Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Catalytic Asymmetric Synthesis of 3-Aryl Phthalides Enabled

by Arylation-Lactonization of 2-Formylbenzoates

Andressa M. M. Carlos,^a Rafael Stieler,^a and Diogo S. Lüdtke*,^a

^aInstituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil.

e-mail: dsludtke@iq.ufrgs.br

Phone: +55 51 3308 9637

Contents

1	General experimental information	S2
2	General procedure for synthesis of ligand L8	S2
3	General procedure for the 1,2-addition of Grignard reagents to aldehydes	S3
4	General procedure for the aryl transfer reaction	S4
5	NMR spectra	S26
6	X-ray crystal structure of compound 2f	S43

1. General experimental information

Hydrogen Nuclear Magnetic Resonance spectra (¹H NMR) were obtained at 300 MHz and 400 MHz. Spectra were recorded in CDCl₃ solutions. Chemical shifts (δ) are reported in ppm, referenced to the solvent peak of residual CHCl₃ or tetramethylsilane (TMS) as reference. Data are reported as follows: chemical shift (δ), multiplicity, coupling constant (J) in Hertz and integrated intensity. Carbon-13 Nuclear Magnetic Resonance spectra (¹³C NMR) were obtained at 75 and 100 MHz. Spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm, referenced to the solvent peak CDCl₃. Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), t (triplet), dd (double doublet), m (multiplet) and bs (broad singlet). Optical rotations were obtained on a Perkin Elmer 341 Polarimeter. Column chromatography was performed using silica gel (230-400 mesh) following the methods described by Still.¹ Thin layer chromatography (TLC) was performed using silica gel GF254, 0.25 mm thickness. For visualization, TLC plates were either placed under ultraviolet light, or phosphomolibdic acid, followed by heating. Air- and moisturesensitive reactions were conducted in flame-dried or oven dried glassware equipped with tightly fitted rubber septa and under a positive atmosphere of dry argon. Reagents and solvents were handled using standard syringe techniques. Formyl benzoates 1 were prepared according to literature procedures.²

2. General procedure for synthesis of ligand L5³

In a flask, under an atmosphere of argon, 2-naphthol (1 eq.), 2-tolualdehyde (1.2 eq.) and (S)-(2)-1-phenylethylamine (1.05 eq.) were added at room temperature. The resulting reaction mixture was stirred for 8 h at 60 °C. After this period the reaction system was cooled to room temperature and ethanol (5 mL) was added and the resulted precipitate was collected by filtration, washed with ethanol (3 x 5 mL) and

¹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923.

² a) Bisai, V.; Suneja, A.; Singh, V. K. *Angew. Chem. Int. Ed.* **2014**, *53*, 10737. b) Zhang, Y. -H.; Shi, B. -F.; Yu, J. -Q. Angew. Chem. Int. Ed. 2009, 48, 6097. c) Dwight, S. J.; Levin, S. Org. *Lett.* **2016**, *18*, 5316. d) He, Y.; Cheng, C.; Chen, B.; Duan, K.; Zhuang, Y.; Yuan, B.; Zhang, M.; Zhou, Y.; Zhou, Z.; Su,Y. -J.; Cao, R.; Qiu, L. *Org. Lett.* **2014**, *16*, 6366.

³ Wei, H.; Yin, L.; Haibin, L.; Xingshu, L.; Chan, A. S. C. Chirality **2011**, 23, 222.

purified by crystallization from hexane to give the pure compound. The product was obtained as white solid in 58% yield.

[α]_D²⁰ = +312.49 (c = 1.2 in CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.53 (d, J = 6.9 Hz, 1 H); 1.90 – 1.93 (m, 2H); 3.85 – 3.92 (m, 1H); 5.66 (s, 1H); 6.98 – 7.38 (m,13H); 7.73 – 7.77 (m, 2H); 13.75 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.0; 21.5; 56.5; 56.7; 113.7; 120.0; 120.7; 122.3; 126.4; 126.7; 127.1; 127.9; 128.0; 128.6; 128.73; 128.77; 128.85;

129.5; 130.7; 132.5; 134.7; 138.7; 142.4; 157.7 ppm.

