An atom efficient synthesis of Tamoxifen

Dorus Heijnen^{‡a}, Milan van Zuylen^{‡a}, Filippo Tosi^{‡a}, and Ben L Feringa*^a

^a Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands ‡ These authors made equal contribution to this work

Table of Contents

1. Experimental section	S2
2. Attempted alternatives for the synthesis of Tamoxifen	S3
3. Characterization of compounds	S4
4. NMR Spectra	S7
5. RME Calculation	S14

1. Experimental section

All reactions were carried out under a nitrogen atmosphere using oven dried glassware and using standard Schlenk techniques unless noted otherwise. THF and toluene were dried using an SPS-system. White colored Pd(P *t*-Bu₃)₂, was purchased from Strem chemicals and stored under nitrogen at -25 °C. All alkyllithium reagents and aryl bromides were purchased from Aldrich or TCI and used without further purification, unless noted otherwise. Chromatography: Merck silica gel type 9385 230-400 mesh, TLC: Merck silica gel 60, 0.25 mm, or Grace-Reveleris purification system with Grace cartridges. Components were visualized by UV. Progress and conversion of the reaction were determined by GC-MS (GC, HP6890: MS HP5973) with an HP1 or HP5 column (Agilent Technologies, Palo Alto, CA). PREP-HPLC was performed on a Grace-reveleris PREP with a 5µ Denali silica (15 cm, 10 mm id). ¹H- and ¹³C-NMR were recorded on a Varian AMX400 (400 and 100.59 MHz, respectively) using CDCl₃ as solvent, unless noted otherwise. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CHCl₃: δ 7.26 for ¹H, δ 77.0 for ¹³C) unless noted otherwise. Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. An ever present spike in the ¹³C NMR was observed at -5 and 194 ppm, and is therefore ignored. For quantitative analysis using ¹H-NMR, 1,1,2,2-tetrachloroethane was used as an internal standard. RP HPLC column: Denali C18, 200 x 10 mm Flow: 6 ml/min.

2. Attempted alternatives for the synthesis of Tamoxifen

We have previously described the cross coupling with free phenol electrophiles, that led to the corresponding cross coupled phenol derivatives.¹ In order to reduce the step count of this synthetic route, we envisioned that the one pot coupling of free 4-bromophenol, followed by electrophilic quenching with amino-alkyl-chloride **15** of reaction intermediate **14** to give (*Z*)-Tamoxifen would bring a considerable advantage for the methodology (Scheme 1). Unfortunately, the deprotonation/cross coupling strategy did not lead to significant product formation, and upon MeI quench we could only recover the methylated product **16**, as well as products arising from lithium halogen exchange as determined by GC-MS analysis.

Scheme 1: Attempted one pot synthesis of Tamoxifen

In order to increase the atom economy even further, and omit the need for a heavy halogen coupling partner, the electrophile **2** was also substituted by the lighter, less waste producing corresponding chloride (**6-Cl**) or methyl ether (**6-OMe**)(Scheme 2). Pd-PEPPSI complexes have previously shown to be very reactive in the coupling of aryl chlorides with organolithium reagents.² Similarly, the Ni-NHC catalysts recently published showed cross coupling with aryl ethers and aryllithium reagents.³ Unfortunately, the combination of the Pd/Cl and Ni/OMe methodology did not give any observable product formation as determined by GC-MS analysis.

Scheme 2: Attempted one pot synthesis of Tamoxifen with alternative electrophiles

3. Characterization of compounds

2-(4-Bromophenoxy)-N,N-dimethylethylamine (6)

To a dry Schlenk flask equipped with a stirring bar NaH (1.36 g (60%), 34 mmol) was added and washed twice with 5 mL of dry hexane. Subsequently, 5 mL of dry THF were added and the suspension was cooled in an ice bath. In a separate Schlenk flask 4-bromophenol (3.0 g, 17 mmol) was dissolved in 8 mL of dry THF. The resulting solution was added slowly to the flask containing the previously

