Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting information

Solvent-Controlled Chemoselectively Constructing C-S/S-S Bonds via

Michael Reaction/Thiol Coupling of Quinoline-2-thiones

Xi Zhang,^{‡ a} Tong-Lin Wang,^{‡ a} Xiao-Jun Liu,^a Xi-Cun Wang,^a Zheng-Jun Quan^{*a}

^{*a*} Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China.

Table of Contents

1. General Information	2
2. Typical Procedure for the Synthesis of 3	2
3. Typical Procedure for the Synthesis of 4	2
4. Typical Procedure for the Synthesis of 6	3
5. Spectroscopic Data of Compounds	4
6. Copies of ¹ H NMR and ¹³ C NMR Spectra for Compounds1	3

1. General Information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. ¹H NMR and ¹³C NMR data analyses were performed with a Varian Mercury plus-400 and Agilent 600 MHz DD2 instruments CDCl₃ and DMSO-d6 as solvent and tetramethylsilane (TMS) as the internal standard were employed. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H NMR spectrum as 0.00 ppm. The data of 1H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet and br = broad), coupling constant (J values) in Hz and integration. Chemical shift for ${}^{13}C$ NMR spectra were recorded in ppm from TMS using the central peak of CDCl₃ (77.0 ppm) as the internal standard. ¹⁹F NMR spectra were recorded on a Varian Mercury 400 plus instrument. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Melting points were measured with an XT-4 apparatus. High-resolution mass spectra (HRMS) (ESI) were obtained with a Bruker Daltonics APEX II 47e and Orbitrap Elite mass spectrometer. Column chromatography was generally performed on silica gel (200-300 mesh) and TLC analyses were conducted on silica gel GF254 plates. All reagents were directly used from purchased without any further purification unless otherwise specified.

2. Typical Procedure for the Synthesis of **3**

The mixture of quinoline-2-thione **1a** (0.2 mmol, 50 mg), acrylonitrile **2a** (0.24 mmol, 13 mg) and K₂CO₃ (20%, 6 mg) in EtOH (2 mL) was stirred at room temperature for 5 hours under air atmosphere. After the reaction completed (monitored by TLC analysis), saturated aq. NH₄Cl was added to the mixture to quench the reaction and extracted with ethyl acetate (3×25 mL). The combined organic layers were washed with aqueous NaHCO₃ and brine, dried over MgSO₄, filtered, and the volatiles were removed in vacuum. The mixture was purified by using silica gel column chromatography (ethyl acetate: petroleum ether = 1:30). The corresponding product **3a** was obtained as a white solid (55 mg, 90% yield).

3. Typical Procedure for the Synthesis of 4

The mixture of Quinoline-2-thione **1a** (0.2 mmol, 50 mg), and K_2CO_3 (20%, 6 mg) was dissolved in 1,4-dioxane (2 mL) and stirred at room temperature for 5 hours under air atmosphere. After the reaction completed (monitored by TLC analysis), saturated aq. NH₄Cl was added to the mixture to quench the reaction and extracted with ethyl acetate (3×25 mL). The combined organic layers were washed with aqueous NaHCO₃ and brine, dried over MgSO₄, filtered, and the volatiles were removed in vacuum. The mixture was purified using silica gel column chromatography (ethyl acetate: petroleum ether = 1:30). The corresponding product **4a** was obtained as a white solid (80 mg, 80% yield)

4. Typical Procedure for the Synthesis of 6

The mixture of quinoline-2-thione **1a** (0.2 mmol, 50 mg), thiophenol **5a** (0.3 mmol, 13 mg) and K_2CO_3 (20%, 6 mg) in 1,4-dioxane (2 mL) was stirred at room temperature for 5 hours under air. After the completion of the reaction was monitored by TLC analysis, 2.0 mL saturated aq. NH₄Cl was added to the mixture to quench the reaction and extracted with ethyl acetate (3×25 mL). The combined organic layers were washed with aqueous NaHCO₃ and brine, dried over MgSO₄, filtered, and the volatiles were removed in vacuum. The mixture was purified by using silica gel column chromatography (ethyl acetate: petroleum ether = 1:30). The corresponding product **6a** was obtained as a colourless oil (40 mg, 55% yield).

