Supporting Information

Intramolecular Carbopalladation/Cross-coupling and DDQ-mediated Cross-Dehydrogenative coupling: An efficient and New strategy to Diverse Indolo[2,3-b]quinolines Derivatives

Sandip Kundal, Baitan Chakraborty, Kartick Paul, Umasish Jana*

^aDepartment of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India

E-mail: jumasish2004@yahoo.co.in.

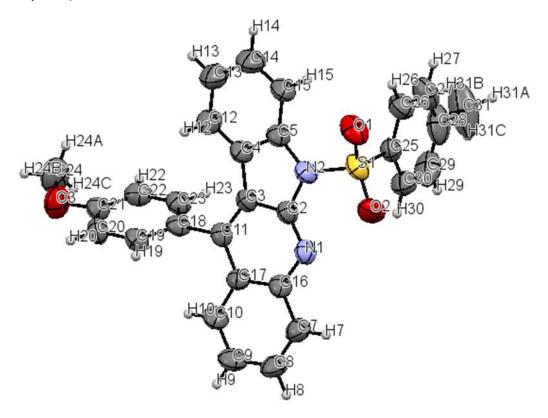

umasishjana@gmail.com.

Table of content:

1. General information	2
2. Crystal data	3
3. Synthesis <u>of (</u> 1a-1h)	5
4. Synthesis of (2a–2f)	5
5. Synthesis of (2g–2h)	9
6. Synthesis of (2i-2k)	10
7. Synthesis of (3a–3f)	12
8. Synthesis of (3g-3h)	15
9. Synthesis of (3i-3k)	16
10. Synthesis of (3I-3m)	18
11. Synthesis of 4	19
11. ¹ H and ¹³ C NMR spectra scan	20

General: All NMR spectral data were recorded by Bruker 300, 400, 500 (300, 400, 500 MHz) spectrometer in CDCl₃ solutions expressing chemical shifts in parts per million (ppm, δ) and are referenced to CHCl₃ (δ = 7.26 ppm) as an internal standard. All coupling constants are absolute values and are expressed in Hz. The description of the signals include: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets and brs = broad singlet. ¹³C NMR spectra were recorded with a Bruker 300, 400, 500 (75, 100, 125 respictively MHz) spectrometer as solutions in CDCl₃ with complete proton decoupling. Chemical shifts are expressed in parts per million (ppm, δ) and are referenced to CDCl₃ (δ = 77.0 ppm) as an internal standard. High-Resolution Mass Spectra (HRMS) were performed with a Qtof Micro YA263 spectrometer in dichloromethane solvent. The molecular fragments are quoted as the relation between mass and charge (m/z). The routine monitoring of reactions was performed with silica gel coated glass slides (Merck, silica gel G for TLC), and pre-coated Al plate, which were analyzed with iodine and uv light respectively. Solvents, reagents and chemicals were purchased from Aldrich, Fluka, Merck, SRL, Spectrochem and Process Chemicals. All reactions involving moisture-sensitive reactants were executed with oven-dried glassware.

Ortep diagram for the crystal structure of the compound 3e (Thermal ellipsoid contour at 50% probability level)

CCDC no. 1848645

Table for crystallographic data and structural refinement parameters for 3e

Identification code	matrix_0m
Empirical formula	$C_{29}H_{22}N_2O_3S$
Formula weight	478.55
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	12.875(2)
b/Å	13.030(2)
c/Å	15.195(3)
α/°	76.583(12)
β/°	78.566(12)
γ/°	72.177(12)
Volume/Å ³	2338.3(6)
Z	4
$\rho_{\rm calc} g/cm^3$	1.359
μ/mm^{-1}	0.174
F(000)	1000.0
Crystal size/mm ³	$15 \times 10 \times 7$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	3.34 to 49.28
Index ranges	$-15 \le h \le 15, -15 \le k \le 15, -17 \le l \le 17$
Reflections collected	31369
Independent reflections	7820
Data/restraints/parameters	7820/0/635
Goodness-of-fit on F ²	0.773
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0691$, $wR_2 = 0.1304$
Final R indexes [all data]	$R_1 = 0.1707$, $wR_2 = 0.1594$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.40

Representative experimental procedure for the synthesis of N-(3-(2-aminophenyl)) prop-2-yn-1-yl)-N-(2-bromophenyl)-4-methylbenzenesulfonamide (1a):

To a solution of N-(2-bromophenyl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (363 mg, 1 mmol) in dimethyl sulfoxide (2 mL) and 2-iodoaniline (241 mg, 1.1 mmol), triethylamine (202 mg, 2 mmol), CuI (4 mg, 0.02 mmol) and Pd(PPh₃)₄ (12 mg, 0.01 mmol) were added successively. The resulting solution was stirred at room temperature under argon atmosphere for overnight. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **1a** as a yellow semisolid (341 mg, 0.75 mmol, 75%). ¹H NMR (CDCl₃, 300 MHz) δ 2.41 (s, 3H), 3.55 (brs, 2H), 4.41 (d, J = 17.4 Hz, 1H), 4.94 (d, J = 18.0 Hz, 1H), 6.61–6.64 (m, 2H), 7.02–7.08 (m, 2H), 7.23–7.33 (m, 5H), 7.63 (d, J = 1.8 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.6, 41.4, 82.6, 88.3, 106.7, 114.2, 117.5, 125.6, 128.0, 129.5, 130.3, 132.1, 132.2, 133.8, 136.6, 137.6, 143.9, 148.3.

Compounds 1b-1h were synthesised by the above similar procedure.

(Z)-2-(phenyl(1-tosylindolin-3-ylidene)methyl)aniline (2a):

To a solution of 1a (136 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL) and 2 mL ethanol-toluene (1:1), phenyl boronic acid (55 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 70-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and

concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product $\bf 2a$ as a yellow solid (112 mg, 0.25 mmol, 82%); m. p. 136-138 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.39 (s, 3H), 3.69 (brs, 2H) , 4.50 (s, 2H), 6.64- 6.73 (m, 4H), 6.88 (d, J = 7.2 Hz, 1H), 7.08–7.29 (m, 9H), 7.68 (dd, J = 8.1, 9.0 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.5, 55.8, 115.5, 116.0, 118.7, 123.2, 124.3, 127.2, 127.4, 127.8, 128.6, 128.8, 128.9, 129.1, 129.2, 129.5, 129.6, 131.3, 132.0, 133.9, 140.0, 142.7, 144.1, 145.7 ppm. HRMS (ESI) calcd for $C_{28}H_{25}N_2O_2S$ [M+H] * 453.1637; found 453.1621.

(Z)-2-((5-methyl-1-tosylindolin-3-ylidene)(phenyl)methyl)aniline (2b):

To a solution of **1b** (140 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), phenyl boronic acid (55 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 75-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **2b** as a yellow solid (116 mg, 0.25 mmol, 83%); m. p. 142-144 °C. ¹H NMR (CDCl₃, 500 MHz) δ 2.01 (s, 3H), 2.38 (s, 3H), 3.66 (brs, 2H), 4.45 (s, 2H), 6.41 (s, 1H), 6.71 (t, J = 4.5 Hz, 2H), 6.85 (d, J = 4.5 Hz, 1H), 6.97 (d, J = 4.8 Hz, 1H), 7.09 (t, J = 4.5 Hz, 1H), 7.15-7.16 (m, 2H), 7.22-7.28 (m, 5H), 7.60 (dd, J = 3.9, 4.5 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 21.1, 21.6, 56.2, 115.7, 116.2, 118.9, 125.0, 127.4, 127.6, 127.9, 128.8, 128.9, 129.0, 129.3, 129.4, 129.7, 130.4, 131.2, 132.4, 132.9, 134.0, 140.2, 142.9, 143.8, 144.1 ppm. HRMS (ESI) calcd for C₂₉H₂₇N₂O₂S [M+H]⁺ 467.1793; found 467.1737.

(Z)-2-((5-chloro-1-tosylindolin-3-ylidene)(phenyl)methyl)aniline (2c):

$$CI$$
 H_2N
 Ts

To a solution of **1c** (147 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), phenyl boronic acid (55 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 75-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with EtOAc. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **2c** as a yellow solid (117 mg, 0.24 mmol, 79%); m. p. 154-156 °C . ¹H NMR (CDCl₃, 300 MHz) δ 2.41 (s, 3H), 3.67 (brs, 2H) , 4.51 (s, 2H), 6.55 (s, 1H), 6.70-6.73 (m, 2H), 6.86 (d, J = 7.5 Hz, 1H), 7.14–7.32 (m, 9H), 7.63 (d, J = 8.1 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.5, 56.1, 116.1, 116.4, 118.8, 124.3, 126.8, 127.4, 128.3, 128.4, 128.6, 128.7, 129.0, 129.1, 129.2, 129.7, 130.9, 133.0, 133.5, 139.4, 142.6, 144.3, 144.4 ppm. HRMS (ESI) calcd for C₂₈H₂₄ClN₂O₂S [M+H]⁺ 487.1247; found 487.1232.

(Z)-4-methyl-2-(phenyl(1-tosylindolin-3-ylidene)methyl)aniline (2d):

To a solution of **1d** (140 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), phenyl boronic acid (55 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 75-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **2d** as a yellow solid (126 mg, 0.27 mmol, 90%); m. p. 158-160 °C. ¹H NMR (CDCl₃, 500 MHz) δ 2.12 (s, 3H), 2.32 (s, 3H), 3.48 (s, 2H), 4.42 (s, 2H), 6.55-6.64 (m, 4H), 6.83 (d, J = 8.5 Hz, 1H), 7.07-7.24 (m, 8H), 7.60 (dd, J = 8.0, 17.5 Hz, 3H), ppm. ¹³C NMR (CDCl₃, 125 MHz) δ 20.5, 21.7, 85.9, 115.6, 116.3, 123.3, 124.7, 127.5, 127.6, 127.9, 128.0, 128.7, 129.0, 129.3, 129.4, 129.5, 129.7, 131.6, 132.0, 134.0, 140.3, 142.2, 145.8 ppm. HRMS (ESI) calcd for C₂₉H₂₇N₂O₂S [M+H]⁺ 467.1793 ; found 467.1752.