3. General procedure for the 1,2-addition of Grignard reagents to aldehydes:

A solution of the aldehyde (5 mmol) in THF (5 mL) was added to a freshly prepared THF solution of the Grignard reagent (5.5 mmol, 1 M) at room temperature. The reaction mixture was stirred for 2 h and then quenched by the addition of NH₄Cl (10 mL). The aqueous layer was extracted with dichloromethane (3 × 15 mL). The combined organic layers were dried with anhydrous MgSO₄, filtered, and the solvent was evaporated in vacuum. The crude product was purified by flash chromatography using hexane:ethyl acetate (70:30) as the eluent to obtain the desired racemic alcohols.

4. General procedure for the aryl transfer reaction:

In an atmosphere of argon 1.5 M solution of Et_2Zn (7.2 equiv., 3.6 mmol, 2.4 mL) was slowly added to a solution of arylboronic acid (2.4 equiv., 1.2 mmol, 146 mg) in dry toluene (2 mL). The mixture was stirred at 60 °C for 1 h and after this period, cooled at room temperature and a solution of 20 mol% of ligand **L5** in 1 mL of dry toluene was added. The reaction mixture was stirred for 15 min followed by addition of the aldehyde (0.5 mmol, 70 µL). After stirred at -5 °C for 5 h the reaction mixture was carefully quenched by the addition of HCl 1M. The aqueous layer was extracted with dichloromethane (3 × 30 mL). The combined organic layers were dried with anhydrous MgSO₄, filtered, and the solvent was evaporated in vacuum. The crude product was purified by flash chromatography using hexane:ethyl acetate (85:15).

(*R*)-3-Phenylisobenzofuran-1(3*H*)-one $C_{14}H_{10}O_2$ (2a). White solid. *Rf* = 0.4. $[\alpha]_D^{20}$ = - 45.4 (*c* = 0.34 in DCM). Melting point = 152 - 154 °C. Purified by column chromatography (hexane/EtOAc 90:10) to give the product in 80% yield and 91% ee. HPLC: (Chiralcel OD, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): $t_R(S)$ = 8.63 min, $t_R(R)$ = 11.14 min.

¹H NMR (400 MHz, CDCI₃): $\delta = 6.40$ (s, 1H); 7.26 – 7.41 (m, 6H); 7.55 (t, J = 7.5 Hz, 1H); 7.64 (td, J = 7.5 Hz; J = 1.2 Hz, 1H); 7.96 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCI₃): $\delta = 82.6$; 122.8; 125.50; 125.55; 126.9; 128.9; 129.23; 129.29; 134.2; 136.3; 149.6; 170.4 ppm.

HRMS (ESI⁺): Calcd for C₁₄H₁₀O₂ [M + H]⁺ requires 211.0759; found 211.0758.

Ent-2a: Purified by column chromatography (hexane/EtOAc 90:10) to give the product in 87% yield and 97% *ee.* $[\alpha]_D^{20} = +$ 43.98 (*c* = 0.98 in DCM). **HPLC:** (Chiralcel OD,

hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 9.34 min, t_R (*R*) = 12.19 min.

• HPLC Chromatograms - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	8.629	4.412	91% ee
2	11.143	95.588	

• Enantiomer S

Peak	Retention time (min)	Area (%)	
1	9.349	98.367	97% ee
2	12.198	1.633	

• After recrystallization - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	8.689	2.292	95% ee
2	10.753	97.708	

(*R*)-3-o-tolylisobenzofuran-1(3*H*)-one $C_{15}H_{12}O_2$ (2b). White solid. *Rf* = 0.3. $[\alpha]_D^{20}$ = + 27.4 (*c* = 0.94 in EtOAc). Melting point = 118 - 120 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 86% yield and 83% ee. HPLC: (Chiralcel OD, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 9.61 min, t_R (*R*) = 12.82 min.