5. Spectroscopic Data of Compounds

3-((6-methyl-4-phenylquinolin-2-yl)thio)propanenitrile (**3a**). White solid. mp: 114-116°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.89 (d, *J* = 8.4 Hz, 1H), 7.57–7.44 (m, 7H), 7.11 (s, 1H), 3.58 (t, *J* = 7.2 Hz, 2H), 3.01 (t, *J* = 7.2 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ = 155.47, 148.13, 147.48, 137.83, 135.82, 132.09, 129.58, 128.81, 128.72, 128.40, 125.11, 121.03, 119.02, 25.71, 21.92, 18.78. HRMS (ESI) m/z: Calcd for C₁₉H₁₆N₂S: 305.1107 [M+H]⁺, Found 305.1110.

3-((7-methyl-4-phenylquinolin-2-yl)thio)propanenitrile (**3a**). White solid. mp: 136-137 °C. ¹H NMR (600 MHz, CDCl₃) δ = 7.79 (s, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.53 – 7.42 (m, 5H), 7.24 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.09 (s, 1H), 3.58 (t, *J* = 7.2 Hz, 2H), 3.01 (t, *J* = 7.2 Hz, 2H), 2.55 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ = 156.25, 148.86, 148.25, 140.15, 137.54, 129.32, 128.54, 128.50, 127.78, 127.65, 125.67, 122.87, 119.91, 118.73, 25.48, 21.62, 18.51. HRMS (ESI) m/z: Calcd for C₁₉H₁₆N₂S: 305.1107 [M+H]⁺, Found 305.11101.

3-((6-methoxy-4-phenylquinolin-2-yl)thio)propanenitrile (**3c).** White solid. mp: 104-106°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.90 (d, *J* = 9.2 Hz, 1H), 7.55–7.45 (m, 5H), 7.33 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.12 (s, 1H), 7.11 (s, 1H), 3.76 (s, 3H), 3.56 (t, *J* = 7.2 Hz, 2H), 2.99 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (150MHz, CDCl₃) δ =157.25, 153.50, 147.41, 144.74, 137.67, 129.85, 129.14, 128.67, 128.54, 125.74, 121.45, 121.09, 118.73, 104.60, 55.45, 25.51, 18.58. HRMS (ESI) m/z: Calcd for C₁₉H₁₆N₂OS: 321.1056 [M+H]⁺, Found 321.1058.

3-((7-methoxy-4-phenylquinolin-2-yl)thio)propanenitrile (**3d**). White solid. mp: 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.68 (d, *J* = 9.2 Hz, 1H), 7.53–7.41 (m, 5H), 7.33 (d, *J* = 2.8 Hz, 1H), 7.05 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.03 (s, 1H), 3.98 (s, 3H), 3.59 (t, *J* = 7.2 Hz, 2H), 3.01 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 160.96, 156.65, 150.50, 148.33, 137.58, 129.28, 128.55, 128.52, 127.11, 119.77, 118.75, 118.60, 118.14, 107.08, 55.58, 25.42, 18.60. HRMS (ESI) m/z: Calcd for C₁₉H₁₆N₂OS: 321.1056 [M+H]⁺, Found 321.1060.

3-((8-methoxy-4-phenylquinolin-2-yl)thio)propanenitrile (**3e).** White solid. mp: 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.53–7.42 (m, 5H), 7.38–7.29 (m, 2H), 7.18 (s, 1H), 7.06 (dd, *J* = 7.6, 1.4 Hz, 1H), 4.06 (s, 3H), 3.60 (t, *J* = 6.8 Hz, 2H), 3.14 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 155.47, 154.80, 148.47, 140.46, 137.73, 129.34, 128.49, 125.97, 125.56, 121.18, 118.86, 117.81, 108.83, 56.26, 26.12, 18.10. HRMS (ESI) m/z: Calcd for C₁₉H₁₆N₂OS: 321.1056 [M+H]⁺, Found 321.1059.