(Z)-2-((4-methoxyphenyl)(1-tosylindolin-3-ylidene)methyl)aniline (2e):

To a solution of **1a** (136 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), p-methoxyphenyl boronic acid (68 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 70-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with EtOAc. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **2e** as a yellow solid (123 mg, 0.26 mmol, 85%); m. p. 200-202 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.39 (s, 3H), 2.94 (brs, 2H), 3.80 (s, 3H), 4.48 (s, 2H), 6.71- 6.88 (m, 8H), 7.09-7.12 (d, J = 8.4 Hz ,3H), 7.17-7.26 (m, 2H), 7.68 (dd, J = 8.1, 9.3 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.5, 55.2, 55.9, 114.2, 115.5, 116.1, 118.8, 123.2, 124.3, 127.4, 128.9, 129.2, 129.3, 129.4, 129.6, 129.9, 131.1, 131.3, 132.1, 133.8, 142.7, 144.1, 145.6, 159.2 ppm. HRMS (ESI) calcd for C₂₉H₂₇N₂O₃S [M+H]⁺ 483.1742; found 483.1719.

(Z)-2-((4-chlorophenyl)(1-tosylindolin-3-ylidene)methyl)aniline (2f):

To a solution of **1a** (136 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), *p*-chlorophenyl boronic acid (70 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 70-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with EtOAc. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **2f** as a yellow solid

(117 mg, 0.24 mmol, 81%); m. p. 138-140 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.39 (s, 3H), 4.47 (s, 2H), 6.74- 6.84 (m, 5H), 7.09-7.17 (m, 3H), 7.20–7.28 (m, 5H), 7.68 (dd, J = 8.1, 13.5 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.5, 55.8, 115.6, 116.1, 118.8, 123.3, 124.2, 126.8, 127.4, 128.7, 129.1, 129.6, 129.8, 129.9, 130.1, 132.6, 133.6, 133.8, 138.5, 142.6, 144.2, 145.9 ppm. HRMS (ESI) calcd for $C_{28}H_{24}N_2NaO_2S$ [M+H]⁺ 487.1247; found 487.1218.

(Z)-2-((1-tosylindolin-3-ylidene)methyl)aniline (2g):

$$H_2N$$
 Ts

To a solution of **1a** (136 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 70-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **2g** as a yellow solid (101 mg, 0.27 mmol, 89%); m. p. 146-148 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.37 (s, 3H), 4.73 (s, 2H), 6.73-6.81 (m, 3H), 7.05-7.25 (m, 6H), 7.48 (d, J = 6 Hz, 1H), 7.70-7.72 (m, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.5, 54.2, 113.7, 114.9, 116.3, 118.8, 120.4, 122.1, 123.7, 126.8, 127.2, 127.8, 128.7, 129.8, 130.6, 133.9, 134.1, 143.6, 144.0, 144.3 ppm. HRMS (ESI) calcd for C₂₂H₂₁N₂O₂S [M+H]⁺ 377.1324; found 377.1285.

(Z)-4-chloro-2-((1-tosylindolin-3-ylidene)methyl)aniline (2h):

To a solution of 1e (143 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 70-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with EtOAc. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column

chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **2i** as a yellow solid (108 mg, 0.26 mmol, 88%); m. p. 134-136 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.36 (s, 3H), 4.66 (s, 2H), 6.64 (t, J = 8.4 Hz, 2H), 6.97-7.05 (m, 3H), 7.22-7.29 (m, 3H), 7.45 (d, J = 6.9 Hz, 1H), 7.69-7.76 (m, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.5, 53.9, 112.3, 113.4, 114.9, 120.7, 123.7, 124.6, 126.7, 127.2, 127.4, 128.4, 129.9, 130.0, 130.3, 133.9, 136.1, 144.0, 144.4 ppm. HRMS (ESI) calcd for C₂₂H₂₀ClN₂O₂S [M+H]⁺ 411.0934; found 411.0913.

(Z)-2-(phenyl(1-tosyl-1H-pyrrolo[2,3-b]pyridin-3(2H)-ylidene)methyl)aniline (2i):

To a solution of **1f** (136 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), phenyl boronic acid (55 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 75-75 °C under argon atmosphere for 3.5 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 90:10 (v/v) to afford the product **2j** as a yellow solid (105 mg, 0.23 mmol, 77%); m. p. 204-206 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.39 (s, 3H), 3.14 (brs, 2H), 4.63 (s, 2H), 6.57-6.59 (m, 1H), 6.76 (t, J = 7.8 Hz, 2H), 6.89 (d, J = 7.5 Hz, 1H), 6.96 (d, J = 6.9 Hz, 1H), 7.13 (t, J = 7.2 Hz, 1H), 7.26-7.33 (m, 7H), 7.98 (d, J = 7.8 Hz, 2H), 8.10 (d, J = 3.6 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.6, 54.0, 116.3, 117.5, 118.9, 121.9, 126.4, 128.0, 128.2, 128.3, 129.0, 129.1, 129.2, 129.4, 131.7, 134.4, 135.5, 139.7, 142.6, 144.2, 148.3 ppm. HRMS (ESI) calcd for C₂₇H₂₄N₃O₂S [M+H]⁺ 454.1589 ; found 454.1636.

(Z)-5-methyl-3-(phenyl(1-tosylindolin-3-ylidene)methyl)pyridin-2-amine (2j):

To a solution of **1g** (141 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), phenyl boronic acid (55 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 75-75 °C under argon atmosphere for 3.5 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 90:10 (v/v) to afford the product **2k** as a yellow solid (112 mg, 0.24 mmol, 80%); m. p. 166-168 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.17 (s, 3H), 2.39 (s, 3H) , 4.33 (s, 2H), 4.49 (s, 2H), 6.63 (d, J = 7.8 Hz, 1H), 6.71 (t, J = 7.8 Hz, 1H), 7.00 (s, 1H), 7.17-7.33 (m, 8H), 7.19 (dd, J = 8.1, 10.2 Hz, 3H), 7.88 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 17.3, 21.5, 55.4, 115.5, 121.7, 123.2, 123.4, 124.5, 127.4, 127.7, 128.2, 128.5, 129.1, 129.7, 130.0, 133.1, 133.7, 138.8, 139.2, 144.3, 145.9, 146.5, 152.4 ppm. HRMS (ESI) calcd for C₂₈H₂₆N₃O₂S [M+H]* 468.1746 ; found 468.1750.

(*Z*)-5-methyl-3-((5-methyl-1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridin-3(2*H*)-ylidene)(phenyl)methyl)pyridin-2-amine (2k):

To a solution of **1h** (145 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), phenyl boronic acid (55 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 75-75 °C under argon atmosphere for 4 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 80:20 (v/v) to afford the product **2l** as a yellow solid (108 mg, 0.22 mmol, 75%); m. p. >300 °C. ¹H NMR (CDCl₃, 500 MHz) δ 1.98 (s, 3H), 2.18 (s, 3H) , 2.38 (s, 3H), 4.40 (s, 2H), 4.59 (s, 2H), 6.66 (s, 1H), 7.06 (s, 1H), 7.26 (d, J = 8.1 Hz, 3H), 7.35-7.37 (m, 3H), 7.90 (s, 1H), 7.96 (d, J = 14.5 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 17.5, 18.0, 21.7, 54.1, 120.6, 121.4, 123.7, 127.0, 128.1, 128.4, 128.7, 129.4, 129.5, 130.0, 132.3, 132.8, 135.4, 138.3, 139.2, 144.3, 148.9, 149.7, 152.6, 156.5 ppm. HRMS (ESI) calcd for C₂₈H₂₇N₄O₂S [M+H]*483.1855; found 483.1822.

11-phenyl-6-tosyl-6H-indolo[2,3-b]quinoline (3a):

To a solution of **2a** (90 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 1 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **3a** as a yellow solid (89 mg, quantitative); m. p. 208-210 °C. 1 H NMR (CDCl₃, 300 MHz) δ 2.32 (s, 3H), 6.85 (d, J = 7.5 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 7.8 Hz, 2H), 7.40-7.62 (m, 8H), 7.74 (t, J = 7.2 Hz, 1H), 8.25 (dd, J = 8.1, 12.6 Hz, 3H), 8.51 (d, J = 8.4 Hz, 1H) ppm. 13 C NMR (CDCl₃, 75 MHz) δ 21.6, 114.6, 116.6, 122.8, 122.9, 123.4, 125.0, 125.3, 126.0, 128.3, 128.7, 128.8, 129.1, 129.3, 135.6, 135.9, 139.6, 142.6, 144.9, 146.2, 150.5 ppm. HRMS (ESI) calcd for $C_{28}H_{21}N_2O_2S$ [M+H] $^+$ 449.1324; found 449.1871.

9-methyl-11-phenyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoline (3b):

To a solution of **2b** (93 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.2 mmol) was added. The resulting solution was stirred at room temperature for 1 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **3b** as a light yellow solid (92 mg, quantitative); m. p. 206-208 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.22 (s, 3H), 2.31 (s, 3H), 6.60 (s, 1H), 7.20 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 8.4 Hz, 1H), 7.40-7.44 (m, 3H), 7.62 (s, 4H), 7.74 (t, J = 7.2 Hz, 1H), 8.24 (dd, J = 8.4, 22.8 Hz, 3H), 8.37 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.2, 21.6, 114.4, 116.7, 123.0,

123.1, 124.9, 125.3, 126.0, 128.2, 128.8, 129.1, 129.3, 129.7, 133.0, 135.6, 135.8, 137.6, 142.5, 144.8, 146.1, 150.7 ppm. HRMS (ESI) calcd for $C_{29}H_{23}N_2O_2S$ [M+H]⁺ 463.1480; found 463.1457.

