The ESI for *Org. Biomol. Chem.*, 2019, **17**, 1466–1470, originally published on 16th January 2019, was updated on 21st March 2019. An incorrect structure included for actinomycin D has been corrected.

Enantiomeric NMR discrimination of carboxylic acids using

actinomycin D as a chiral solvating agent

contents.	
1	Genenal information
2	Carboxylic Acids recognized by CSA 1
3	Determination of enantiomeric purity of mandelic acid
4 (Figure S1-S19)	¹ H NMR spectroscopy of CSA 1 and racemic carboxylic acids in CDCl ₃
5 (Figure S20)	¹ H NMR spectroscopy of CSA 1 and racemic mandelic acid in C ₆ D ₆
6 (Figure S21)	Studies of the stoichiometry of CSA $1/(R)$ - and (S)-4-methoxymandelic acid
	by ¹ H NMR titration (Job Plots)
7 (Figure S22)	19 F NMR spectroscopy of CSA 1 and racemic 2-fluoromandelic acid in CDCl ₃
8 (Figure S23)	¹ H NMR spectroscopy of CSA 1 and racemic mandelic acid under 10mM
9 (Figure S24-S25)	¹ H NMR spectroscopy of discrimination of a single enantiomer of racemic
	carboxylic acids measured in the presence of CSA 1

Contents:

1 Genenal information

CSA **1** was purchased from Push-herb chem Biotech Inc. The compounds **2-15** were purchased from Aladdin biochemical technology co. Ltd (Shanghai, China), which were all used without further purification. ¹H NMR data were collected on a Bruker Avance 600 MHz spectrometer at 20 °C. Chemical shifts (ppm) internally referenced to CDCl₃ signal (δ H = 7.26 ppm) or C₆D₆ (δ H = 7.16 ppm) were obtained.

2 Carboxylic Acids recognized by CSA 1

(a) The CSA **1** and (±)-mandelic acid were dissolved in the solvent CDCl₃, both concentrations are 20 mM. The solutions were distributed among five NMR tubes with the mole ratio of the CSA **1** and (±)-mandelic acid increased from 0 to 1, the total concentration of host and guest in the NMR tubes (total volume of 500 μ L) was 20 mM which remained unchanged.

(b) The CSA 1 and racemic carboxylic acids were dissolved, with their concentrations being 20 mM in CDCl₃. 50 μ L of CSA 1 and 500 μ L of each racemic carboxylic acid were mixed together, with the mole ratio being 1:10. The total concentration in the NMR tubes (total volume was 550 μ L) was 20 mM.

3, Determination of enantiomeric purity of mandelic acid

To determine the enantiomeric purity of the carboxylic acids, samples with ee values of -100%, -90%, -80%, -60%, -40%, -20%, 0% were prepared by racemic mandelic acid and (*R*)-mandelic acid at the concentration of 20 mM in CDCl₃, expressed as % R in the data. The CAS **1** was also dissolved in CDCl₃ at a concentration of 20 mM. Then 50 μ L of CAS **1** and 500 μ L of racemic mandelic acid and (*R*)-mandelic acidmixtures with different ee's were added to the NMR tube (total concentration of 20 mM) with a molar ratio of 1:10. Then the enantiomeric purity of the carboxylic acids was determined by ¹H NMR method. The plotting of gravimetry ee value (y axis) versus NMR observed ee value (x axis) presented excellent linearity with R² = 0.9996.

4, ¹H NMR spectroscopy of CSA 1 and racemic carboxylic acids

Figure S2: ¹H NMR (600 MHz, CDCl₃) of racemic mandelic acid.

Figure S3: ¹H NMR (600 MHz, CDCl₃) of CSA $\bf{1}$ and racemic mandelic acid with the corresponding molar ratio 1:1.

Figure S4: ¹H NMR (600 MHz, CDCl₃) of CSA ${\bf 1}$ and racemic mandelic acid with the corresponding molar ratio 1:5.

Figure S5: 1 H NMR (600 MHz, CDCl₃) of CSA **1** and racemic mandelic acid with the

Figure S6: ¹H NMR (600 MHz, CDCl₃) of CSA $\bf{1}$ and racemic mandelic acid with the corresponding molar ratio 1:20.

Figure S7: ¹H NMR (600 MHz, CDCl₃) of CSA **1** and racemic 2-bromomandelic acid (**3**).

Figure S9: ¹H NMR (600 MHz, CDCl₃) of CSA $\mathbf{1}$ and racemic 4-chloromandelic acid ($\mathbf{5}$).

Figure S10: ¹H NMR (600 MHz, CDCl₃) of CSA $\mathbf{1}$ and racemic 4-bromomandelic acid (6).

