Supporting Information

Glycosylated Naphthalimides and Naphthalimide Tröger's Bases as Fluorescent Aggregation Probes for Con A

Elena Calatrava-Pérez,^a Jason M. Delente,^a Sankarasekaran Shanmugaraju,^a Chris S. Hawes,^b Clive D. Williams,^c Thorfinnur Gunnlaugsson^{*a} and Eoin M. Scanlan^{*a}

^aSchool of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. ^bSchool of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK. ^cSchool of Biochemistry and Immunology and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.

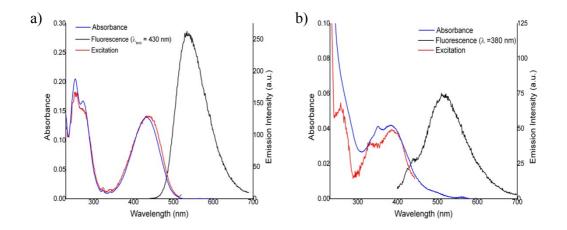

gunnlaut@tcd.ie, eoin.scanlan@tcd.ie

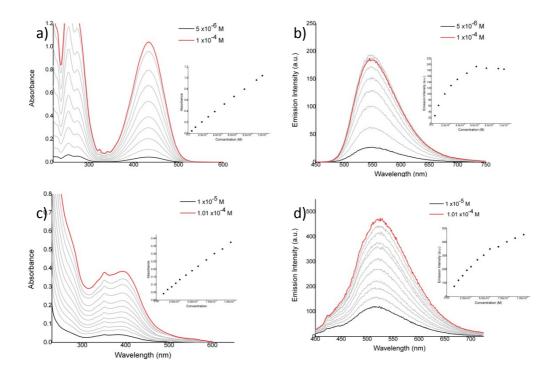
Table of Contents

Photophysical characterisation of compounds 1-3	S3	
In vitro studies of compounds 1-3	S7	
Morphology studies of compounds 1 and 3	S9	
NMR data for compound 3	S11	
References		

Photophysical Characterisation

Compound **1** possesses a broad characteristic ICT band due to the 4-NH₂ substitution with its maximum found at 430 nm (Figure 5.2a). The fluorescence spectra recorded in PBS at 25 °C present a band centred at *ca*. 530 nm (λ_{exc} = 433 nm). In contrast, **3** presents an absorption band at 380 nm, which possesses a shoulder *ca*. 350 nm. The emission spectra showed a band centred at 510 nm (λ_{exc} = 380 nm). Therefore, both the absorption and emission spectra of compound **3** are blue shifted around 50 nm with respect to **1**.

Fig S1. Absorption (blue), fluorescence (black) and excitation (red) spectra of **1** (a) and **3** (b), respectively, measured in PBS at 25 °C.


Table S.1 summarises the characteristic bands of **1** and **3**, extinction coefficient (ϵ) and fluorescent quantum yield (Φ_F) calculated in PBS. Fluorescent quantum yields were calculated using Fluorescein as standard reference.¹ Φ_F values were calculated by comparing the integrated areas underneath the emission band of the spectra using equation 1.

$$(\Phi_{\mathsf{F}})_{\mathsf{x}} = (\Phi_{\mathsf{F}})_{\mathsf{r}} \cdot \mathsf{A}_{\mathsf{r}}/\mathsf{A}_{\mathsf{x}} \cdot \mathsf{F}_{\mathsf{x}}/\mathsf{F}_{\mathsf{r}} \cdot (\eta_{\mathsf{x}})^2/(\eta_{\mathsf{r}})^2 \qquad (\text{ eq. 1})$$

Table S.1.

Compound	λ _{max} (nm)		φ _F (±SEM %)
	π-π*	ICT (ε (M ⁻¹ cm ⁻¹) ±10%)	
1	254, 273	433 (12,000)	11.5 ± 0.09
3	-	380 (8,900)	2.5 ± 0.09

Concentration studies of **1** and **3** were carried out in DPBS (Dulbecco's phosphatebuffered saline) solution. As can be seen in Figure S2, in both cases aggregation in DPBS occurred at concentrations higher than $5x10^{-5}$ M. However, the fluorescence quenching was more pronounced in the case of **1** (Fig S2b).