9-chloro-11-phenyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoline (3c):

To a solution of **2c** (97 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 1 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na_2SO_4 and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **3c** as a yellow solid (91 mg, 0.19 mmol, 98%); m. p. 208-210 °C. ¹H NMR (CDCl₃, 500 MHz) δ 2.33 (s, 3H), 6.76 (s, 1H), 7.24 (t, J = 4.8 Hz, 2H), 7.37-7.39 (m, 2H), 7.42-7.45 (m, 2H), 7.63-7.65 (m, 4H), 7.76 (t, J = 3.9 Hz, 1H), 8.19 (d, J = 4.8 Hz, 2H), 8.27 (d, J = 5.1 Hz, 1H), 8.44 (d, J = 5.4 Hz, 1H) ppm. 13 C NMR (CDCl₃, 125 MHz) δ 21.7, 115.7, 115.9, 122.7, 124.5, 125.4, 126.3, 128.5, 128.7, 129.0, 129.2, 129.3, 129.4, 129.5, 129.8, 135.1, 135.8, 138.0, 143.5, 145.3, 146.7, 150.7 ppm. HRMS (ESI) calcd for $C_{28}H_{20}CIN_2O_2S$ [M+H] $^+$ 482.0856; found 482.0980.

2-methyl-11-phenyl-6-tosyl-6*H*-indolo[2,3-*b*]quinoline (3d):

To a solution of **2d** (93 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 1 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **3d** as a yellow solid (92 mg, quantitative); m. p. 214-216 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.31 (s, 3H), 2.43 (s, 3H), 6.79 (d, J = 7.8 Hz, 1H), 7.06 (t, J = 7.8

Hz, 1H), 7.19-7.26 (m, 2H), 7.36-7.63 (m, 8H), 8.17-8.21 (m, 3H), 8.49 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.7, 21.8, 114.8, 116.7, 122.9, 123.2, 123.5, 124.8, 125.4, 128.4, 128.7, 128.9, 129.0, 129.2, 129.3, 129.5, 131.6, 135.0, 135.9, 136.0, 139.7, 142.0, 144.9, 145.0, 150.2 ppm. HRMS (ESI) calcd for $C_{29}H_{23}N_2O_2S$ [M+H]⁺ 463.1480; found 463.1455.

11-(4-methoxyphenyl)-6-tosyl-6*H*-indolo[2,3-*b*]quinoline (3e):

To a solution of **2e** (96 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 1 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **3e** as a yellow solid (95 mg, quantitative); m. p. 210-212 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.31 (s, 3H), 3.96 (s, 3H), 6.97 (d, J = 7.8 Hz, 1H), 7.16 (dq, d, J = 8.4 Hz, J = 13.2, 5H), 7.32 (d, J = 8.4 Hz, 2H), 7.39-7.51 (m, 2H), 7.66-7.75 (m, 2H), 8.23 (dd, J = 8.1 Hz, J = 11.4, 3H), 8.50 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ 21.6, 55.4, 114.6, 116.9, 122.9, 123.1, 123.4, 124.9, 125.7, 126.0, 127.5, 128.3, 128.6, 129.1, 129.3, 130.4, 135.9, 139.5, 142.6, 144.9, 146.2, 150.6, 160.0 ppm. HRMS (ESI) calcd for C₂₉H₂₃N₂O₃S [M+H]⁺ 479.1429; found 479.1521.

11-(4-chlorophenyl)-6-tosyl-6*H*-indolo[2,3-*b*]quinoline (3f):

To a solution of **2f** (97 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 1 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and

concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **3f** as a yellow solid (87 mg, 0.18 mmol, 92%); m. p. 222-224 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.32 (s, 3H), 6.91 (d, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.41-7.57 (m, 3H), 7.61 (d, J = 8.1 Hz, 2H), 7.75 (t, J = 7.2 Hz, 1H), 8.25 (dd, J = 8.1, 13.5 Hz, 3H), 8.52 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 21.7, 114.4, 116.6, 119.2, 125.3, 125.5, 126.1, 126.3, 127.2, 127.6, 128.7, 129.1, 129.2, 129.4, 129.5, 129.6, 129.8, 129.9, 130.7, 135.3, 136.7, 143.8, 145.1, 146.8, 148.0, 149.8, 152.4 ppm. HRMS (ESI) calcd for C₂₈H₂₀ClN₂O₂S [M+H] *482.0856; found 482.0847.

6-tosyl-6H-indolo[2,3-b]quinoline (3g):

To a solution of **2g** (75 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 2 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **3g** as a yellow solid (60 mg, 0.16 mmol, 82%); m. p. 226-228 °C. 1 H NMR (CDCl₃, 300 MHz) δ 2.27 (s, 3H), 7.04-7.16 (m, 5H), 7.25-7.35 (m, 3H), 7.52 (s, 1H), 7.70 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 7.8 Hz, 1H), 8.49 (d, J = 6.6 Hz, 1H) ppm. 13 C NMR (CDCl₃, 100 MHz) δ 21.6, 113.3, 121.7, 122.3, 123.6, 124.1, 124.3, 125.5, 126.8, 127.1, 127.6, 128.6, 130.0, 131.1, 132.2, 134.9, 135.7, 145.5, 151.6, 164.5 ppm. HRMS (ESI) calcd for $C_{22}H_{17}N_2O_2S$ [M+H]⁺ 373.1011; found 373.1014.

2-chloro-6-(phenylsulfonyl)-6*H*-indolo[2,3-*b*]quinoline (3h):

To a solution of **3i** (82 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (0.4 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 2.5 h. After the completion of the reaction

(monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **3i** as a yellow solid (61 mg, 0.15 mmol, 75%); m. p. 266-268 °C.¹H NMR (CDCl₃, 300 MHz) δ 2.29 (s, 3H), 7.00-7.04 (m, 2H), 7.18 (d, J = 8.1 Hz, 2H), 7.30-7.37 (m, 3H), 7.50 (s, 1H), 7.71 (d, J = 8.1 Hz, 2H), 7.91 (d, J = 7.8 Hz, 1H), 8.42 (d, J = 7.2 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 21.7, 113.4, 121.8, 123.4, 123.8, 124.5, 125.8, 127.1, 127.4, 128.0, 128.2, 129.2, 130.2, 130.5, 132.5, 134.8, 135.7, 145.7, 149.8, 163.7 ppm. HRMS (ESI) calcd for C₂₂H₁₆ClN₂O₂S [M+H]⁺ 407.0621 ; found 407.0613.

5-phenyl-11-tosyl-11*H*-pyrido[3',2':4,5]pyrrolo[2,3-*b*]quinoline (3i):

To a solution of **2j** (91 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 2 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 90:10 (v/v) to afford the product **3j** as a yellow solid (76 mg, 0.17 mmol, 85%); m. p. 204-206 °C. 1 H NMR (CDCl₃, 300 MHz) δ 2.40 (s, 3H), 7.04-7.12 (m, 2H), 7.26 (d, J = 6.6 Hz, 3H), 7.41-7.48 (m, 4H), 7.63-7.68 (m, 3H), 7.78 (t, J = 7.5 Hz, 1H), 8.35 (d, J = 7.8 Hz, 2H), 8.57 (s, 1H) ppm. 13 C NMR (CDCl₃, 100 MHz) δ 21.7, 114.9, 116.7, 122.7, 122.8, 123.6, 125.2, 125.3, 125.7, 128.4, 129.1, 129.3, 129.4, 129.5, 129.7, 130.7, 134.1, 135.2, 136.0, 139.8, 141.2, 145.1, 146.3, 150.6 ppm. HRMS (ESI) calcd for $C_{27}H_{20}N_3O_2S$ [M+H] $^+$ 450.1276; found 450.1716.

3-methyl-5-phenyl-10-tosyl-10*H*-indolo[2,3-*b*][1,8]naphthyridine (3j):

To a solution of **2k** (94 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 3.5 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 90:10 (v/v) to afford the product **3k** as a yellow solid (77 mg, 0.16 mmol, 83%); m. p. 236-238 °C. ¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s, 3H), 2.45 (s, 3H), 6.87 (d, J = 7.6 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 7.24-7.26 (m, 2H), 7.38-7.40 (m, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.64 (t, J = 3.2 Hz, 3H), 7.74 (s, 1H), 8.32 (d, J = 8 Hz, 2H), 8.51 (d, J = 8.4 Hz, 1H), 8.97 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 18.7, 21.7, 114.8, 117.5, 119.7, 122.4, 123.0, 123.6, 128.5, 129.2, 129.3, 129.4, 129.7, 130.3, 134.1, 134.8, 136.0, 140.0, 142.9, 145.2, 152.2, 152.5, 154.9 ppm. HRMS (ESI) calcd for C₂₈H₂₂N₃O₂S [M+H]⁺ 464.1433 ; found 464.1471.

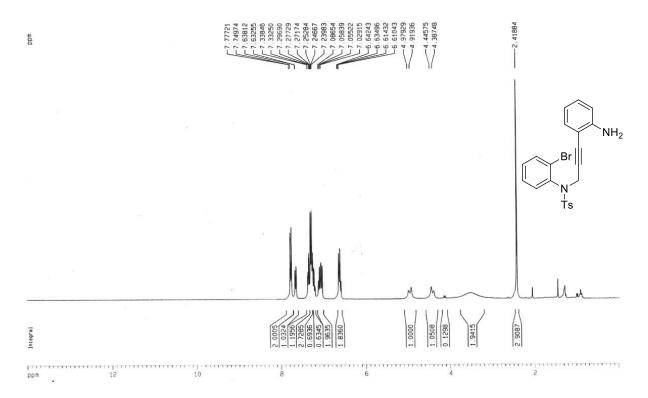
3,7-dimethyl-5-phenyl-11-tosyl-11H-pyrido[3',2':4,5]pyrrolo[2,3-b][1,8]naphthyridine (3k):

To a solution of **2I** (96 mg, 0.2 mmol) in dichloromethane (2 mL), DDQ (91 mg, 0.4 mmol) was added. The resulting solution was stirred at room temperature for 3.5 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na_2SO_4 and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 80:20 (v/v) to afford the product **3I** as a yellow solid (72 mg, 0.15 mmol, 75%); m. p. 236-238 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.23 (s, 3H), 2.34 (s, 3H), 2.47 (s, 3H), 6.92 (s, 1H), 7.29 (s, 2H), 7.39 (s, 2H), 7.67 (s, 3H), 7.77 (s, 1H), 8.42 (s, 3H), 9.01 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 18.4, 18.7, 21.7, 115.6, 119.6, 128.5, 128.7, 129.1, 129.5, 129.6, 131.2, 132.0, 132.1, 132.2, 132.3, 134.0, 134.5, 136.6, 143.9, 145.1, 148.9, 150.9, 151.6, 155.3 ppm. HRMS (ESI) calcd for $C_{28}H_{23}N_4O_2S$ [M+H] † 479.1542; found 479.1644.