¹H NMR (400 MHz, CDCI₃): δ = 2.50 (s, 3H); 6.69 (s, 1H); 6.92 (d, *J* = 7,6 Hz, 1H); 7.11 – 7.15 (m, 1H); 7.26-7.28 (m, 2H); 7.34 (dd, *J* = 7.6 Hz, *J* = 0.8 Hz, 1H); 7.57 (t, *J* = 7.5 Hz, 1H); 7.67 (td, *J* = 7.5 Hz, *J* = 1.1 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H) ppm.

¹³**C** NMR (100 MHz, CDCl₃): δ = 19.2; 80.4; 122.9; 125.6; 126.32; 126.35; 127.1; 129.25; 129.29; 131.0; 134.0; 134.1; 137.0; 149.2; 170.5 ppm.

HRMS (ESI⁺): Calcd for C₁₅H₁₂O₂ [M + H]⁺ requires 225.0916; found 225,0918.

Peak	Retention time (min)	Area (%)	
1	9.613	8.591	83% ee
2	12.828	91.409	

(*R*)-3-*p*-tolylisobenzofuran-1(3*H*)-one C₁₅H₁₂O₂ (2c). White solid. *Rf* =0.3. $[\alpha]_{D}^{20}$ = -7.72 (*c* = 0.22 in DCM). Melting point = 127 - 130 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 91% yield and 91% ee. HPLC: (Chiralcel OD, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 7.82 min, t_R (*R*) = 9.61 min.

Me ¹H NMR (400 MHz, CDCI₃): δ = 2.35 (s, 3H); 6.37 (s, 1H); 7.14 - 7.19 (m, 4H); 7.32 (d, J = 7.6 Hz, 1H); 7.54 (t, J = 7.5 Hz, 1H); 7.64 (td, J = 7.5 Hz; 1.1 Hz; 1H); 7.95 (d, J = 7.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 21.3; 82.6; 122.8; 125.5; 125.6; 126.9; 129.2; 129.5; 133.3; 134.2; 139.3; 149.7; 170.5 ppm.

HRMS (ESI⁺): Calcd for $C_{15}H_{12}O_2$ [M + H]⁺ requires 225,0916; found 225,0918.

Ent-2f: Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 78% yield and 84% *ee*. $[\alpha]_D^{20} = +50.12$ (c = 0.78 in DCM). **HPLC**: (Chiralcel OD, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm): $t_R(S) = 9.30$ min, $t_R(R) = 12.12$ min.

Peak	Retention time (min)	Area (%)	
1	7.823	4.279	91% ee
2	9.606	95.721	

• Enantiomer S

Peak	Retention time (min)	Area (%)	
1	9.308	92.070	84% ee
2	12.126	7.930	

• After recrystallization - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	7.454	0.183	99% ee
2	8.932	99.817	

(*R*)-3-(*p*-bifhenyl)isobenzofuran-1(3*H*)-one C₂₀H₁₄O₂ (2d). White solid. *Rf* = 0.3. $[\alpha]_D^{20}$ = + 23.6 (*c* = 0.22 in DCM). Melting point = 209 - 212 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 72% yield and 81% ee. HPLC: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 12.02 min, t_R (*R*) = 14.43 min.

¹H NMR (400 MHz, CDCl₃): δ = 6.45 (s, 1H); 7.34 – 7.39 (m, 4H); 7.44 (t, *J* = 7.5 Hz, 2H); 7.55 – 7.61 (m, 5H); 7.67 (td, *J* =

7.5 Hz; J = 0.9 Hz, 1H), 7.98 (d, J = 7.6 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** δ = 82.4; 122.8; 125.66; 125.70; 127.1; 127.4; 127.67; 127.69; 128.8; 129.4; 134.4; 135.2; 140.2; 149.9; 170.4 ppm.

HRMS (ESI⁺): Calcd for C₂₀H₁₄O₂ [M + H]⁺: requires 287.1072; found 287.1072.