washed NaH as described above. After the addition was complete, the ice bath was removed, 2-chloro-N,Ndimethylethylamine hydrochloride (2.4 g, 17 mmol) was added in portions and the reaction mixture was heated to 40 °C. After 72 h the reaction mixture was allowed to cool to room temperature and the formed precipitate was filtered off. The filtrate was concentrated *in vacuo* and redissolved in 50 mL of ethyl acetate. The organic layer was extracted three times with 50 mL aq. 1 M HCl. The aqueous layer was then neutralized using aq. sat. Na₂CO₃, and subsequently extracted three times with 100 mL EtOAc. The organic layer was then dried using Na₂SO₄ and concentrated *in vacuo*. The product was obtained without further purification as a colorless liquid (4.2 g, 56%). ¹H-NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.9 Hz, 2H), 6.80 (d, J = 8.9 Hz, 2H), 4.03 (t, J = 5.7Hz, 2H), 2.72 (t, J = 5.7 Hz, 2H), 2.33 (s, 6H). The spectral data is in accordance with literature.⁴

Tamoxifen ((Z)-1-(p-Dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene,

Preparation of lithio-stilbene: In a dry Schlenk flask (A) equipped with a stirring bar under nitrogen atmosphere, 160 mg of diphenylacetylene (0.9 mmol) were dissolved in 1 mL of dry THF, and the solution was cooled to 0 °C by means of an ice bath. To this solution 1.85 mL of 0.5 M ethyllithium in cyclohexane/benzene (0.93 mmol) were added dropwise, causing the solution to turn orange. The solution was allowed to quickly warm to room temperature and stirred for 3 h, during which it changed color to yellow, and eventually light green. The resulting solution was lation A

diluted with 2 mL of dry toluene (Solution A).

Procedure for the cross coupling: To a dry Schlenk flask (B) equipped with a stirring bar was added $Pd(t-Bu_3P)_2$ (15.4 mg, 30 µmol, 5%) and 2 mL of dry toluene. By means of a syringe, 12 mL of dry oxygen were bubbled through the solution which was left stirring vigorously overnight, generating a deep red color. A solution of compound **2** (146.4 mg, 0.6 mmol) dissolved in 1 mL of dry toluene was added to the flask. Solution A (freshly prepared) was added over the course of 20 min by means of a syringe pump. After the addition, the reaction mixture was quenched with 0.5 mL of MeOH, filtered over celite and concentrated *in vacuo*. The resulting liquid was dissolved in 20 mL of EtOAc and extracted four times with 30 mL of 1 M aq. HCl. The aqueous layer was neutralized using Na₂CO₃ and subsequently extracted four times with 50 mL of ethyl acetate. The organic layer was dried using Na₂SO₄* and concentrated *in vacuo*. The crude yield was determined by ¹H-NMR analysis, using 1,1,2,2-tetrachloroethane as an internal standard (in reference with the integration of the doublet signal at δ 6.56 ppm). Pure Tamoxifen mixture ((*Z/E*): 10:1) was isolated after flash column chromatography on SiO₂ (DCM/MeOH 96:4, 127 mg, 57 %).

15 mg of the (*E/Z*)-product were dissolved in a 1:1 mixture of water/acetonitrile and purified by RP (C18 Denali) Prep-HPLC chromatography (Water/Acetonitrile/TFA 50:49:1), affording pure (*Z*)-Tamoxifen. ¹H-NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 7.5 Hz, 2H), 7.25 (m, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.56 (d, *J* = 8.8 Hz, 1H), 3.92 (t, *J* = 5.8 Hz, 2H), 2.64 (t, *J* = 5.8 Hz, 2H), 2.46 (q, *J* = 7.4 Hz, 2H), 2.28 (s, 6H), 0.92 (t, *J* = 7.4 Hz, 3H). HRMS (ESI) *m/z*: [M + 1]+ Calcd for C₂₆H₃₀N₁O₁ 371.2322, Found 371.2326. The spectral data is in accordance with literature.⁵

*the use of magnesium sulfate induces the formation of magnesium chelated complexes hampering the purification of the Tamoxifen product.