Fig S2 Absorption (a and c) and emission (b and d) spectra, respectively, of **1** (a and b) and **3** (c and d), at different concentrations. The spectra were recorded in PBS at 25 °C. Inserts in b) and d) show the quenching in fluorescent emission at concentrations higher than 5×10^{-5} M.

Compound **2** presents similar absorption, emission and excitation bands to compound **3** (Figure S3). An absorption band is observed at 385 nm, which also presents a shoulder at 350 nm. The emission spectrum (black line) presents a band centred at 525 nm (λ_{exc} = 385 nm). However, the excitation spectra (red line) is red-

shifter *ca*. 30 nm compared to the absorption spectra, which was not observed for compound **3**.

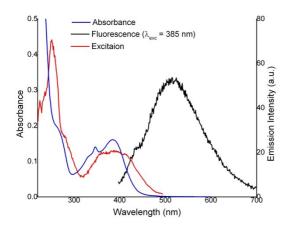
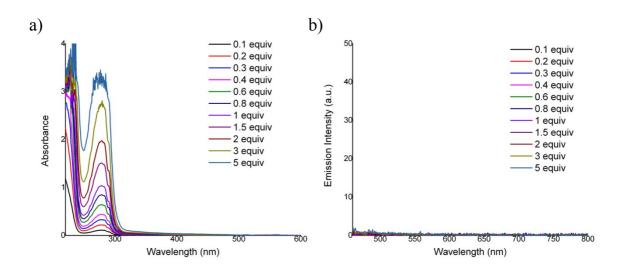
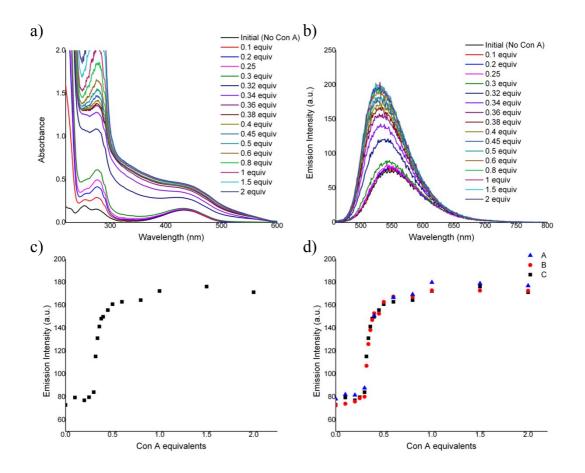




Fig S3. Absorption (blue), fluorescence (black) and excitation (red) spectra of 2 measured in PBS at 25 °C.

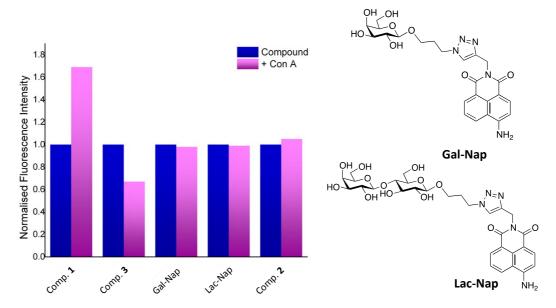


Fig S4 Changes in the absorption (a) and fluorescence emission spectra (λ_{exc} = 433 nm) of Con A at different concentrations, recorded in DPBS pH 7.2 (0.1 mM CaCl₂ and 0.1 mM MnCl₂) at 25 °C

Fig S5. Changes in the absorption (a) and fluorescence emission spectra (b) of **Man-Nap** (1 × 10⁻⁵ M) upon the addition of Con A recorded in DPBS pH 7.2 (0.1 mM CaCl₂ and 0.1 mM MnCl₂) at 25 °C. c) changes in the fluorescence emission intensity (λ_{max} = 545 nm) of **Man-Nap** vs. Con A equivalents. Figures representative of three independent experiments. d) Changes in the fluorescence emission intensity (λ_{max} = 545 nm) of **Man-Nap** vs. Con A equivalents from three independent experiments.