3-((6-ethyl-4-phenylquinolin-2-yl)thio)propanenitrile (**3f**). White solid. mp: 108-110°C. IR (KBr) 2972, 2900, 2162, 1581, 1543, 1047, 702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, *J* = 8.4 Hz, 1H), 7.59 – 7.45 (m, 7H), 7.12 (s, 1H), 3.58 (t, *J* = 7.2 Hz, 2H), 3.01 (t, *J* = 7.2 Hz, 2H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 155.28, 148.03, 147.45, 141.89, 137.61, 130.68, 129.34, 128.56, 128.47, 128.32, 124.87, 123.70, 120.77, 118.73, 28.98, 25.48, 18.53, 15.61. HRMS (ESI) m/z: Calcd for C₂₀H₁₈N₂S: 319.1263 [M+H]⁺, Found 319.1266.

3-((6-methyl-4-(p-tolyl)quinolin-2-yl)thio)propanenitrile (3g). White solid. mp: 109-110°C. ¹H NMR (400 MHz, CDCl₃) δ =7.88 (d, *J* = 8.4 Hz, 1H), 7.58 (s, 1H), 7.50 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.38–7.30 (m, 4H), 7.09 (s, 1H), 3.57 (t, *J* = 7.2 Hz, 2H), 3.00 (t, *J* = 7.2 Hz, 2H), 2.46 (s, 3H), 2.43 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ =155.21, 147.95, 147.26, 138.40, 135.45, 134.65, 131.75, 129.26, 129.25, 128.15, 124.97, 124.93, 120.71, 118.74, 25.48, 21.64, 21.29, 18.54. HRMS (ESI) m/z: Calcd for C₂₀H₁₈N₂S: 319.1263 [M+H]⁺, Found 319.1267.

3-((6-ethyl-4-(p-tolyl)quinolin-2-yl)thio)propanenitrile (**3h**). White solid. mp: **89-91**°C. ¹H NMR (400 MHz, CDCl₃) δ =7.91 (d, *J* = 8.4 Hz, 1H), 7.61 (s, 1H), 7.57– 7.52 (m, 1H), 7.39–7.30 (m, 4H), 7.10 (s, 1H), 3.58 (t, *J* = 6.8 Hz, 2H), 3.00 (t, *J* = 6.8 Hz, 2H), 2.73 (q, *J* = 7.6 Hz, 2H), 2.46 (s, 3H), 1.24 (t, *J* = 8.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ =155.25, 148.09, 147.47, 141.78, 138.41, 134.67, 130.60, 129.28, 129.26, 128.31, 124.98, 123.78, 120.71, 118.75, 28.99, 25.48, 21.30, 18.53, 15.65. HRMS (ESI) m/z: Calcd for C₂₁H₂₀N₂S: 333.1420 [M+H]⁺, Found 333.1424.

3-((6-butyl-4-(4-pentylphenyl)quinolin-2-yl)thio)propanenitrile (3i). Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ =7.90 (d, *J* = 8.4 Hz, 1H), 7.61 (d, *J* = 2.0 Hz, 1H), 7.52 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.41–7.30 (m, 4H), 7.11 (s, 1H), 3.57 (t, *J* = 6.8 Hz, 2H), 2.99 (t, *J* = 7.2 Hz, 2H), 2.69 (q, *J* = 7.6 Hz, 4H), 1.75–1.66 (m, 2H), 1.64–1.56 (m, 2H), 1.41–1.30 (m, 6H), 0.96–0.88 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ =155.24, 148.08, 147.48, 143.46, 140.42, 134.86, 131.00, 129.27, 128.61, 128.21, 124.90, 124.46, 120.74, 118.75, 35.74, 35.72, 33.58, 31.59, 31.07, 25.49, 22.56, 22.33, 18.54, 14.04, 13.90. HRMS (ESI) m/z: Calcd for C₂₇H₃₂N₂S: 417.2359 [M+H]⁺, Found 417.2362.