Peak	Retention time (min)	Area (%)	
1	12.029	9.251	81% ee
2	14.429	90.749	

• After recrystallization - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	12.055	0.489	99% ee
2	14.551	99.511	

(*R*)-3-(*p*-Chlorophenyl)isobenzofuran-1(3*H*)-one $C_{14}H_9CIO_2$ (2e). White solid. *Rf* = 0.3. $[\alpha]_D^{20}$ = - 34.7 (*c* = 0.22 in DCM). Melting point = 156 - 159 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 58% yield and 85% ee. HPLC: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): $t_R(S)$ = 9.13 min, $t_R(R)$ = 10.36 min.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.38$ (s, 1H); 7.20 – 7.24 (m, 2H); 7.32 (d, J = 7.6 Hz, 1H); 7.34 – 7.38 (m, 2H); 7.58 (t, J = 7.5 Hz 1H); 7.67 (t, J = 7.5 Hz, 1H); 7.96 (d, J = 7.6 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** δ = 81.7; 122.7; 125.4; 125.7; 128.3; 129.1; 129.5; 134.4; 134.8; 135.2; 149.1; 170.2 ppm.

HRMS (ESI⁺): Calcd for C₁₄H₉ClO₂ [M + H]⁺: requires 245.0369; found 245.0370.

Ent-2b: Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 74% yield and 77% *ee*. $[\alpha]_D^{20} = +40.88$ (*c* = 0.56 in DCM). **HPLC**: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm): t_R (*S*) = 8.64 min, t_R (*R*) = 9.86 min.

Peak	Retention time (min)	Area (%)	
1	9.135	7.517	85% ee
2	10.364	92.483	

• Enantiomer S

Peak	Retention time (min)	Area (%)	
1	8.648	88.592	77% ee
2	9.867	11.408	

• After recrystallization - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	9.119	0.317	99% ee
2	10.373	99.683	

(*R*)-3-(*p*-bromophenyl)isobenzofuran-1(3*H*)-one $C_{14}H_9BrO_2$ (2f) White solid. *Rf* = 0.3. $[\alpha]_D^{20} = -20.7$ (*c* = 0.72 in DCM). Melting point = 169 - 172 °C. Purified by column chromatography (hexane/EtOAc 90:10) to give the product in >95% yield and 83% ee. HPLC: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): $t_R(S) =$ 9.44 min, $t_R(R) = 10.62$ min.

¹H NMR (400 MHz, CDCI₃): δ = 6.37 (s, 1H); 7.17 – 7.19 (m, 2H); 7.33 (dq, *J* = 7.7 Hz; *J* = 0.8 Hz, 1H); 7.52 – 7.54 (m, 2H); 7.57 – 7.61 (m, 1H); 7.68 (td, *J* = 7.5 Hz; *J* = 1.2 Hz, 1H); 7.98 (d, *J* = 7.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 81.7; 122.6; 123.3; 125.33; 125.65; 128.5; 129.5; 132.0; 134.4; 135.4; 149.0; 170.1 ppm.

HRMS (ESI⁺): Calcd for $C_{14}H_9^{79}BrO_2$ [M + H]⁺: requires 288.9864; found 288.9864; calcd for $C_{14}H_9^{81}BrO_2$ [M + H]⁺: requires 290.9845; found 290.9822.

HPLC Chromatograms

Peak	Retention time (min)	Area (%)	
1	9.440	8.600	83% ee
2	10.623	91.400	

• After recrystallization - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	10.146	0.557	99% ee
2	11.324	99.443	

(*R*)-3-(*p*-Methoxyphenyl)isobenzofuran-1(3*H*)-one C₁₅H₁₂O₃ (2g). White solid. *Rf* = 0.4. $[\alpha]_D^{20} = +28.5$ (*c* = 0.53 in DCM). Melting point = 144 - 147 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 71% yield and 91% *ee.* HPLC: (Chiralcel OD, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 13.63 min, t_R (*R*) = 16.58 min.

