Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Successive C-C/C-H Activation towards Cyano Substituted Carbazoles

Yajie Yang, Lingkai Kong, Mengdan Wang, Yang Yuan, Qihai Tao and Yanzhong Li*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China Fax: (+86) 021-54340096, E-mail: yzli@chem.ecnu.edu.cn

Table of Contents

1. Optimization of 3a Conditions	S2
2. Gram Scale	S3
3. Copies of Spectra of New Products	S4
4. X-ray crystallography of compounds 3a	S29
5. X-ray crystallography of compounds 4a	S32
6. X-ray crystallography of compounds 4a'	\$35

1. Optimization of 3a Conditions

	Ph + N O F	O CN ba solve 2a	ase ent, N ₂	Pł 3a	P OH Ph CN
entry	solvent	base (equiv)	Т	t	yield ^a
1	DMSO	3.0 Cs ₂ CO ₃	100 °C	2.5 h	77 %
2	DMSO	1.5 Cs_2CO_3	100 °C	2.5 h	74 %
3	DMSO	2.0 Cs ₂ CO ₃	100 °C	2.5 h	90 %
4	DMSO	2.0 Cs ₂ CO ₃	80 °C	2.0 h	75 %
5	DMSO	2.0 K ₂ CO ₃	100 °C	2.5 h	73 %
6	DMSO	2.0 DABCO	100 °C	2.5 h	
7	DMAc	2.0 Cs_2CO_3	100 °C	2.5 h	79 %
8	DMF	$2.0 \ Cs_2CO_3$	100 °C	2.5 h	72 %
9	tol	$2.0 \ Cs_2CO_3$	100 °C	2.5 h	70 %
^a 1a : 2a = 1.0 : 1.1, 0.2 mmol scale in 2 mL solvent					

Table S1 Optimization of reaction conditions for the synthesis of 3a

2. Gram Scale

In a Schlenk tube, indolyl alkynyl ketones **1a** (4.0 mmol, 1.04 g), benzoyl acetonitrile **2a** (4.4 mmol, 0.64 g), Cs_2CO_3 (8.0 mmol, 2.61 g) and DMSO (40 mL) were stirred at 100 °C under N₂. After 2.5 h, FeBr₂ (0.2 mmol, 43.13 mg) and $(NH_4)_2S_2O_8$ (12.0 mmol, 2.74 g) were added to the reaction mixture. After the completion of the addition, the reaction mixture was allowed to react at 60 °C for 3 h. Then, the reaction mixture was cooled to room temperature and was treated with H₂O, then extracted with EA and dried over anhydrous Na₂SO₄. After removal of the EA, the residue was purified by chromatography on basic silica gel (PE:EA = 10:1) to afford **4a** (yellow solid, 0.97 g, 60%).

3. Copies of Spectra of New Products

¹H NMR (400 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110

100 90 f1 (ppm) 70

60 50 40 30 20

80

10

0

-10

¹H NMR (400 MHz, d^6 -DMSO)

¹³C NMR (100 MHz, *d*⁶-DMSO)

4. X-ray crystallography of compounds 3a

(4Z)-5-Hydroxy-4-(1-methyl-1*H*-indole-2-carbonyl)-3,5-diphenylpenta-2,4-dienen itrile (3a, mo-d8v17800-0m)

(Ortep ellipsoids are depicted at the 50% level)