3-((4-(4-fluorophenyl)-6-methylquinolin-2-yl)thio)propanenitrile (3j). White solid. mp: 110-112°C. IR (KBr) 3047, 2248, 1602, 1544, 1510, 839 cm⁻¹.¹H NMR (400 MHz, CDCl₃) δ =7.89 (d, *J* = 8.4 Hz, 1H), 7.53–7.48 (m, 2H), 7.45–7.41 (m, 2H), 7.21 (t, *J* = 8.4 Hz, 2H), 7.08 (s, 1H), 3.57 (t, *J* = 7.2 Hz, 2H), 3.00 (t, *J* = 7.2 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ =163.72, 162.08, 155.29, 147.02 (d, *J* = 64.5 Hz), 135.73, 133.52 (d, *J* = 3.3 Hz), 131.93, 131.05 (d, *J* = 8.1 Hz), 128.25, 124.82, 124.59, 120.82, 118.69, 115.66 (d, *J* = 21.3 Hz), 25.48, 21.67, 18.52. HRMS (ESI) m/z: Calcd for C₁₉H₁₅FN₂S: 322.0940 [M+H]⁺, Found 322.0944.

3-((4-phenylbenzo[g]quinolin-2-yl)thio)propanenitrile(3k). White solid. mp: 139-141 °C. ¹H NMR (400 MHz, CDCl₃) δ =7.98–7.87 (m, 2H), 7.84 (d, *J* = 8.8 Hz, 1H), 7.57 (d, *J* = 8.8 Hz, 1H), 7.50–7.42 (m, 3H), 7.38–7.34 (m, 2H), 7.18 (s, 1H), 7.13 (t, *J* = 7.2 Hz, 1H), 3.60 (t, *J* = 7.2 Hz, 2H), 3.02 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 155.09, 149.71, 148.70, 142.03, 132.48, 131.82, 129.79, 129.20, 128.65, 128.30, 128.19, 127.82, 127.68, 126.20, 125.68, 123.31, 121.39, 118.68, 25.53, 18.66. HRMS (ESI) m/z: Calcd for C₂₂H₁₆N₂S: 341.1107 [M+H]⁺, Found 341.1111.

3-((4-phenylbenzo[h]quinolin-2-yl)thio)propanenitrile(3l). White solid. mp: 94-97 °C. ¹H NMR (400 MHz, CDCl₃) δ =9.21 (d, *J* = 8.0 Hz, 1H), 7.89 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.77–7.68 (m, 4H), 7.57–7.45 (m, 5H), 7.32 (s, 1H), 3.76 (t, *J* = 7.1 Hz, 2H), 3.13 (t, *J* = 7.1 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ =154.92, 148.84, 146.64, 137.72, 133.69, 130.81, 129.46, 128.60, 128.53, 128.39, 127.75, 127.08, 126.48, 124.29, 122.97, 122.18, 121.30, 118.63, 25.82, 18.39. HRMS (ESI) m/z: Calcd for C₂₂H₁₆N₂S: 341.1107 [M+H]⁺, Found 341.1110.

methyl 3-((6-methyl-4-phenylquinolin-2-yl)thio)propanoate(3m). White solid mp: 58-60 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.89 (d, *J* = 8.0 Hz, 1H), 7.54–7.42 (m, 7H), 7.09 (s, 1H), 3.72 (s, 3H), 3.61 (t, *J* = 7.2 Hz, 2H), 2.93 (t, *J* = 7.2 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 173.03, 156.91, 147.57, 138.07, 135.36, 131.79, 129.61, 128.75, 128.56, 128.47, 124.99, 124.93, 121.15, 52.01, 34.72, 24.95, 21.89. HRMS (ESI) m/z: Calcd for C₂₀H₁₉NO₂S: 338.1209 [M+H]⁺, Found 338.1211.