(Z)-1-(1,2-diphenylhex-1-en-1-yl)naphthalene (11)

To a dry Schlenk flask (B) equipped with a stirring bar was added $Pd(t-Bu_3P)_2$ (12.7 mg, 15 µmol, 5%) and 2 mL of dry toluene. By means of a syringe, 6 mL of dry oxygen were bubbled through the solution which was left stirring vigorously overnight, generating a deep red color. A solution of 1-bromonaphtalene (103.5 mg, 0.5 mmol) dissolved in 0.5 mL of dry toluene was added to the flask. To this flask, a (freshly prepared) solution of lithio-stilbene (as described above) was added over the course of 20 min by means of a syringe pump. After the addition, the reaction mixture was quenched with 0.5 mL of MeOH, filtered over celite and concentrated *in vacuo*. Pure **11** was isolated after flash column chromatography on SiO₂ (Pent, Rf = 0.85, 124 mg,

68 %).¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.04 (m, 1H), 7.69 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.43 – 7.15 (m, 10H), 7.12 – 7.02 (m, 2H), 6.98 – 6.91 (m, 2H), 2.75 (ddd, *J* = 13.4, 9.4, 6.4 Hz, 1H), 2.61 (ddd, *J* = 13.5, 9.3, 6.4 Hz, 1H), 1.56 – 1.43 (m, 2H), 1.42 – 1.29 (m, 2H), 0.87 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.99, 143.33, 142.66, 142.56, 140.92, 137.32, 133.53, 132.06, 128.88, 128.68, 128.30, 128.07, 127.98, 127.34, 126.72, 126.54, 126.36, 125.99, 125.50, 125.15, 125.05, 34.92, 31.46, 22.89, 13.94.

(Z)-(1-(p-tolyl)hex-1-ene-1,2-diyl)dibenzene (12a)

To a dry Schlenk flask (B) equipped with a stirring bar was added $Pd(t-Bu_3P)_2$ (7.66 mg, 15 µmol, 5%) and 1 mL of dry toluene. By means of a syringe, 6 mL of dry oxygen were bubbled through the solution which was left stirring vigorously overnight, generating a deep red color. A solution of *p*-bromotoluene (51.3 mg, 0.3 mmol) dissolved in 0.5 mL of dry toluene was added to the flask. To this flask, a (freshly prepared) solution of lithio-stilbene (as described above) was added over the course of 20 min by means of a syringe pump. After the addition, the reaction mixture was quenched with 0.5 mL of MeOH, filtered over celite and concentrated *in vacuo*. Pure compound **12a** was isolated after flash column chromatography on SiO₂ (Pentane, Rf =

0.2, 55.1 mg, 56%). The spectral data is in accordance with literature.⁶ ¹H-NMR (400 MHz, CDCl₃) δ 7.35 (m, 2H), 7.24 (m, 3H), 7.14 (m, 5H), 6.82 (d, J = 8.2 Hz, 2H), 6.67 (d, J = 8.2 Hz, 2H), 2.43 (m, 2H), 2.19 (s, 3H), 1.31 (m, 2H), 1.23 (m, 2H), 0.78 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.58, 143.97, 142.92, 140.36, 138.57, 135.66, 131.99, 129.73, 129.65, 128.20, 127.99, 126.61, 126.10, 112.89, 55.12, 35.84, 31.29, 22.94, 14.02.

(Z)-(1-(4-methoxyphenyl)hex-1-ene-1,2-diyl)dibenzene (12b)

To a dry Schlenk flask (B) equipped with a stirring bar was added $Pd(t-Bu_3P)_2$ (7.66 mg, 15 µmol, 5%) and 1 mL of dry toluene. By means of a syringe, 6 mL of dry oxygen were bubbled through the solution which was left stirring vigorously overnight, generating a deep red color. A solution of *p*-bromoanisole (56.1 mg, 0.3 mmol) dissolved in 0.5 mL of dry toluene was added to the flask. To this flask, a (freshly prepared) solution of lithio-stilbene (as described above) was added over the course of 20 min by means of a syringe pump. After the addition, the reaction mixture was quenched with 0.5 mL of MeOH, filtered over celite and concentrated *in vacuo*. Pure compound **12a** was isolated after flash column chromatography on

SiO₂ (Pentane/DCM 8:2, Rf = 0.5, 52.6 mg, 51 %). ¹H-NMR (400 MHz, CDCl₃) δ 7.36 (m, 2H), 7.26 (m, 3H), 7.15 (m, 5H), 6.80 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 8.8 Hz, 2H), 3.69 (s, 3H), 2.44 (m, 2H), 1.32 (m, 2H), 1.22 (m, 2H), 0.79 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.91, 142.88, 140.72, 140.21, 139.00, 135.32, 130.75, 129.72, 129.64, 128.22, 128.20, 127.94, 126.60, 126.12, 35.87, 31.27, 22.94, 21.20, 14.03. HRMS (ESI) *m/z*: [M + 1]+ Calcd for C₂₅H₂₅O₁ 341.18999, Found 341.18987.