Table S2. Crystal data and structure refinement for 3a Identification code 3a Empirical formula $C_{27}H_{20}N_2O_2$ Formula weight 404.45 Temperature 296(2) K 0.71073 Å Wavelength Crystal system, space group Monoclinic, P 21/n Unit cell dimensions a = 10.2176(5) Å $\alpha = 90^{\circ}$. $b = 22.5674(12) \text{ Å} \quad \beta = 117.4990(10)^{\circ}.$ $c = 10.3343(5) \text{ Å} \qquad \gamma = 90 ^{\circ}.$ Volume 2113.70 (18) Å³ Z, Calculated density 4, 1.271 Mg/m³ Absorption coefficient 0.081mm⁻¹ F(000) 848 Crystal size 0.160 x 0.120 x 0.100 mm³ Theta range for data collection 2.863 to 25.999 °. Index ranges -12<=h<=12, -27<=k<=27, -12<=l<=12 49545/4142 [R(int) = 0.0477] Reflections collected / Independent reflections Completeness to theta = 25.242° 99.6 % Semi-empirical from equivalents Absorption correction Max. and min. transmission 0.7456 and 0.6979 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4142 / 0 / 283 Goodness-of-fit on F^2 1.033 Final R indices [I>2sigma(I)] R1 = 0.0443, wR2 = 0.1097R indices (all data) R1 = 0.0576, wR2 = 0.1214Extinction coefficient 0.019(3) Largest diff. peak and hole 0.204 and -0.181 e.Å⁻³

5. X-ray crystallography of compounds 4a

3-benzoyl-4-hydroxy-9-methyl-2-phenyl-9H-carbazole-1-carbonitrile (4a, d8v17495)

(Ortep ellipsoids are depicted at the 50% level)

Table S3. Crystal data and structure refinement for4a

Identification code	4a	
Empirical formula	C ₂₇ H ₁₈ N ₂ O ₂	
Formula weight	402.43	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Orthorhombic, P b c a	
Unit cell dimensions	$a = 6.9632(9) \text{ Å} \alpha = 90 ^{\circ}.$	
	$b = 20.434(3) \text{ Å} \beta = 90 ^{\circ}.$	
	$c = 28.769(3) \text{ Å}$ $\gamma = 90 ^{\circ}.$	
Volume	4093.5(9) Å ³	
Z, Calculated density	8 1 306 Mg/m ³	
Absorption coefficient	0.083 mm ⁻¹	
F(000)	1680	
Crystal size	0.20 x 0.14 x 0.08 mm ³	
Theta range for data collection	2.832 to 25.499 °.	
Index ranges	-8<=h<=8, -24<=k<=24, -34<=l<=34	
Reflections collected / Independent reflections	82706/3805 [R(int) = 0.0904]	
Completeness to theta = $25.242 \circ$	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.5620	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3805 / 0 / 283	
Goodness-of-fit on F ²	1.041	
Final R indices [I>2sigma(I)]	R1 = 0.0431, wR2 = 0.1130	
R indices (all data)	R1 = 0.0605, wR2 = 0.1283	
Extinction coefficient	0.0074(10)	
Largest diff. peak and hole	0.181 and -0.147 e.Å ⁻³	

6. X-ray crystallography of compounds 4a'

2-benzoyl-1-hydroxy-9-methyl-3-phenyl-9H-carbazole-4-carbonitrile (4a', d8v18043)

(Ortep ellipsoids are depicted at the 50% level)

Table S4. Crystal data and structure refinement for 4a'

Identification code	4a'
Empirical formula	C ₂₇ H ₁₈ N ₂ O ₂
Formula weight	402.43
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, C 2/c
Unit cell dimensions	$a = 16.4009(8) \text{ Å} \qquad \alpha = 90 ^{\circ}.$
	b = 7.8236(4) Å β = 102.498(3) °.
	$c = 31.4855(17) \text{ Å}$ $\gamma = 90 ^{\circ}.$
Volume	3944.3(4) Å ³
Z, Calculated density	8, 1.355 Mg/m ³
Absorption coefficient	0.086 mm ⁻¹
F(000)	1680
Crystal size	0.200 x 0.170 x 0.130 mm ³
Theta range for data collection	2.602 to 26.000 °.
Index ranges	-19<=h<=20, -9<=k<=9, -38<=l<=38
Reflections collected / Independent reflections	73827/3876[R(int) = 0.0567]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6668
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3876 / 0 / 283
Goodness-of-fit on F ²	1.043
Final R indices [I>2sigma(I)]	R1 = 0.0449, WR2 = 0.1154
R indices (all data)	R1 = 0.0497, wR2 = 0.1199
Extinction coefficient	0.0028(5)
Largest diff. peak and hole	0.248 and -0.240 e.Å ⁻³