ethyl 3-((6-methyl-4-phenylnaphthalen-2-yl)thio)propanoate(3n). White solid. mp: 80-82°C. ¹H NMR (400 MHz,CDCl₃) δ =7.89 (d, *J* = 8.4 Hz, 1H), 7.55–7.44 (m, 7H), 7.10 (s, 1H), 4.19 (q, *J* = 6.8 Hz, 2H), 3.60 (t, *J* = 6.8 Hz, 2H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.42 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ =172.29, 156.77, 147.33, 137.86, 135.08, 131.52, 129.36, 128.48, 128.30, 128.23, 124.73, 124.69, 120.91, 60.58, 34.71, 24.74, 21.62, 14.22. HRMS (ESI) m/z: Calcd for C₂₁H₂₁O₂S: 352.1366 [M+H]⁺, Found 352.1368.

butyl 3-((6-methyl-4-phenylnaphthalen-2-yl)thio)propanoate(3o). Colourless Oil. ¹H NMR (400 MHz, CDCl₃) δ =7.89 (d, *J* = 8.4 Hz, 1H), 7.55–7.44 (m, 7H), 7.10 (s, 1H), 4.13 (t, *J* = 6.4 Hz, 2H), 3.61 (t, *J* = 6.8 Hz, 2H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.42 (s, 3H), 1.63–1.58 (m, 2H), 1.44–1.33 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ =172.37, 156.76, 147.32, 147.31, 137.86, 135.08, 131.51, 129.36, 128.48, 128.29, 128.22, 124.73, 124.69, 120.92, 64.51, 34.73, 30.64, 24.77, 21.62, 19.13, 13.68. HRMS (ESI) m/z: Calcd for C₂₃H₂₅NO₂S: 380.1679 [M+H]⁺, Found 380.1680.

1,2-bis(6-methyl-4-phenylquinolin-2-yl)disulfane (4a). White solid. mp: 199-201°C. IR (KBr) 2924, 2850, 1577, 1546, 1323, 819 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ : 7.94 (d, J = 8.8Hz, 1H), 7.75 (s, 1H), 7.57 (s, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.46 (m, 3H), 7.42 – 7.38 (m, 2H), 2.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 157.75, 149.28, 147.07, 137.68, 136.33, 132.28, 129.46, 128.51 (d, J = 6.5 Hz), 125.13, 124.72, 117.43, 21.74. HRMS (ESI⁺) m/z: Calcd for C₃₂H₂₄N₂S₂ 501.1454 [M+H]⁺, Found 501.1458.

1,2-bis(7-methyl-4-phenylquinolin-2-yl)disulfane(4b). White solid. mp : 144-146°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.85–7.80 (m, 1H), 7.74–7.69 (m, 2H), 7.47–7.38 (m, 5H), 7.27–7.24 (m, 1H), 2.53 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ = 158.73, 149.66, 148.71, 140.54, 137.63, 129.45, 128.52, 128.50, 127.87, 125.60, 123.16, 116.48, 21.68. HRMS (ESI⁺) m/z: Calcd for C₃₂H₂₄N₂S₂ 501.1454 [M+H]⁺, Found 501.1456

1,2-bis(6-methoxy-4-phenylquinolin-2-yl)disulfane(4c). White solid. mp: 148-150°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.70 (d, *J* = 9.2 Hz, 1H), 7.65 (s, 1H), 7.46–7.36 (m, 6H), 7.07 (dd, *J* = 9.2, 2.4 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ = 161.18, 159.16, 150.33, 149.77, 137.65, 129.41, 128.51, 127.04, 120.16, 119.23, 115.09, 106.91, 55.58. HRMS (ESI⁺) m/z: Calcd for C₃₂H₂₄N₂O₂S₂ 533.1352 [M+H]⁺, Found 533.1355.

1,2-bis(6-chloro-4-phenylquinolin-2-yl)disulfane (4d). White solid. mp: 200-203 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 2.4 Hz, 1H), 7.76 (s, 1H), 7.62 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.52–7.45 (m, 3H), 7.41–7.36 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 159.18, 149.38, 147.10 , 137.00, 132.56, 131.29, 130.57, 129.59, 129.21, 129.05, 126.21, 125.06, 118.41. HRMS (ESI) m/z: Calcd for C₃₀H₁₈Cl₂N₂S₂: 541.0361 [M+H]⁺, Found 541.0365.