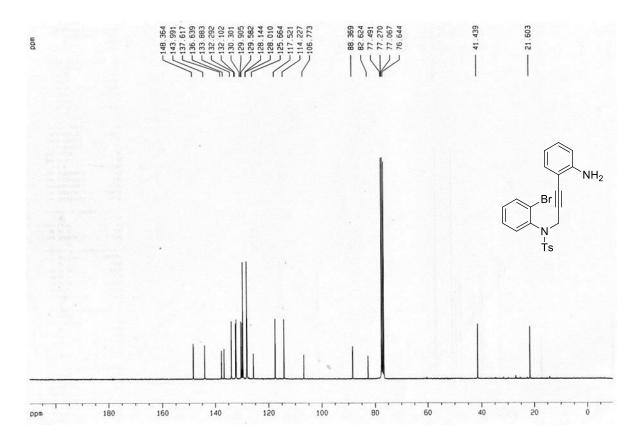
4-(6-tosyl-6H-indolo[2,3-b]quinolin-11-yl)benzonitrile (3I):

To a solution of 1a (136 mg, 0.3 mmol) in 2.5 M K_2CO_3 (1 mL), 2 mL ethanol-toluene (1:1), (4cyanophenyl)boronic acid (66 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 75-75 °C under argon atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. To a solution of this crude product in dichloromethane (2 mL), DDQ (136 mg, 0.6 mmol) was added. The resulting solution was stirred at room temperature for 2 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product 3m as a yellow solid (105 mg, 0.22 mmol, 74 %); m. p. 236-238 °C. 1 H NMR (CDCl₃, 300 MHz) δ 2.30 (s, 3H), 7.04-7.13 (m, 4H), 7.18 (d, J = 8.4 Hz, 2H), 7.23-7.41 (m, 3H), 7.50-7.54 (m, 2H), 7.63-7.68 (m, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 7.6 Hz, 1H), 8.50-8.52 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 21.6, 113.3, 118.4, 122.2, 123.1, 123.6, 124.1, 125.5, 126.8, 127.1, 127.6, 128.5, 129.8, 130.3, 132.2, 132.7, 134.9, 135.7, 145.5, 151.5, 164.6 ppm. HRMS (ESI) calcd for $C_{29}H_{20}N_3O_2S$ [M+H]⁺ 474.1276; found 474.1258.

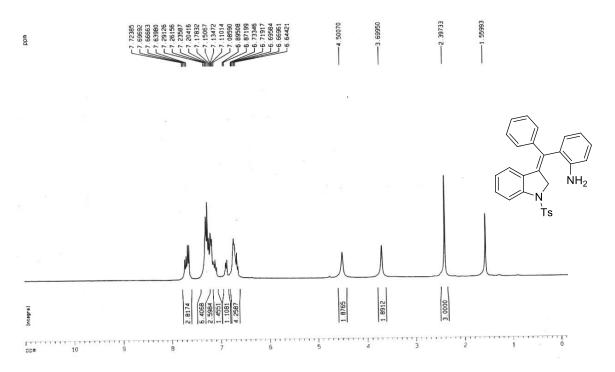
4-(6-tosyl-6*H*-indolo[2,3-*b*]quinolin-11-yl)benzaldehyde (3m):


To a solution of 1a (136 mg, 0.3 mmol) in 2.5 M K₂CO₃ (1 mL), 2 mL ethanol-toluene (1:1), (4-formylphenyl)boronic acid (69 mg, 0.45 mmol), PCy₃ (8 mg, 0.03 mmol) and Pd(OAc)₂ (4 mg, 0.015 mmol) were added successively. The resulting solution was stirred at 75-75 °C under argon

atmosphere for 3 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated. To a solution of this crude product in dichloromethane (2 mL), DDQ (136 mg, 0.06 mmol) was added. The resulting solution was stirred at room temperature for 2.5 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with dichloromethane. The organic extract was washed with sodium bicarbonate solution, dried over anhydrous Na₂SO₄ and concentrated The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 90:10 (v/v) to afford the product **3n** as a yellow solid (99 mg, 0.21 mmol, 71 %); m. p. 236-238 °C. ¹H NMR (CDCl₃, 300 MHz) δ 2.33 (s, 3H), 6.81 (s, 1H), 7.09 (s, 1H), 7.25 (s, 3H), 7.45-7.62 (m, 5H), 7.77 (s, 1H), 8.17-8.29 (m, 4H), 8.51-8.53 (m, 1H), 10.22 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 21.7, 115.0, 116.4, 122.5, 122.7, 123.7, 124.7, 125.5, 128.5, 129.2, 129.4, 129.5, 129.6, 130.0, 130.2, 130.6, 136.0, 136.8, 139.9, 140.8, 142.2, 145.2, 146.3, 150.5, 191.8 ppm. HRMS (ESI) calcd for C₂₉H₂₁N₂O₃S [M+H]⁺ 477.1273; found 477.1230.

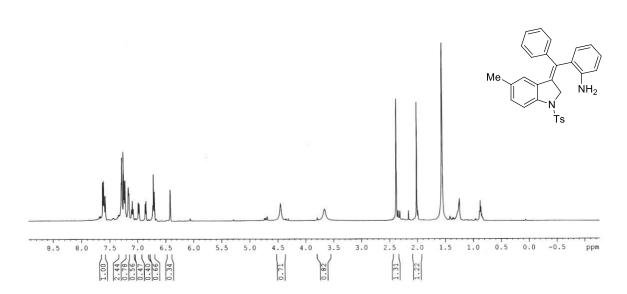

11-phenyl-6H-indolo[2,3-b]quinoline (4):

To a solution of **3a** (78 mg, 0.175 mmol) in methanol (2 mL), NaOH (14 mg, 0.35 mmol), water (1 mL) were added successively. The resulting solution was refluxed in a sealed tube for 5 h. After the completion of the reaction (monitored by TLC), the crude reaction mixture was extracted with ethyl acetate. The organic extract was washed with water, dried over anhydrous Na₂SO₄ and concentrated. The product was subjected to column chromatography (silica gel, 60-120 mesh), eluting with pet ether/EtOAc 95:5 (v/v) to afford the product **4** as a yellow solid (41 mg, 0.14 mmol, 82%). ¹H NMR (CDCl₃, 500 MHz) δ 6.97 (t, J = 7.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 7.25-7.45 (m, 2H), 7.48 (d, J = 8 Hz, 1H), 7.49-7.56 (m, 2H), 7.62-7.68 (m, 3H), 7.73-7.78 (m, 2H), 7.77 (d, J = 8.0 Hz, 1H), 9.8 (brs, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz) δ 110.7, 116.6, 120.2, 121.4, 123.2, 123.3, 124.1, 126.7, 127.1, 128.1, 128.7, 129.1, 129.5, 136.5, 141.2, 143.0, 146.6, 153.0 ppm. HRMS (ESI) calcd for C₂₁H₁₅N₂ [M+H]⁺ 295.1235; found 295.1219.

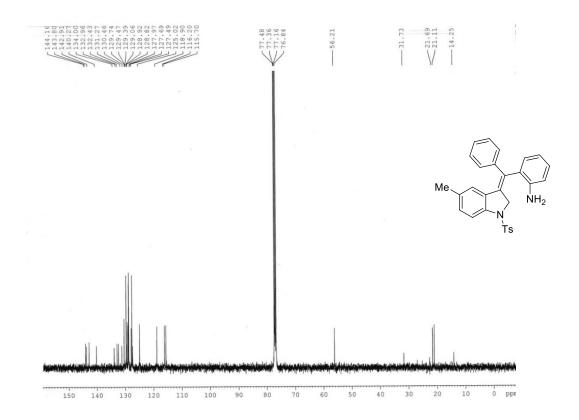

¹H NMR spectrum of compound **1a**, CDCl₃, 300 MHz


¹³C NMR spectrum of compound **1a**, CDCl₃, 75 MHz

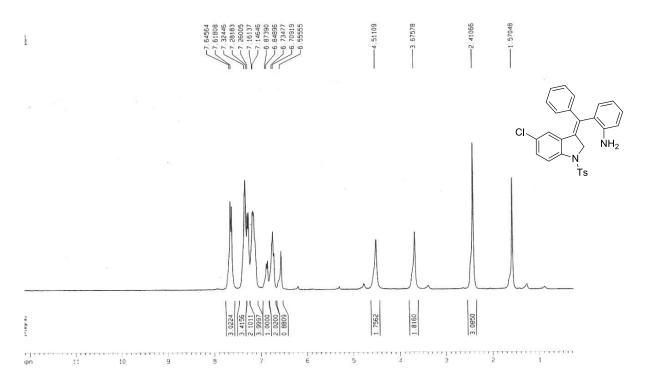
¹H NMR spectrum of compound **2a**, CDCl₃, 300 MHz

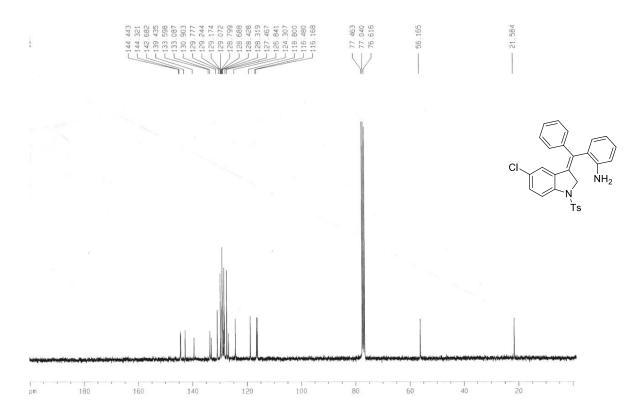


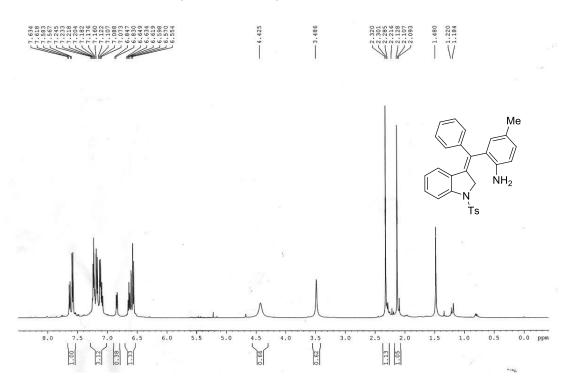
¹³C NMR spectrum of compound **2a**, CDCl₃, 75 MHz