¹H NMR (400 MHz, CDCI₃): δ = 3.81 (s, 3H); 6.37 (s, 1H); 6.89 (d, *J* = 8.4 Hz, 2H); 7.17 (d, *J* = 8.4 Hz, 2H); 7.31 (d, *J* = 7.6 Hz, 1H); 7.56 (t, *J* = 7.5 Hz, 1H); 7.64 (t, *J* = 7.5 Hz, 1H); 7.96 (d, *J* = 7.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 55.2; 82.6; 114.2; 122.8; 125.3; 125.7; 128.1; 128.6; 129.1; 134.1; 149.6; 160.3; 170.4 ppm.

HRMS (ESI⁺): Calcd for $C_{15}H_{12}O_3$ [M + H]⁺: requires 241.0865; found 241.0862.

Ent-2g: Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 87% yield and 87% *ee.* $[\alpha]_D^{20} = -6.76 \circ (c = 0.69 \text{ in DCM})$. **HPLC:** (Chiralcel OD, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm): $t_R(S) = 12.44$ min, $t_R(R) = 15.72$ min.

Peak	Retention time (min)	Area (%)	
1	13.628	4.638	91% ee
2	16.577	95.362	

• Enantiomer S

Peak	Retention time (min)	Area (%)	
1	12.445	93.683	87% ee
/2	15.721	6.317	

• After recrystallization - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	11.450	1.000	98% ee
2	13.870	99.000	

(*R*)-3-(*m*-Methoxyphenyl)isobenzofuran-1(3*H*)-one $C_{15}H_{12}O_3$ (2h). Yellow oil. *Rf* = 0.2. $[\alpha]_D^{20}$ = - 26.95 (*c* = 1.52 in DCM). Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 80% yield and 48% *ee*. **HPLC**: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 8.13 min, t_R (*R*) = 8.44 min.

¹H NMR (400 MHz, CDCl₃): δ = 3.77 (s, 3H); 6.37 (s, 1H); 6.78 – 6.80 (m, 1H); 6.87 – 6.91 (m, 2H); 7.28 – 7.36 (m, 2H); 7.53 – 7.57 (m, 1H); 7.64 (td, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H); 7.95 (d, *J* = 7.96 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** δ = 55.2; 82.4; 112.3; 114.5; 118.9; 122.7; 125.3; 125.4; 129.2; 129.9; 134.2; 137.8; 149.4; 159.8; 170.4 ppm.

HRMS (ESI⁺): Calcd for C₁₅H₁₂O₂ [M + H]+: requires 241.0865; found 241.0866.

Peak	Retention time (min)	Area (%)	
1	8.129	25.769	48% ee
2	8.437	74.231	

(*R*)-3-(o-methoxyphenyl)isobenzofuran-1(3*H*)-one $C_{15}H_{12}O_3$ (2i). White solid. *Rf* = 0.3. $[\alpha]_D^{20}$ = - 95.9 (*c* = 0.50 in DCM). Melting point = 100 - 103 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 72% yield and 34% ee. HPLC: (Chiralcel AS-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 20.80 min, t_R (*R*) = 18.37 min.

¹**H NMR (400 MHz, CDCl₃):** δ = 3.91 (s, 3H); 6.85 (s, 1H); 6.91 (td, *J* = 7.5 Hz, *J* = 0.9 Hz, 1H); 6.97 (d, *J* = 7.6 Hz, 1H); 7.08 (dd, *J* = 7.6 Hz, *J* = 1.7 Hz, 1H); 7.30 – 7.34 (m, 1H); 7.44 (dd, *J* = 7.6 Hz, *J* = 0.8 Hz, 1H); 7.51 (t, *J* = 7.5 Hz, 1H); 7.61 (td, *J* = 7.5 Hz, *J* = 1.1 Hz, 1H); 7.92 (d, *J* = 7.6 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** δ = 55.5; 78.0; 110.9; 120.7; 122.8; 124.9; 125.3; 125.5; 126.8; 128.9; 130.0; 134.0; 150.3; 156.9; 170.9 ppm.

HRMS (ESI⁺): Calcd for C₁₅H₁₂O₃ [M + H]⁺: requires 241.0865; found 241.0865.