1,2-bis(6-methyl-4-(p-tolyl)quinolin-2-yl)disulfane (4e). White solid. mp: 178-180 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.93 (d, *J* = 8.4 Hz, 1H), 7.72 (s, 1H), 7.60 (s, 1H), 7.51 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.31–7.24 (m, 4H), 2.42 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ = 157.76, 149.33, 147.08, 138.44, 136.17, 134.76, 132.18, 129.38, 129.23, 128.46, 125.22, 124.79, 117.32, 21.73, 21.27. HRMS (ESI) m/z: Calcd for C₃₄H₂₈N₂S₂: 529.1767 [M+H]⁺, Found 529.1770.

1,2-bis(6-ethyl-4-(p-tolyl)quinolin-2-yl)disulfane (4f). White solid. mp: 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 0.8 Hz, 1H), 7.62 (s, 1H), 7.56 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.33–7.26 (m, 4H), 2.72 (q, *J* = 7.6 Hz, 2H), 2.42 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 157.82, 149.48, 147.27, 142.44, 138.43, 134.77, 131.04, 129.39, 129.23, 128.60, 125.23, 123.63, 117.27, 29.04, 21.26, 15.54. HRMS (ESI) m/z: Calcd for C₃₆H₃₂N₂S₂: 557.2080 [M+H]⁺, Found 557.2084.

1,2-bis(4-(4-fluorophenyl)-6-methylquinolin-2-yl)disulfane (4g). White solid. mp: 197-200°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.93 (d, *J* = 8.0 Hz, 1H), 7.72 (s, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 7.52 (s, 1H), 7.40–7.35 (m, 2H), 7.16 (t, *J* = 8.8 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ = 163.74, 162.09, 157.71, 148.21, 147.0, 136.56, 133.56(d, *J* = 13.8 Hz), 132.40, 131.16(d, *J* = 34.2 Hz), 128.54, 125.10, 124.46, 117.50, 115.65(d, *J* = 85.2 Hz), 21.75. HRMS (ESI) m/z: Calcd for C₃₂H₂₂F₂N₂S₂: 537.1265 [M+H]⁺, Found 537.1269.

1,2-bis(4-phenylbenzo[h]quinolin-2-yl)disulfane (4h). White solid. mp: 190-192°C. ¹H NMR (400 MHz, CDCl₃) δ = 9.24 (d, *J* = 6.8 Hz, 1H), 7.90 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 2.8 Hz, 2H), 7.68–7.63 (m, 1H), 7.60–7.55 (m, 1H), 7.44 (s, 4H). ¹³C NMR (151 MHz, CDCl₃) δ = 157.36, 149.56, 146.88, 137.95, 133.59, 130.89, 129.57, 128.52, 128.47, 128.41, 127.39, 127.15, 127.02, 125.20, 122.75, 122.70, 118.71. HRMS (ESI) m/z: Calcd for C₃₈H₂₄N₂S₂: 573.1454 [M+H]⁺, Found 573.1458.

6-methyl-4-phenyl-2-(p-tolyldisulfanyl)quinoline. (6a). Colourless Oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.8 Hz, 1H), 7.73 (s, 1H), 7.58 (s, 1H), 7.56–7.43 (m, 8H), 7.09 (d, *J* = 7.2 Hz, 2H), 2.44 (s, 3H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ = 158.50, 148.95, 147.15, 137.87, 137.76, 136.13, 133.12, 132.18, 130.85, 129.85, 129.46, 128.72, 128.56, 128.48, 124.70, 117.32, 21.73, 21.03. HRMS (ESI) m/z: Calcd for C₂₃H₁₉NS₂: 374.1032 [M+H]⁺, Found 374.1035.