(Z)-(1-(4-(trifluoromethyl)phenyl)hex-1-ene-1,2-diyl)dibenzene (12c)

To a dry Schlenk flask (B) equipped with a stirring bar was added $Pd(t-Bu_3P)_2$ (12.7 mg, 15 µmol, 5%) and 2 mL of dry toluene. By means of a syringe, 6 mL of dry oxygen were bubbled through the solution which was left stirring vigorously overnight, generating a deep red color. A solution of *p*-bromobenzotrifluoride (112.5 mg, 0.5 mmol) dissolved in 0.5 mL of dry toluene was added to the flask. To this flask, a (freshly prepared) solution of lithio-stilbene (as described above) was added over the course of 20 min by means of a syringe pump. After the addition, the reaction mixture was quenched with 0.5 mL of MeOH, filtered over celite and concentrated *in vacuo*. **12c** was isolated as a mixture with 10% of the impurity

arising from protonation of compound **9** after flash column chromatography on SiO₂ (Pent, Rf = 0.9), and the yield corrected for the impurity (142 mg, 68 %). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.53 (m, 2H), 7.40 – 7.14 (m, 13H)*, 7.10 (dd, *J* = 7.9, 1.8 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 2.54 – 2.37 (m, 2H), 1.37 – 1.28 (m, 2H), 1.27 – 1.17 (m, 2H), 0.79 (t, *J* = 7.1 Hz, 3H). *signal originating from product and identified impurity. ¹³C NMR (101 MHz, CDCl₃) δ 146.75, 142.92, 142.67, 141.80, 137.74, 131.60, 130.89, 129.50, 129.43, 128.75, 128.32, 128.29, 128.23, 128.20, 128.03, 127.09, 126.92, 126.60, 126.55, 124.31, 124.27, 124.23, 123.27, 35.75, 30.97, 22.75, 13.83. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.43.

¹D. Heijnen, F. Tosi, C. Vila, M. C. A. Stuart, P. H. Elsinga, W. Szymanski and B. L. Feringa Angew. Chem. Int. Ed., 2017, 56, 3354-3359.

- ² D. Heijnen, V. Hornillos, B. P. Corbet, M. Giannerini, and B. L. Feringa. Org. Lett., 2015, 17, 2262–2265.
- ³ D. Heijnen J. Gualtierotti, V. Hornillos, and B. L. Feringa Chem. Eur. J., 2016, 22, 3991-399.
- ⁴ Sun, P. -P.; Cheng, Y. -C.; Chang, M. -Y. *Synthesis*, 2017, 49, 2411–2422.
 ⁵ Al-Hassan, M. I.; Miller, R. B. *J. Org. Chem.I*, 1985, 50, 2121–2123.
- ⁶ F. Xue, J. Zhao, T. S. A. Hor, T. Hayashi, J. Am. Chem. Soc., 2015, 137, 3189-3192.

(Z)-Tamoxifen after prep HPLC containing traces of formic acid from the eluent.

Atom Economy and RME calculatic

For the atom economy, we use stoichiometry), and the mass

For the calculation of the Reaction weight*equivalents) and the reacti-("Yield Key SM") of the (advanced syntheses, this is "bromo aminoethe preparation was kept identical for al