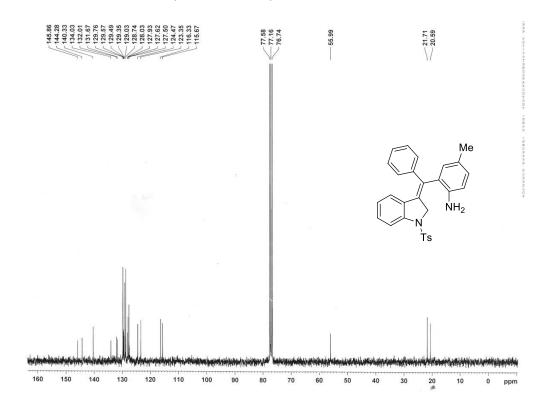


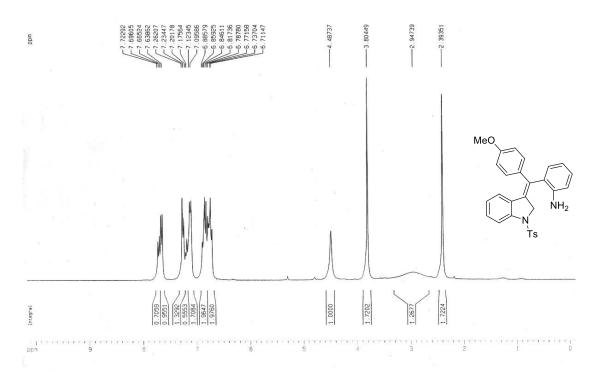
^{1}H NMR spectrum of compound **2b**, CDCl₃, 500 MHz