2-((4-chlorophenyl)disulfanyl)-6-methyl-4-phenylquinoline (6b). White solid. mp: 173-175 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.4 Hz, 1H), 7.62 (s, 1H), 7.58 (s, 1H), 7.56–7.49 (m, 6H), 7.46–7.43 (m, 2H), 7.26 (s, 1H), 7.24–7.23 (m, 1H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ = 157.48, 149.19, 147.19, 137.73, 136.38, 135.17, 133.50, 132.34, 129.42, 129.38, 129.20, 128.61, 128.57, 128.49, 125.14, 124.74, 117.26, 21.74. HRMS (ESI) m/z: Calcd for C₂₂H₁₆ClNS₂: 394.0485 [M+H]⁺, Found 394.0489.

6-chloro-2-((4-chlorophenyl)disulfanyl)-4-phenylquinoline (6c) Colourless Oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.00$ (d, J = 8.8 Hz, 1H), 7.80 (d, J = 2.4 Hz, 1H), 7.68 (s, 1H), 7.64 (dd, J = 9.2, 2.4 Hz, 1H), 7.57 – 7.49 (m, 6H), 7.45 – 7.41 (m, 2H), 7.28 (s, 1H), 7.26 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) $\delta = 159.16$, 149.01, 146.98, 136.85, 134.82, 133.75, 132.26, 131.03, 130.33, 129.55, 129.31, 129.28, 128.99, 128.85, 125.94, 124.82, 117.98. HRMS (ESI) m/z: Calcd for C₂₁H₁₃Cl₂NS₂: 413.9939 [M+H]⁺, Found 413.9942.

2-(tert-butyldisulfanyl)-6-methyl-4-phenylquinoline (6d) White solid. mp: 83-85 °C. ¹H NMR (600 MHz, CDCl₃) δ = 7.95 (d, *J* = 9.0 Hz, 1H), 7.84 (s, 1H), 7.58 – 7.50 (m, 5H), 7.50 – 7.47 (m, 2H), 2.44 (s, 3H), 1.36 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ = 160.31, 148.47, 146.91, 138.07, 135.91, 132.07, 129.42, 128.58, 128.42, 128.37, 124.86, 124.70, 117.34, 49.25, 29.80, 21.70. HRMS (ESI) m/z: Calcd for C₂₀H₂₁NS₂: 340.1188 [M+H]⁺, Found 340.1193. 6. Copies of ¹H NMR and ¹³C NMR Spectra for Compounds

¹H and ¹³C Spectra of compound 3b (CDCl₃)

¹H and ¹³C Spectra of compound 3c (CDCl₃)

¹H and ¹³C Spectra of compound 3d (CDCl₃)

¹H and ¹³C Spectra of compound 3e (CDCl₃)

¹H and ¹³C Spectra of compound 3f (CDCl₃)

¹H and ¹³C Spectra of compound 3g (CDCl₃)

¹H and ¹³C Spectra of compound 3h (CDCl₃)

¹H and ¹³C Spectra of compound 3i (CDCl₃)

¹H and ¹³C Spectra of compound 3j (CDCl₃)

¹H and ¹³C Spectra of compound 3k (CDCl₃)

¹H and ¹³C Spectra of compound 3l (CDCl₃)

\$38

¹H and ¹³C Spectra of compound 3m (CDCl₃)

¹H and ¹³C Spectra of compound 3n (CDCl₃)

¹H and ¹³C Spectra of compound 30 (CDCl₃)

S44

¹H and ¹³C Spectra of compound 4a (CDCl₃)

¹H and ¹³C Spectra of compound 4b (CDCl₃)

¹H and ¹³C Spectra of compound 4c (CDCl₃)

¹H and ¹³C Spectra of compound 4d (CDCl₃)

 ĝ

S53

¹H and ¹³C Spectra of compound 4e (CDCl₃)

S55

¹H and ¹³C Spectra of compound 4f (CDCl₃)

¹H and ¹³C Spectra of compound 4g (CDCl₃)

¹H and ¹³C Spectra of compound 4h (CDCl₃)

¹H and ¹³C Spectra of compound 6a (CDCl₃)

¹H and ¹³C Spectra of compound 6b (CDCl₃)

¹H and ¹³C Spectra of compound 6c (CDCl₃)

¹H and ¹³C Spectra of compound 6d (CDCl₃)

SEE