Galactose terminated glyconaphthalimide probes were incubated with 0.1 equivalents of Con A as negative controls (Fig S4). This experiment demonstrated that only the α -mannose functionalised probes interact with Con A, provoking a change in the fluorescence emission. The synthesis of these compounds have been previously described in the literature.²

Fig S6 Normalised fluorescence intensity of a range of glyconaphthalimide probes and compound **2**, before (blue) and after (magenta) the addition of 0.1 equivalents of Con A. The experiments were carried out in DPBS in the presence of 0.1 mM $MnCl_2$ and 0.1 mM $CaCl_2$ at 25 °C.

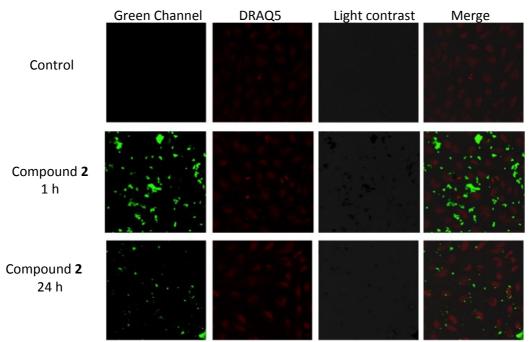
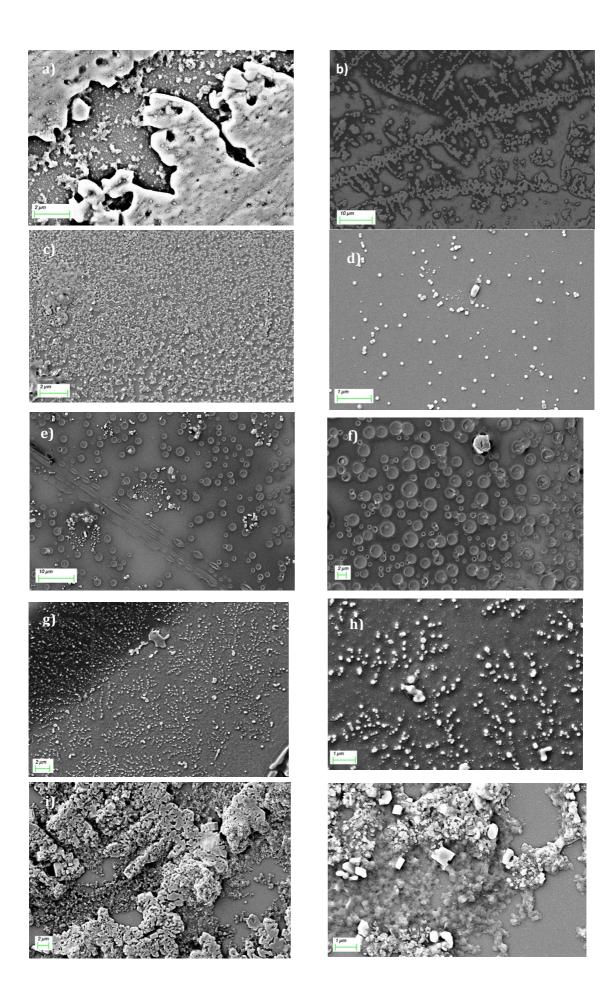

In vitro studies of compounds 1-3

Table S2 shows the toxicity of compounds **2** and **3** in HeLa cells after 24 h and 72 h incubation. The toxicity of compound **1** has previously been reported.²

Compound	IC ₅₀ (μΜ)		
	24 h	72 h	
3	>100	>100	
2	>100	>100	


Table S2.