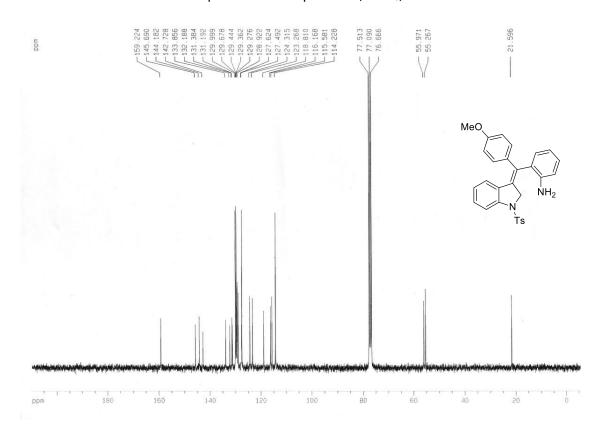


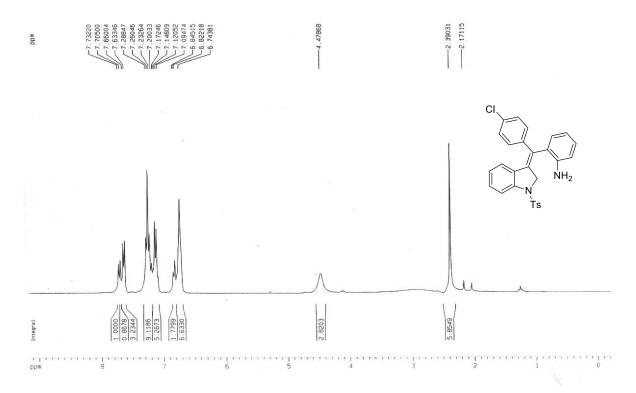

¹³C NMR spectrum of compound **2b**, CDCl₃, 100 MHz

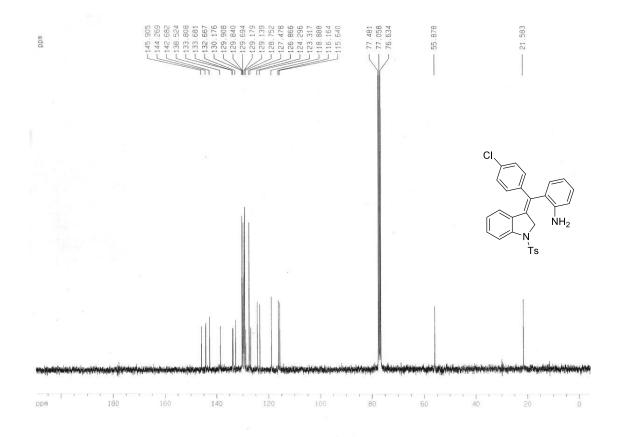

^{1}H NMR spectrum of compound **2c**, CDCl₃, 300 MHz

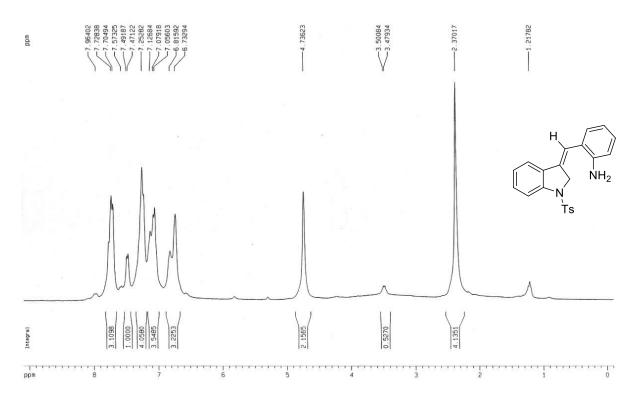

 ^{13}C NMR spectrum of compound **2c**, CDCl₃, 75 MHz

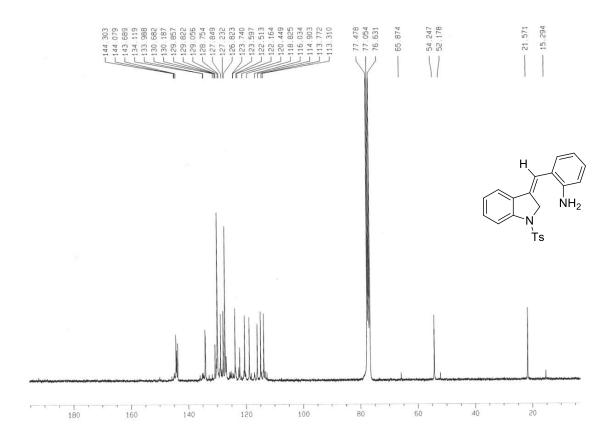

^{1}H NMR spectrum of compound **2d**, CDCl₃, 500 MHz

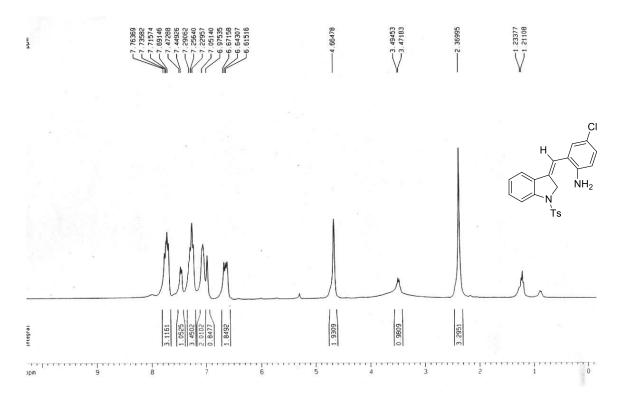

¹³C NMR spectrum of compound **2d**, CDCl₃, 300 MHz

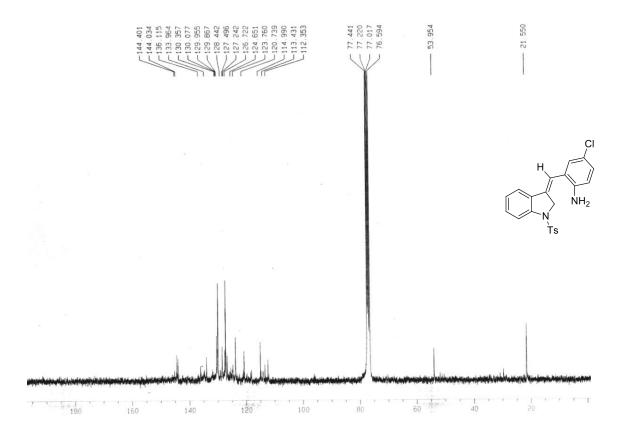

¹H NMR spectrum of compound **2e**, CDCl₃, 300 MHz

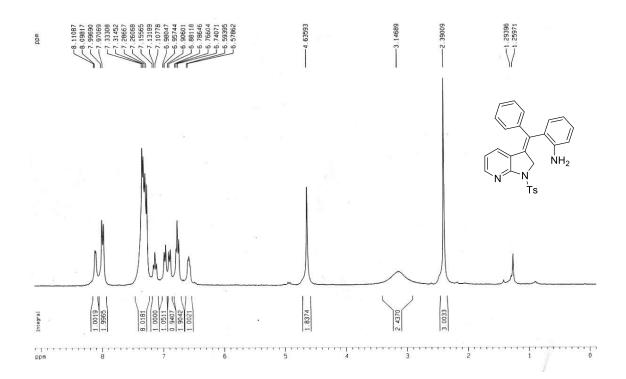

¹³C NMR spectrum of compound **2e**, CDCl₃, 75 MHz

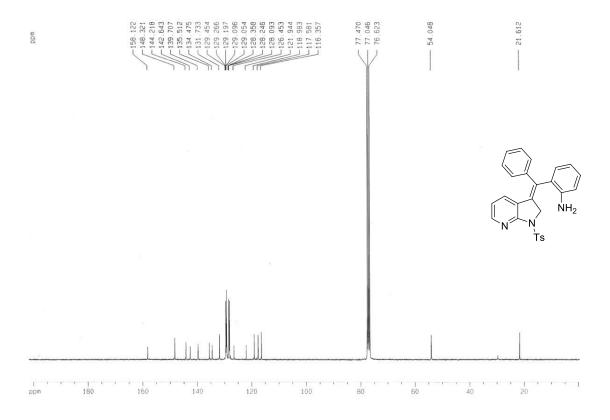

^{1}H NMR spectrum of compound **2f**, CDCl₃, 300 MHz

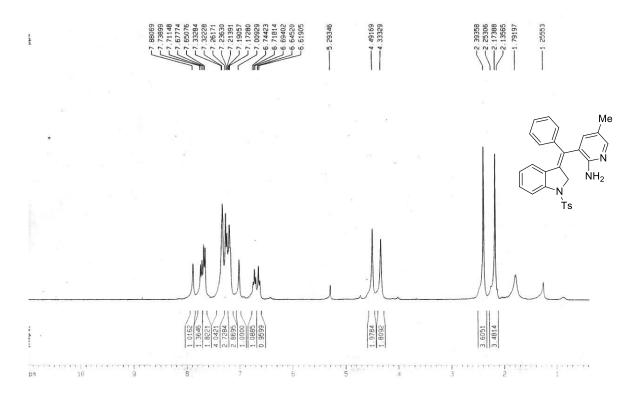

¹³C NMR spectrum of compound **2f**, CDCl₃, 75 MHz

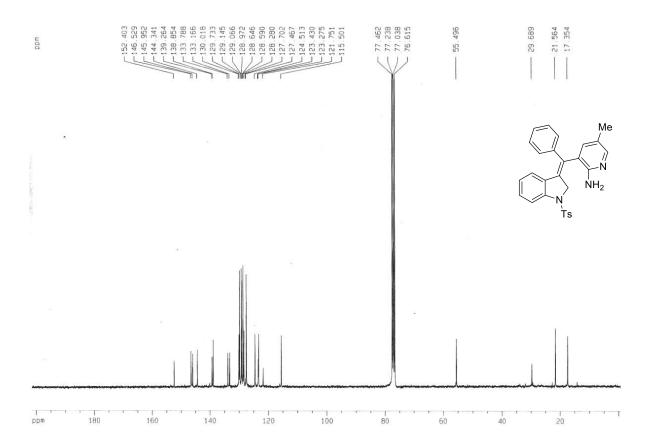

¹H NMR spectrum of compound **2g**, CDCl₃, 300 MHz

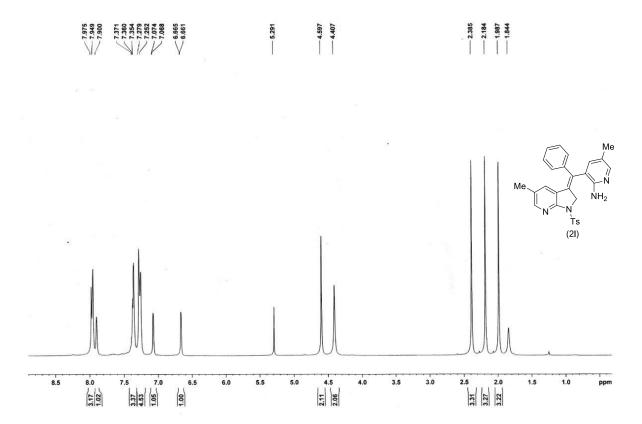

^{13}C NMR spectrum of compound **2g**, CDCl₃, 75 MHz

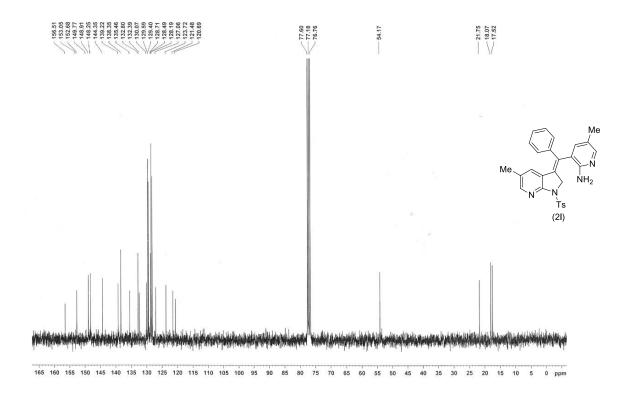

^{1}H NMR spectrum of compound **2h**, CDCl₃, 300 MHz

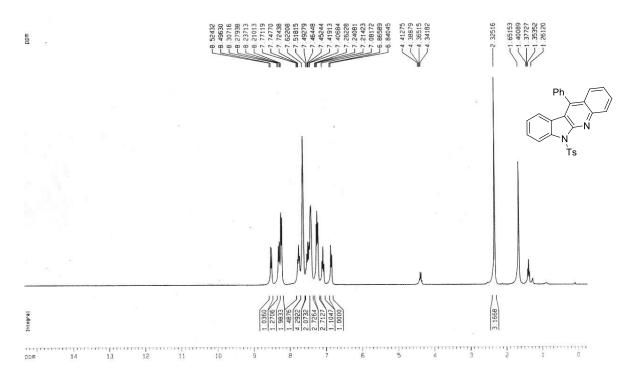

