8801
C(44)	1.3555	16.6496	7.5173
H(45)	1.7402	17.3346	8.2898
C(46)	-0.915	12.0745	1.967
H(47)	-1.8273	11.7391	1.4484
C(48)	8.3183	13.773	7.5042
H(49)	8.3157	14.4727	8.3543
C(50)	0.4294	14.8878	5.5547
H(51)	0.037	14.1804	4.8143
C(52)	0.0072	16.7051	7.1314
H(53)	-0.6824	17.426	7.5965
C(54)	3.9038	12.2276	-0.0975
C(55)	1.9229	8.1454	5.8015

H(56)	1.1553	7.4445	6.1848
H(57)	2.8798	7.5857	5.7237
H(58)	1.6346	8.4265	4.7666
C(59)	-0.9346	9.8899	3.2743
H(60)	-1.9514	9.7776	2.8493
H(61)	-1.0057	9.7354	4.3708
H(62)	-0.3168	9.0586	2.8705
C(63)	-0.4426	15.8151	6.1417
H(64)	-1.4976	15.8269	5.8245
C(65)	8.288	12.0098	5.3351
H(66)	8.2743	11.317	4.4785
C(67)	9.4508	12.987	7.2389
H(68)	10.3449	13.0619	7.8763
C(69)	2.6663	12.6696	-0.8877
H(70)	1.7496	12.2086	-0.4699
H(71)	2.7644	12.3656	-1.9488
H(72)	2.5497	13.771	-0.8477
C(73)	9.4275	12.1074	6.1415
H(74)	10.3069	11.4865	5.9096
C(75)	5.1623	12.9433	-0.6117
H(76)	5.0437	14.0427	-0.5282
H(77)	5.318	12.694	-1.6812
H(78)	6.0576	12.6365	-0.0414
C(79)	4.0479	10.699	-0.1204

H(80)	4.9267	10.372	0.4648
H(81)	4.1696	10.3518	-1.1666
H(82)	3.1394	10.2189	0.2958

Table S3. Optimized Coordinates of syn-60' (SRS)

Atoms	X	Y	Z
O(1)	3.3408	13.879	-9.2639
O(2)	8.227	15.6568	-9.5729
O(3)	8.9746	12.7618	-7.3666
N(4)	6.0307	12.284	-8.0999
O(5)	6.8167	16.901	-8.2578
N(6)	9.0918	12.4451	-9.6705
N(7)	2.4964	11.7614	-8.802
N(8)	5.2145	15.5228	-6.6052
C(9)	3.7674	12.749	-7.083
C(10)	3.2792	11.373	-6.6792
C(11)	3.2046	12.9219	-8.5139
C(12)	6.3358	10.8948	-7.9849
C(13)	5.7082	14.4349	-7.2604
C(14)	5.3157	12.9876	-7.0341
C(15)	3.4234	10.6427	-5.4998
C(16)	2.5179	10.8372	-7.7472
C(17)	8.2404	12.5761	-10.7795
C(18)	6.9646	13.0106	-10.3537

C(19)	4.475	15.6626	-5.4218
C(20)	6.9756	13.1657	-8.8338
C(21)	8.4743	12.7842	-8.4785
C(22)	6.6276	14.532	-8.2897
C(23)	5.9497	13.2356	-11.2813
C(24)	6.8062	10.3262	-6.7789
C(25)	2.8271	9.3626	-5.3699
C(26)	2.0793	8.8578	-6.4536
C(27)	1.9097	9.5819	-7.6512
C(28)	6.192	13.0128	-12.6626
C(29)	4.4743	14.7113	-4.3723
C(30)	7.2091	15.8039	-8.6935
C(31)	8.5106	12.3447	-12.1317
C(32)	7.1175	8.9602	-6.7079
C(33)	7.47	12.5669	-13.0588
C(34)	3.7224	14.9407	-3.2094
C(35)	6.2039	10.0621	-9.1203
C(36)	6.9886	8.1397	-7.8425
C(37)	8.9728	16.8122	-10.1191
C(38)	3.0155	8.5583	-4.1031
C(39)	5.095	13.2547	-13.6759
C(40)	6.5372	8.7001	-9.0495
C(41)	3.7284	16.8566	-5.2531
C(42)	2.9771	16.121	-3.0535

C(43)	9.9977	16.1453	-11.0443
C(44)	2.9944	17.0808	-4.082
C(45)	9.6741	17.5651	-8.9784
C(46)	8.022	17.7161	-10.918
H(47)	10.0609	12.1262	-9.7084
H(48)	2.0271	11.6247	-9.6983
H(49)	5.5559	16.3953	-7.0656
H(50)	3.2869	13.5202	-6.441
H(51)	5.653	12.6647	-6.0204
H(52)	4.0053	11.0556	-4.66
H(53)	4.964	13.5853	-10.9316
H(54)	6.957	10.9664	-5.8977
H(55)	1.6109	7.8649	-6.3638
H(56)	1.3161	9.1671	-8.4799
H(57)	5.0918	13.8058	-4.4493
H(58)	9.5001	12.0012	-12.4697
H(59)	7.4877	8.5375	-5.7606
H(60)	7.6664	12.3872	-14.1285
H(61)	3.7385	14.1889	-2.4044
H(62)	5.8288	10.5001	-10.0556
H(63)	7.2421	7.07	-7.7857
H(64)	2.3382	7.6827	-4.0688
H(65)	4.0556	8.1756	-4.0201
H(66)	2.8257	9.1704	-3.1967