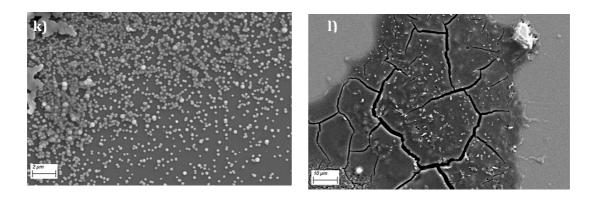

Uptake studies of compound **2** (50 μ M) in HeLa cells at different incubation times showed a greater uptake of the aggregates after long incubation times (Fig S7).

Fig S7 Confocal images of HeLa cells treated with compound **2** at different times. Compounds were excited by a 405 nm argon laser, emission 450-550 nm, DRAQ5 was excited by a 633 nm red helium-neon laser, emission >650 nm.

Morphology studies of compounds 1 and 3

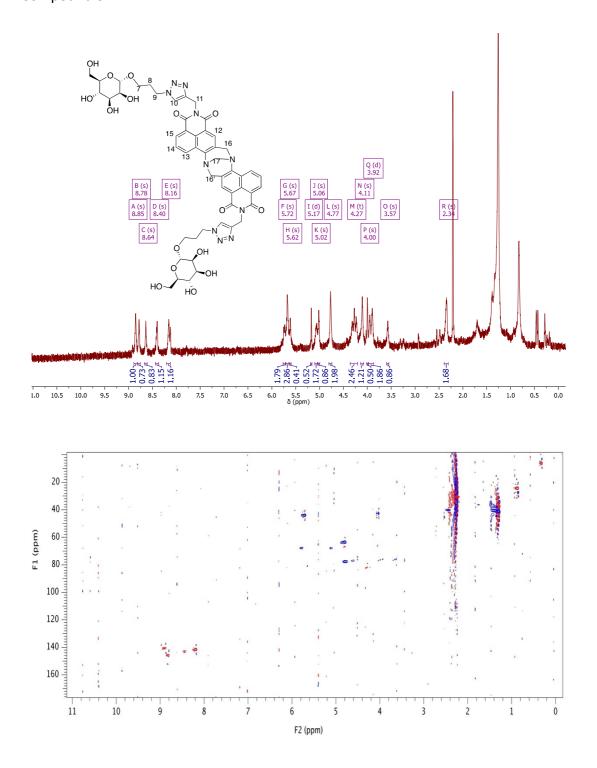


Fig S8 DPBS (a) and Con A alone $(1x10^{-5} \text{ M}, b)$ were imaged under same conditions as controls. Further SEM images of **3** $(1x10^{-4} \text{ M} \text{ in DPBS})$ before (c, d) and after addition of Con A (0.1 equiv) (e,f) and **1** $(1x10^{-4} \text{ M} \text{ in DPBS})$ before (g, h) and after addition of Con A (0.1 equiv) (i, j), and of **3** $(1x10^{-4} \text{ M} \text{ in water})$ (k) and **1** $(1x10^{-4} \text{ M} \text{ in water})$ (l).

Sample	Size (d, nm)	Standard deviation (d, nm)	PDI
3 (1x10 ⁻⁴ M in DPBS)	423.9	31.11	0.469
3 + ConA (1x10 ⁻⁴ M in DPBS)	5390	316.2	0.182

Fig S9 DLS results of the measurement on **3** and **3** + **con A** ($1*10^{-4}$ M in DPBS) demonstrating the formation of aggregates in solution

NMR data for compound 3. Compound 3

Fig S10 ¹H-NMR and HSQC of compound **3** in trifluoroacetic acid-d.

References:

1. Brouwer, A. M., *Pure and Appl. Chem.* 2011, *83*, 2213-2228.

2. Calatrava-Perez, E., Bright, S. A., Achermann, S., Moylan, C., Senge, M. O., Veale, E. B.; Williams, D. C.; Gunnlaugsson, T.; Scanlan, E. M., *Chem. Commun.* 2016, *52*, 13086-13089.