¹³C NMR spectrum of compound **2h**, CDCl₃, 75 MHz

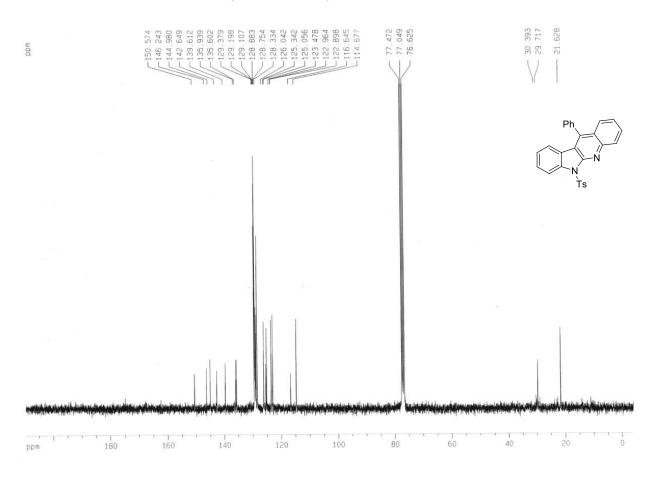

¹H NMR spectrum of compound **2i**, CDCl₃, 300 MHz

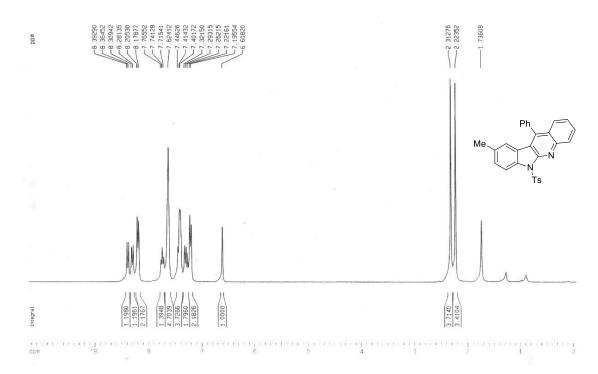

¹³C NMR spectrum of compound **2i**, CDCl₃, 75 MHz

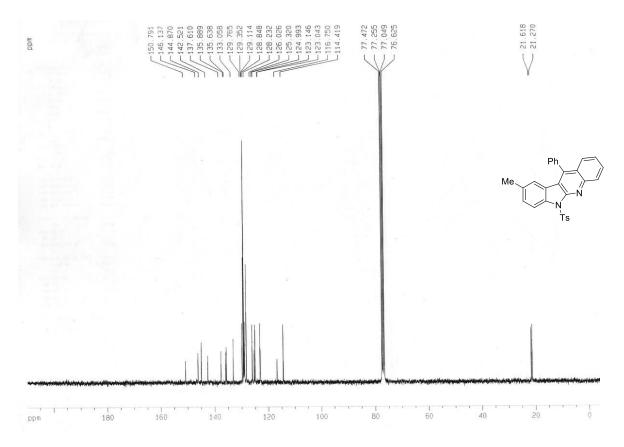

¹H NMR spectrum of compound **2j**, CDCl₃, 300 MHz

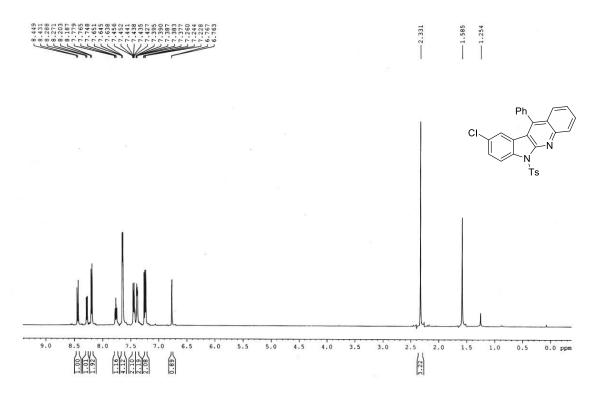

¹³C NMR spectrum of compound **2j**, CDCl₃, 100 MHz

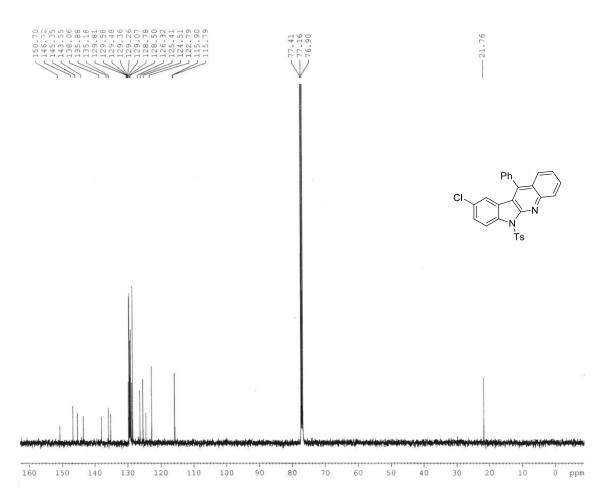

¹H NMR spectrum of compound **2k**, CDCl₃, 500 MHz

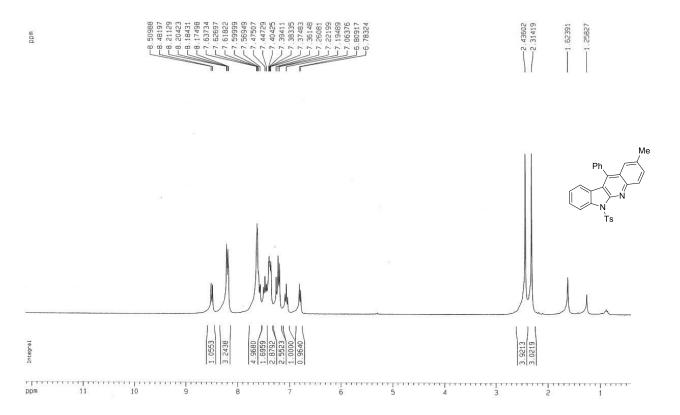

 13 C NMR spectrum of compound **2k**, CDCl₃, 75 MHz

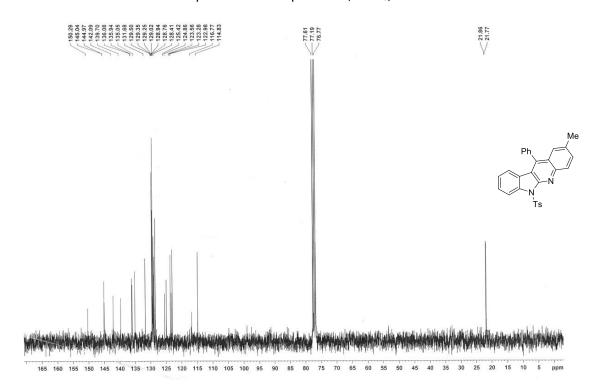

¹H NMR spectrum of compound **3a**, CDCl₃, 300 MHz

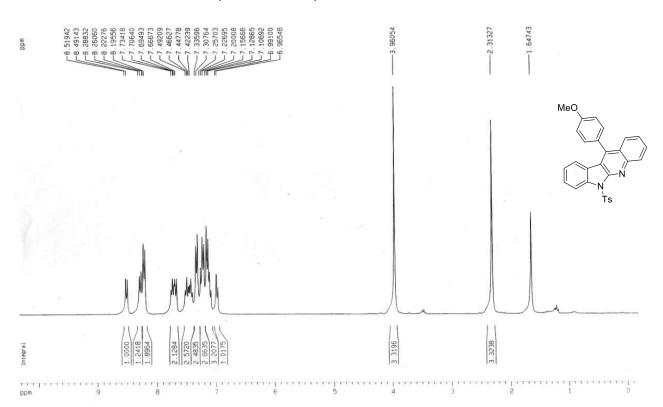

¹³C NMR spectrum of compound **3a**, CDCl₃, 75 MHz

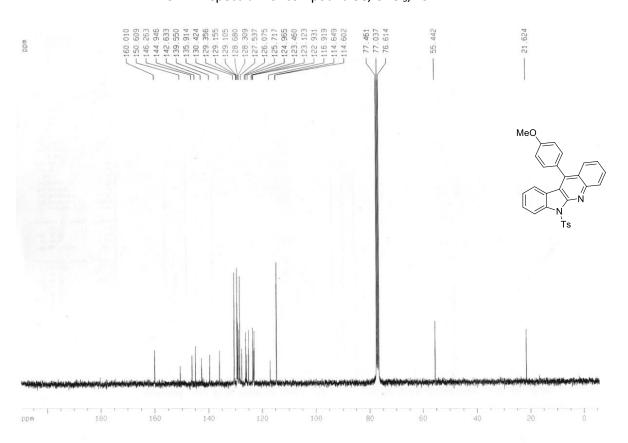

¹H NMR spectrum of compound **3b**, CDCl₃, 300 MHz

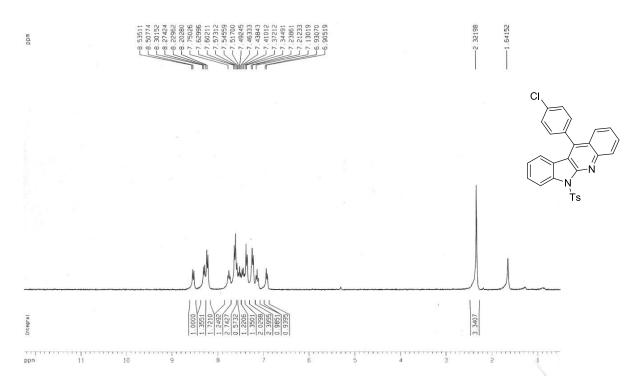

¹³C NMR spectrum of compound **3b**, CDCl₃, 75 MHz

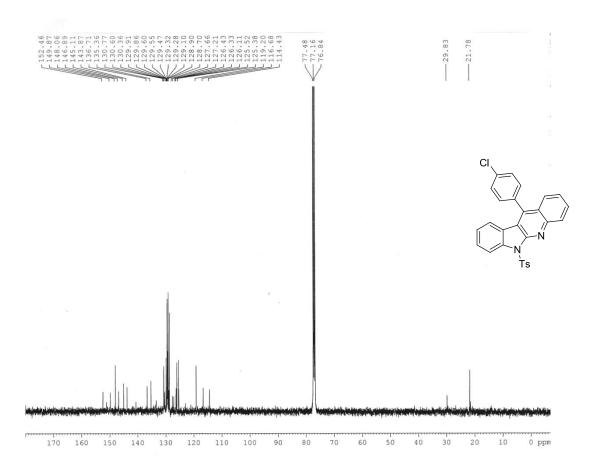

^{1}H NMR spectrum of compound **3c**, CDCl₃, 500 MHz

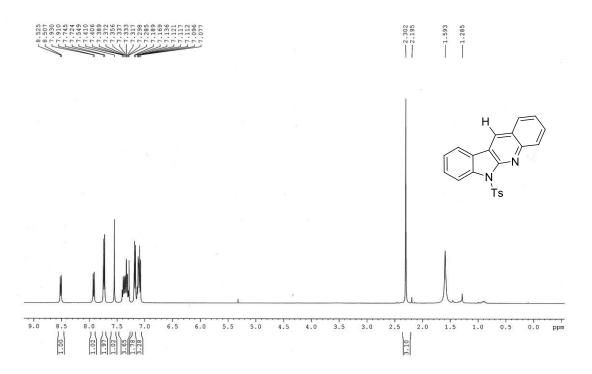

 ^{13}C NMR spectrum of compound **3c**, CDCl₃, 125 MHz

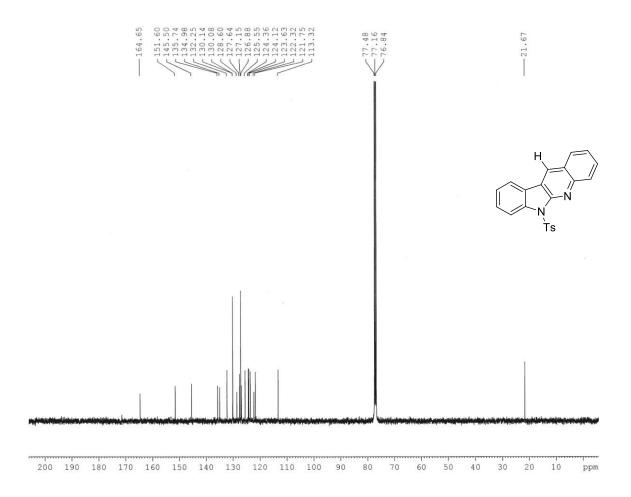