Peak	Retention time (min)	Area (%)	
1	18.373	67.190	34% ee
2	20.800	32.810	

• After recrystallization - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	48.256	85.329	71% ee
2	56.996	14.671	

(*R*)-3-(naphthalen-1-yl)isobenzofuran-1(3*H*)-one $C_{18}H_{12}O_2$ (2j). White solid. *Rf* = 0.3. $[\alpha]_D^{20}$ = + 4.46 (*c* = 0.51 in DCM). Melting point = 154 - 157°C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 88% yield and 79% *ee*. HPLC: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): $t_R(S)$ = 15.46 min, $t_R(R)$ = 25.56 min.

¹H NMR (400 MHz, CDCI₃): δ = 7.23 – 7.27 (m, 2H); 7.38 (d, J = 8.1 Hz, 1H); 7.39 – 7.45 (m, 1H); 7.54 – 7.68 (m, 4H); 7.87 (d, J = 8.2 Hz, 1H); 7.92 (d, J = 8.0 Hz, 1H); 8.1 (d, J = 8.0 Hz, 1H); 8.23 (d, J = 8.3 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** δ = 79.6; 122.8; 123.1; 124.4; 125.2; 125.9; 126.0; 126.1; 126.9; 129.0; 131.2; 131.8; 133.9; 134.1; 149.2; 170.5 ppm.

HRMS (ESI⁺): Calcd for C₁₈H₁₂O₂ [M + H]⁺ requires 261.0916; found 261.0918.

Peak	Retention time (min)	Area (%)	
1	15.465	10.701	79% ee
2	25.564	89.299	

(*R*)-3-(*m*-(trifluoromethyl)phenyl)isobenzofuran-1(3*H*)one C₁₅H₉F₃O₂ (2k). White solid. *Rf* = 0.3. $[\alpha]_D^{20} = -47.4$ (*c* = 1.04 in EtOAc). Melting point = 98 - 100 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 72% yield and 73% *ee.* HPLC: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 6.73 min, t_R (*R*) = 8.51 min.

¹H NMR (400 MHz, CDCl₃): δ = 6.45 (s, 1H); 7.35 (dd, J = 7.7 Hz; J = 0.8 Hz, 1H); 7.47 – 7.55 (m, 2H); 7.58 – 7.71 (m, 4H); 8.00 (d, J = 7.6 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCI₃):** δ = 81.5; 122.6; 123.62 (q, ⁴*J*_{C-F} = 3.8 Hz); 123.64 (q, *J*_{C-F} = 271.1 Hz); 125.3; 125.8; 126.0 (q, *J*_{C-F} = 3.7 Hz); 129.5; 129.7; 130.1; 131.3 (q, *J*_{C-F} = 32.6 Hz); 134.5; 137.5; 148.8; 170.0 ppm.

HRMS (ESI⁺): Calcd for C₁₅H₉F₃O₂ [M + H]+: requires 279.0633; found 279.0639.

Peak	Retention time (min)	Area (%)	
1	6.728	13.634	73% ee
2	8.509	86.366	

• After recrystallization - Enantiomer R

Peak	Retention time (min)	Area (%)	
1	7.354	11.600	77% ee
2	9.721	88.400	

3-(2,4-difluorophenyl)isobenzofuran-1(3H)-one C₁₄H₈F₂O₂ (2I). White solid. *Rf* =0.3. $[\alpha]_{D}^{20}$ = -15.84 (*c* = 0.50 in DCM). Melting point = 113 - 116 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 77% yield and 80% *ee.* HPLC: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm): t_R (*S*) = 7.67 min t_R (*R*) = 8.19 min.