		Reagent (equiv.)	Mass Reagent			
		Weighed mass	Mass reagent * Equiv.			
Name/Year	Overall Yield Tamoxifen					
Ley 2013	64%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 BuLi (1.1)	64
		Weighed mass	173 Weighed mass	48 Weighed mass	144	70,4
Larock 2005	68%	Sm Phenol (3)	173 Base NaH (3)	24 Dim-Amine-Salt HCI (3)	144	
		Weighed mass	519 Weighed mass	144 Weighed mass	432	
Hayashi 2015	41%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 Acetylene (1)	130
		Weighed mass	173 Weighed mass	48 Weighed mass	144	130
Yoshida 2003	62%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 Pyridine sm (1)	189
		Weighed mass	173 Weighed mass	48 Weighed mass	144	189
0'Shea 2006	38%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 EtLi (1)	36
		Weighed mass	173 Weighed mass	48 Weighed mass	144	36
Knochel 1997	66%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 acetylene sm (1)	130
		Weighed mass	173 Weighed mass	48 Weighed mass	144	130
Brown 2014	31%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 acetylene sm (1)	130
		Weighed mass	173 Weighed mass	48 Weighed mass	144	130
Hiyama 2005	39%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 bisboron-alkene sm (1)	384
		Weighed mass	173 Weighed mass	48 Weighed mass	144	384
Takagi 2007	32%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 Zirc-Chloride (1,2)	292
		Weighed mass	173 Weighed mass	48 Weighed mass	144	350,4
Qiu 2016	48%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 acetylene (1)	102
		Weighed mass	173 Weighed mass	48 Weighed mass	144	102
Poizat 2014	35%	sm (1)	240 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144	
		Weighed mass	240 Weighed mass	48 Weighed mass	144	
Takaki 2012	36%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 acetylene (1)	130
		Weighed mass	173 Weighed mass	48 Weighed mass	144	130
Hasome 2007	16%	Commercial sm	0 Commercial sm	0 Commercial sm	0 TMS s.m. (1,2)	190
		Weighed mass	0	0	0	228
Scriven 1986	47%	sm (1)	40 Base (1)	198 Dim-Amine-Salt HCI (1)	144 4-hydroxybenzoph. (1)	220
		Weighed mass	120 Weighed mass	198 Weighed mass	504	220
Feringa 2018	68%	Sm Phenol (1)	173 Base NaH (1)	24 Dim-Amine-Salt HCI (1)	144 EtLi (1.3)	36
		Weighed mass	173 Weighed mass	48 Weighed mass	144	46,8

231,4	178 Br-aminoether (1)	481,5	107 propiophenone (1)	106	106 chloro-phenetole (solv)	330,2	254 Bu3SnOMe (1,3)	314	157 Bromine (1,2)	246	246 Ph-MgBr (1,2)	153,6	64 Ethylene (1)	204	204 anyl iodide (1)	381	254 aryl iodide (1,5)	440	220 Iodine (1)	356	178 triisopropylborate (9)	342	228 Aryl lodide (1,5)	217,2	181 Aryl Iodide (1,2)	312	104 Iodobenzene (3)	268,8	
		134	134 TiCl4 (3)	156	156 HfCL4 (1)	417,3	321 Aryl Iodide (1,5)	192	160 Et3N (3)	164,4	137 Br2 (1)	26	26 boralane (1)	291	291	436,5	291 NaOtBu (2)	254	254 aminoether-zn-br (1)	1692	188 Anyl Iodide (1)	436,5	291 BCI3 (2,2)	349,2	291	612	204 Acetylene (1)	420	
		567	189	320	320	436,5	291	303	101	160	160	228	228			192	96	65	65	291	291	257,4	117			116	116	202	

Name/ rear							
Ley 2013	Total Mass (with stoich)	Tot Mas (No stoich)	371/Total mass	Yield Key SM	Reaction Mass Efficiency	Yield	Atom Ec (No stoich)
		940					0,394680851
Larock 2005	1326,2		0,279746645	0,56	0,100261197	5	
		765					0,48496732
Hayashi 2015	2135		0,173770492	0,56	0,066171803	68	
		943					0,393425239
Yoshida 2003	1061,4		0,349538346	0,56	0,080254004	41	
		1385					0,267870036
O'Shea 2006	1808,9		0,20509702	0,56	0,071209685	62	
		1140					0,325438596
Knochel 1997	2846		0,130358398	0,56	0,027740267	38	
		1010					0,367326733
Brown 2014	1254		0,29585327	0,56	0,109347368	66	
		1112					0,333633094
Hiyama 2005	1504,5		0,246593553	0,56	0,042808641	31	
		1220					0,304098361
Takagi 2007	1244		0,298231511	0,56	0,065133762	39	
		1605					0,231152648
Qiu 2016	2783,5		0,133285432	0,56	0,023884749	32	
		1450					0,255862069
Poizat 2014	2617,4		0,141743715	0,56	0,038100711	48	
		862					0,430394432
Takaki 2012	1277		0,290524667	1	0,101683634	35	
		1541					0,240752758
Hasome 2007	1985		0,186901763	0,56	0,037679395	36	
		929					0,399354144
Scriven 1986	1975		0,187848101	1	0,030055696	16	
		1168					0,317636986
Feringa 2018	3040,5		0,122019405	0,72	0,041291367	47	
		555					0,668468468
	643,2		0,576803483	0,56	0,219646766	68	