H(67)	5.441	13.0589	-14.7102
H(68)	4.2143	12.6038	-13.4884
H(69)	4.7278	14.302	-13.6351
H(70)	6.4266	8.0685	-9.9453
H(71)	3.7278	17.6036	-6.0627
H(72)	2.3968	16.2962	-2.1352
H(73)	9.4887	15.5448	-11.8247
H(74)	10.6216	16.9151	-11.5413
H(75)	10.6647	15.4732	-10.4678
H(76)	2.4235	18.0163	-3.9753
H(77)	10.3089	16.8711	-8.3905
H(78)	10.3281	18.356	-9.3998
H(79)	8.9384	18.0355	-8.3004
H(80)	7.2666	18.1806	-10.2584
H(81)	8.6029	18.5199	-11.4142
H(82)	7.5014	17.1318	-11.7029

 Table S4. Optimized Coordinates of syn-60" (SSS)

Atoms	X	Y	Z
O (1)	6.7735	15.3929	-4.5118
O(2)	8.7632	15.4003	-9.1108
O(3)	8.6065	12.4877	-6.6638
N(4)	5.7172	12.6983	-7.7217

O(5)	7.3453	17.0219	-8.3192
N(6)	8.9778	12.1878	-8.9382
N(7)	5.4185	14.1561	-3.0903
N(8)	5.2542	16.178	-6.8581
C(9)	5.7378	13.2339	-5.2444
C(10)	4.8684	12.3366	-4.3824
C(11)	6.0598	14.4267	-4.2955
C(12)	5.1053	11.4924	-8.0919
C(13)	5.7133	14.9437	-7.1806
C(14)	5.1935	13.6037	-6.6926
C(15)	4.2801	11.0905	-4.614
C(16)	4.7189	12.9459	-3.1078
C(17)	8.2889	12.4032	-10.1439
C(18)	7.0369	12.9974	-9.8733
C(19)	4.2117	16.651	-6.0541
C(20)	6.9187	13.2527	-8.3719
C(21)	8.2637	12.6128	-7.8298
C(22)	6.7935	14.733	-8.0293
C(23)	6.16	13.2948	-10.9122

C(24)	5.8685	10.4057	-8.5937
C(25)	3.5262	10.448	-3.5975
C(26)	3.3867	11.0908	-2.3511
C(27)	3.9794	12.341	-2.0858
C(28)	6.5163	12.9944	-12.2522
C(29)	4.0626	18.0612	-5.9827
C(30)	7.6327	15.8246	-8.4965
C(31)	8.6757	12.0978	-11.4518
C(32)	5.2489	9.2134	-8.9965
C(33)	7.7732	12.4019	-12.4931
C(34)	3.0368	18.6402	-5.2282
C(35)	3.6976	11.319	-8
C(36)	3.8568	9.0526	-8.8987
C(37)	9.7764	16.3469	-9.6296
C(38)	2.9003	9.0961	-3.8587
C(39)	5.5598	13.3001	-13.3831
C(40)	3.091	10.1172	-8.3923
C(41)	3.298	15.8446	-5.3322
C(42)	2.1267	17.8334	-4.5213
	1		

C(43)	10.8575	15.416	-10.1923
C(44)	2.2708	16.438	-4.5805
C(45)	10.3376	17.1975	-8.4804
C(46)	9.1611	17.2049	-10.7443
H(47)	9.899	11.755	-8.8576
H(48)	5.4992	14.7843	-2.2893
H(49)	5.8676	16.8983	-7.2996
H(50)	6.7362	12.7769	-5.4439
H(51)	4.0873	13.5702	-6.6818
H(52)	4.3999	10.5942	-5.5886
H(53)	5.1863	13.7597	-10.6883
H(54)	6.9623	10.4848	-8.6528
H(55)	2.8019	10.6001	-1.5564
H(56)	3.8659	12.821	-1.102
H(57)	4.7725	18.7	-6.532
H(58)	9.6485	11.6317	-11.6696
H(59)	5.8733	8.391	-9.3802
H(60)	8.0608	12.1635	-13.5297
H(61)	2.9487	19.7378	-5.1927
H(62)	3.0622	12.1351	-7.6274
-------	---------	---------	----------
H(63)	3.3766	8.1126	-9.2096
H(64)	2.3114	8.7436	-2.9887
H(65)	2.2234	9.1232	-4.739
H(66)	3.6721	8.3273	-4.0757
H(67)	5.9981	13.0474	-14.3685
H(68)	4.6139	12.7272	-13.281
H(69)	5.2817	14.3749	-13.4022
H(70)	1.9965	10.0205	-8.3096
H(71)	3.3731	14.7502	-5.3361
H(72)	1.3168	18.2883	-3.9311
H(73)	10.4432	14.764	-10.9869
H(74)	11.6851	16.0134	-10.6239
H(75)	11.2738	14.7735	-9.3911
H(76)	1.5739	15.7868	-4.0299
H(77)	10.7231	16.5477	-7.669
H(78)	11.1791	17.8174	-8.8526
H(79)	9.5621	17.8638	-8.0616
H(80)	8.3668	17.8639	-10.3479
	L	1	

H(81)	9.9481	17.8363	-11.2055
H(82)	8.7294	16.5599	-11.5355