¹**H NMR (400 MHz, CDCI₃):** δ = 6.70 (s, 1H); 6.81 – 6.96 (m, 2H); 7.11 (td, *J* = 8.4 Hz, *J* = 6.3 Hz, 1H); 7.41 (d, *J* = 7.7 Hz, 1H); 7.58 (t, *J* = 7.5 Hz, 1H); 7.69 (td, *J* = 7.6 Hz, *J* = 1.0 Hz, 1H) ; 7.97 (d, *J* = 7.6 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 76.1$ (d, ⁴ $J_{C-F} = 3.5$ Hz); 104.4 (t, J = 25.3 Hz); 111.9 (dd, ² $J_{C-F} = 21.6$ Hz, ¹ $J_{C-F} = 3.7$ Hz), 120.0 (d, ³ $J_{C-F} = 13.2$ Hz); 122.6 (d, $J_{C-F} = 2.0$ Hz); 125.4; 125.8; 129.0 (dd, ³ $J_{C-F} = 10.0$ Hz, ⁴ $J_{C-F} = 4.9$ Hz) ; 129.6; 134.5; 148.8; 160.81 (dd, ¹J = 251.1 Hz, ³J = 12.2 Hz ; 163.3 (dd, ¹ $J_{C-F} = 252.8$, ³ $J_{C-F} = 12.2$ Hz); 170.1 ppm. HRMS (ESI⁺): Calcd for C₁₄H₈F₂O₂ [M + H]⁺ requires 247.0571; found 247.0569.

Peak	Retention time (min)	Area (%)	
1	7.675	9.845	80% ee
2	8.196	90.155	

• After recrystallization - Enantiomer S

Peak	Retention time (min)	Area (%)	
1	7.589	1.404	97% ee
2	8.113	98.596	

(*R*)-5-chloro-3-(*p*-tolyl)isobenzofuran-1(3*H*)-one C₁₅H₁₁O₂Cl (3a). White solid. *Rf* =0.4. $[\alpha]_D^{20} = +71.50$ (*c* = 0.40 in DCM). Melting point = 139 - 141 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 66% yield and 90% *ee.* **HPLC:** (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm): t_R (*S*) = 10.21 min, t_R (*R*) = 12.67 min.

¹H NMR (400 MHz, CDCl₃): δ = 2.36 (s, 3H); 6.33 (s, 1H); 7.14 (d, *J* = 8.0 Hz, 2H); 7.20 (d, *J* = 8.0 Hz, 2H), 7.29 - 7.31 (m, 1H) 7.52 (dd, *J* = 8.2 Hz, J = 1.7 Hz, 1H); 7.88 (d, *J* = 8.2 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** δ = 21.2; 82.1; 123.2; 124.1; 126.7; 126.9; 129.7; 130.1; 132.6; 139.6; 141.0; 151.4; 169.3 ppm.

HRMS (ESI⁺): Calcd for C₁₅H₁₁ClO₂ [M + H]⁺ requires 259.0526; found 259.0522. [M + H - CH₃]⁺ requires 245.0369; found 245.0360.

Peak	Retention time (min)	Area (%)	
1	10.218	5.081	90% ee
2	12.676	94.919	

(*R*)-6-chloro-3-(*p*-tolyl)isobenzofuran-1(3*H*)-one $C_{15}H_{11}O_2CI$ (3b). White solid. *Rf* = 0.4. $[\alpha]_D^{20} = -4.07$ (*c* = 0.59 in DCM). Melting point = 121 - 124 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 63% yield and 92% *ee*. **HPLC:** (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 0.8 mL/min, $\lambda = 254$ nm): $t_R(S) = 11.36$ min,

 $t_{R}(R) = 14.89$ min.

¹**H NMR (400 MHz, CDCI₃):** δ = 2.35 (s, 3H); 6.35 (s, 1H); 7.13 (d, *J* = 8.1 Hz, 2H); 7.19 (d, *J* = 8.1 Hz, 2H); 7.26 (d, *J* = 1.7 Hz, 1H); 7.60 (dd, *J* = 8.2 Hz, *J* = 1.8 Hz, 1H); 7.91 (d, *J* = 1.8 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** δ = 21.2; 82.6; 124.1; 125.4; 127.0; 127.5; 129.7; 132.7; 134.5; 135.6; 139.6; 147.9; 169.0 ppm.

HRMS (ESI⁺): Calcd for C₁₅H₁₁ClO₂: [M + H]⁺ requires 259.0526; found 259.0527. [M + H - CH₃]⁺ requires 245.0369; found 245.0371.