Figure S12: ¹H NMR (600 MHz, CDCl₃) of CSA $\mathbf{1}$ and racemic 4-methoxymandelic acid (8).

Figure S13: ¹H NMR (600 MHz, CDCl₃) of CSA $\mathbf{1}$ and racemic 3,5-difluoromandelic acid (9)

Figure S14: ¹H NMR (600 MHz, CDCl₃) of CSA **1** and racemic α -methoxyphenylacetic acid (**10**).

Figure S15: ¹H NMR (600 MHz, CDCl₃) of CSA **1** and racemic 2-naphthaleneacetic acid (**11**).

Figure S16: ¹H NMR (600 MHz, CDCl₃) of CSA **1** and racemic 2-phthalimidopropionic acid (**12**).

(600 MHz, CDCl₃) of Figure S18: ¹H NMR CSA 1 and racemic 2-hydroxy-3-methylbutyric acid (14).

Figure S19: ¹H NMR (600 MHz, CDCl₃) of CSA 1 and racemic 2-hydroxycaprylic acid (15).

332

5, ¹H NMR spectroscopy of CSA 1 and racemic mandelic acid in C₆D₆

Figure S20: ¹H NMR (600 MHz, C₆D₆) of CSA 1 and racemic mandelic acid (2) (The CSA 1 and racemic carboxylic acids were dissolved in C_6D_6 , with their concentrations being 20 mM. 50 μ L of CSA 1 and 500 μ L of racemic mandelic acid were mixed, with the mole ratio being 1:10. The total concentration in the NMR tubes was 20 mM).

6, Studies of the stoichiometry of CSA 1/(R)- and (S)-4-methoxymandelic acid by ¹H NMR titration (Job Plots)

Figure S21: Job plot of CSA 1 with (*R*)-**8** and (*S*)-**8**. (The CSA **1**, (*R*)-**8** and (*S*)-**8** were separately dissolved in CDCl₃, with their concentrations being 20 mM. The solutions were distributed among 22 NMR tubes with the host-guest mole ratio increasing from 0 to 1, the total concentration of host and guest was 20mM).

Figure S21. Job plot of CSA 1 with (*R*)-8 and (*S*)-8. $\Delta\delta$ stands for the chemical shift change of the α -H of (*R*)-8 and (*S*)-8 in the presence of CSA 1. X stands for the molar fraction of the CSA 1 (X = [CSA 1]/[CSA 1] + [8]). The total concentration is 20 mM in CDCl₃.

According to Figure S21, the α -H signal in the upfield belong to

(R)-4-methoxymandelic acid and the α -H signal in the downfield belong to (S)-4-methoxymandelic acid.

7, ¹⁹F NMR spectroscopy of CSA 1 and racemic 2-fluoromandelic acid

Figure S22: ¹⁹F NMR (600 MHz, CDCl₃) of CSA **1** and racemic 2-fluoromandelic acid (**4**). (The CSA **1** and racemic 2-fluoromandelic acid were dissolved in CDCl₃, with their concentrations being 20 mM. 50 μ L of CSA **1** and 500 μ L of racemic 2-fluoromandelic acid were mixed, with the mole ratio being 1:10. The total concentration in the NMR tubes was 20 mM).

8, ¹H NMR spectroscopy of CSA 1 and racemic mandelic acid under 10mM

Figure S23: ¹H NMR (600 MHz, CDCl₃) of CSA **1** and racemic mandelic acid (**2**) under the concentration of 10mM, with the molar ration being 1:10. (The sample of Act-D and mandelic acid in CDCl₃ (molar ratio being 1:10, the concentration was 20 mM), was diluted and the final concentration was 10 mM. The result shows that the $\Delta\Delta\delta$ value of α -H resonance is 0.046 ppm).

9, 1H NMR spectroscopy of discrimination of a single enantiomer of racemic carboxylic acids measured in the presence of CSA 1

Equal volume of 20 mM enantiomeric pure isomer ((R)-(-)-mandelic acid, (S)-(+)-2-chloromandelic acid) and the respective racemic compounds solutions were added into NMR tubes containing 20 mM Act-D, the total molar ratio was 1:10, total concentration in the NMR tubes was 20 mM.

Figure S24: ¹H NMR (600 MHz, CDCl₃) of CSA **1** and racemic mandelic acid with the addition of (R)-(-)-mandelic acid.

Figure S25: ¹H NMR (600 MHz, CDCl₃) of CSA **1** and racemic 2-bromomandelic acid with the addition of (*S*)-(+)-2-chloromandelic acid.