Peak	Retention time (min)	Area (%)	
1	11.365	4.039	92% ee
2	14.894	95.961	

(*R*)-7-chloro-3-(*p*-tolyl)isobenzofuran-1(3*H*)-one C₁₅H₁₁O₂Cl (3c). White solid. *Rf* = 0.3. $[\alpha]_{D}^{20}$ = - 109.70 (*c* = 0.85 in DCM). Melting point = 97 - 100 °C. Purified by column chromatography (hexane/EtOAc 85:15) to give the product in 70% yield and 87% *ee*. HPLC: (Chiralcel OD-H, hexane/i-PrOH = 85/15, flow rate = 0.8 mL/min, λ = 254 nm): t_R(*S*) = 12.94 min, t_R(*R*) = 17.22 min.

¹H NMR (400 MHz, CDCI₃): δ = 2.35 (s, 3H); 6.30 (s, 1H); 7.14 (d, *J* = 8.2 Hz, 2H); 7.18 – 7.21 (m, 3H); 7.48 (d, *J* = 7.8 Hz, 1H); 7.55 (t, *J* = 7.7 Hz, 1H) ppm.

¹³**C NMR (100 MHz, CDCl₃):** δ = 21.1; 81.3; 121.3; 122.2; 126.9; 129.6; 130.5; 132.8; 133.0; 135.1; 152.1; 139.5; 167.3 ppm.

HRMS (ESI⁺): Calcd for C₁₅H₁₁ClO₂ [M + H]⁺ requires 259.0526; found 259.0520. [M + H - CH₃]⁺ requires 245.0369; found 245.0361.

Peak	Retention time (min)	Area (%)	
1	12.941	6.677	87% ee
2	17.224	93.323	

5. NMR Spectra

6. X-ray Crystal Structure of Compound 2f

Single crystals of **2f** suitable for X-ray diffraction studies were grown from a chloroform/petroleum ether solvent mixture. A Bruker D8 Venture Photon 100 dual source diffractometer was used to collect X-ray data for the structural analysis. Data were collected using Cu-K α radiation and a combination of ϕ and ω scans was carried out to obtain at least one unique data set. The crystal structure was solved using direct methods with SHELXS.⁴ The final structure was refined using SHELXL,⁴ where the remaining atoms were located from difference Fourier synthesis. Anisotropic displacement parameters were applied to all non-hydrogen atoms followed by full-matrix least-squares refinement based on F². All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters

Molecular formula	$C_{14}H_9BrO_2$
Formula weight (g mol ⁻¹)	289.12
Т (К)	293(2)
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
<i>a</i> (Å)	6.1663(3)
b (Å)	11.1767(6)
<i>c</i> (Å)	16.5802(8)

Table S1. Crystallographic data and structure refinement parameters for 2f.

⁴ G. M. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112.

V (Å ³)	1142.69(10)
Ζ	4
Radiation type	Cu <i>Kα</i>
$\rho_{calcd} (g \ cm^{-3})$	1.681
μ (mm ⁻¹)	4.786
<i>F</i> (000)	576
Crystal size (mm)	0.61 × 0.29 × 0.24
θ range (°)	4.771 to 79.536
Limiting indices (<i>h, k, l</i>)	$-7 \le h \le 6$
	$-14 \le k \le 14$
	-20 ≤ /≤ 21
Reflections collected	43921
Reflections unique (R _{int})	2474 (0.0319)
Completeness to θ_{max} (%)	99.6
Data / restraints / param.	2474 / 0 / 159
Absorption correction	Multiscan
Min. and max. transmission	0.4336 and 0.7542
$R_1 [I > 2\sigma(I)]$	0.0188
$wR_2 [I > 2\sigma(I)]$	0.0492
R ₁ (all data)	0.0189
wR ₂ (all data)	0.0492
S on <i>F</i> ²	1.071
Largest diff. peak and hole (e $Å^{-3}$)	0.270 and -0.265
Absolute structure ⁵	Flack x determined using 1006 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
Absolute structure parameter ⁵	0.008(4)

⁵ S. Parsons, H. D. Flack, T. Wagner, *Acta Cryst.* **2013**, *B69*, 249.