^{1}H NMR spectrum of compound **3d**, CDCl₃, 400 MHz

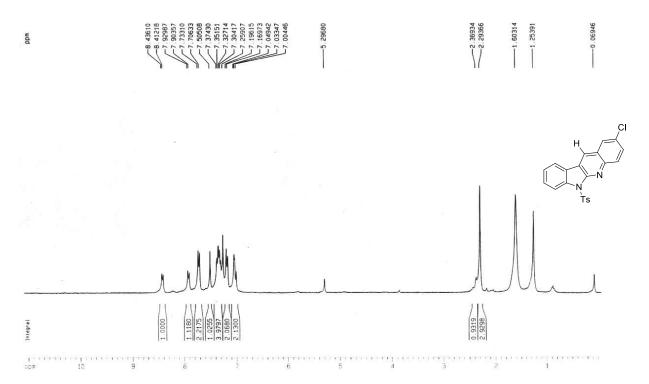

 13 C NMR spectrum of compound **3d**, CDCl₃, 100 MHz

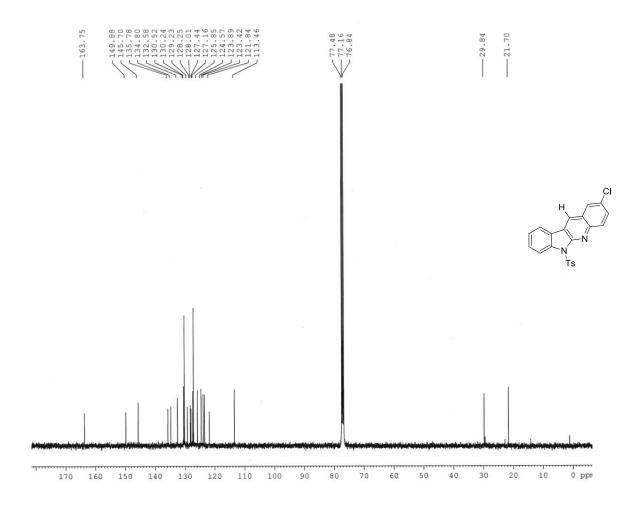

^{1}H NMR spectrum of compound **3e**, CDCl₃, 300 MHz

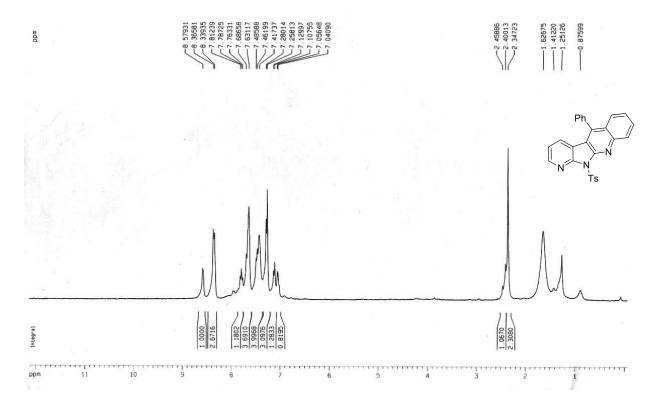

¹³C NMR spectrum of compound **3e**, CDCl₃, 75 MHz

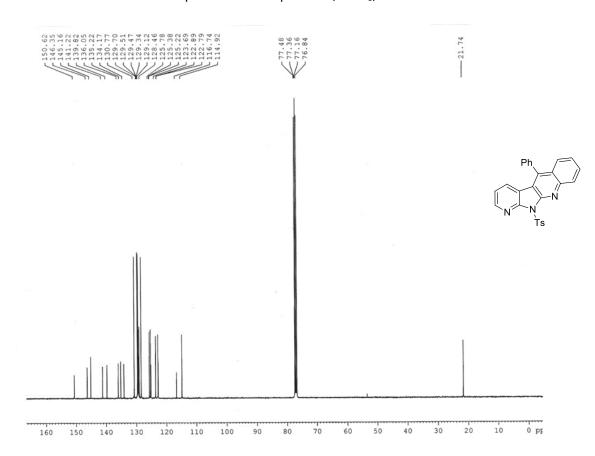

^{1}H NMR spectrum of compound **3f**, CDCl₃, 300 MHz

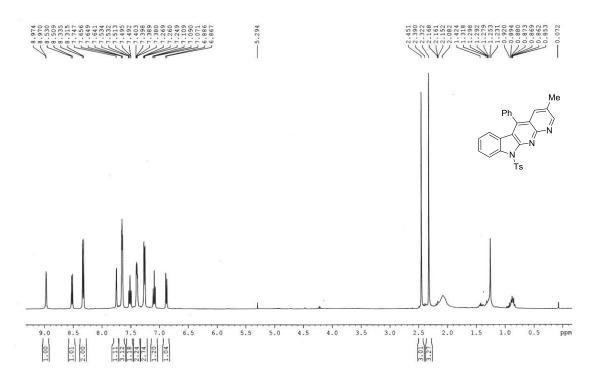

 ^{13}C NMR spectrum of compound **3f**, CDCl₃, 100 MHz

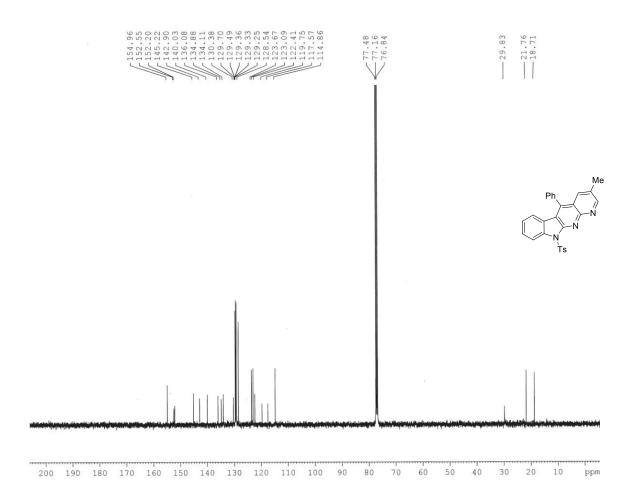

^{1}H NMR spectrum of compound **3g**, CDCl₃, 300 MHz

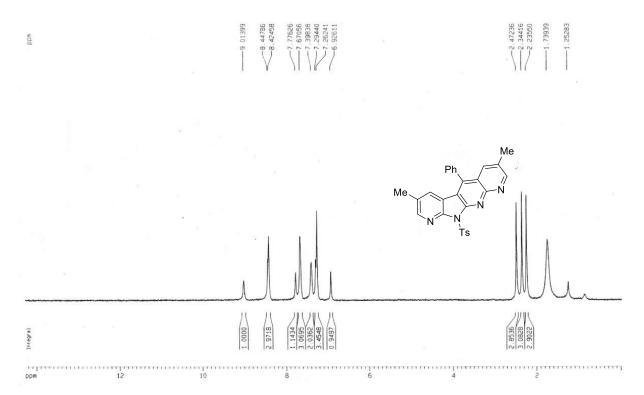

 ^{13}C NMR spectrum of compound **3g**, CDCl₃, 100 MHz

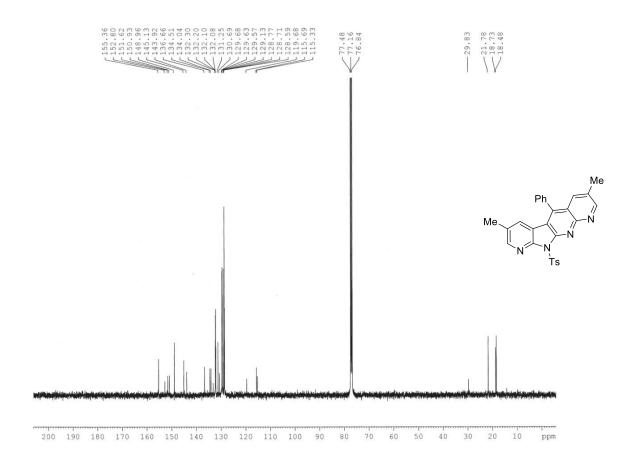

^{1}H NMR spectrum of compound **3h**, CDCl₃, 300 MHz

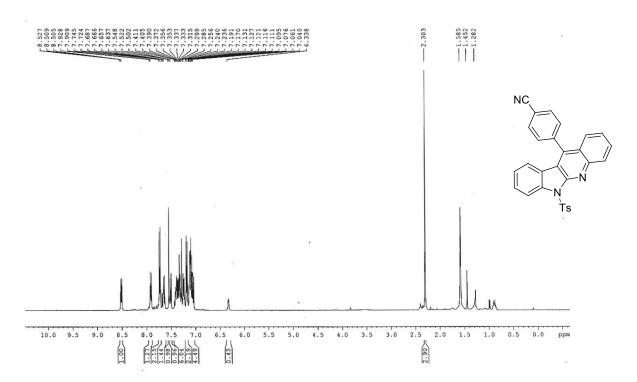

¹³C NMR spectrum of compound **3h**, CDCl₃, 100 MHz

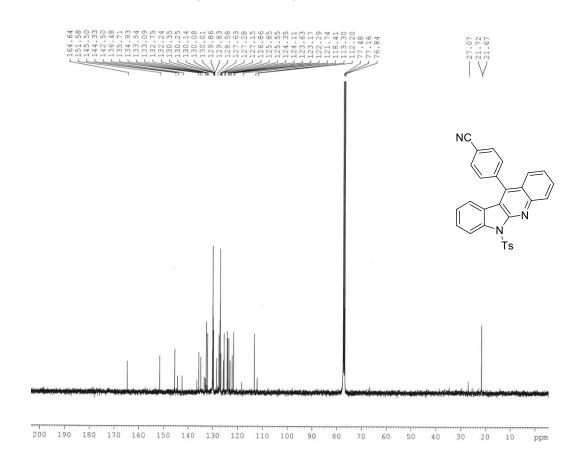

 ^{1}H NMR spectrum of compound **3i**, CDCl₃, 300 MHz

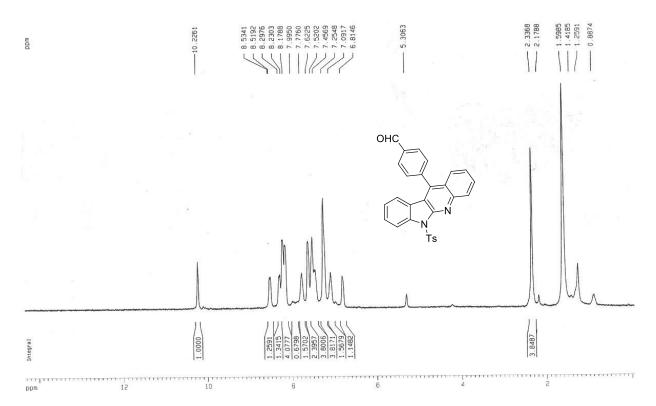

 $^{13}\text{C NMR}$ spectrum of compound **3i**, CDCl₃, 100 MHz

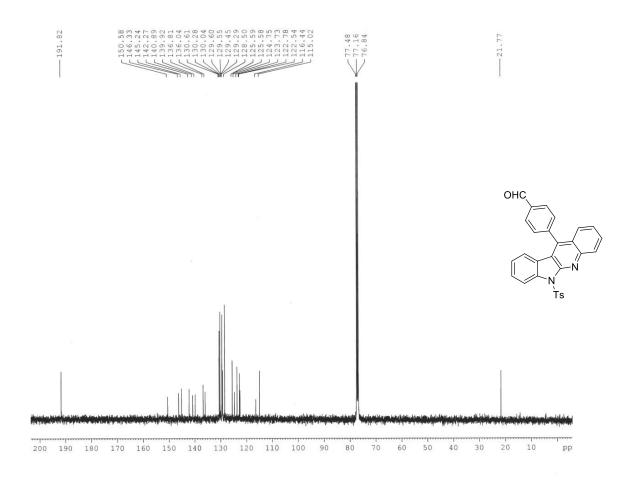

^{1}H NMR spectrum of compound **3j**, CDCl₃, 400 MHz

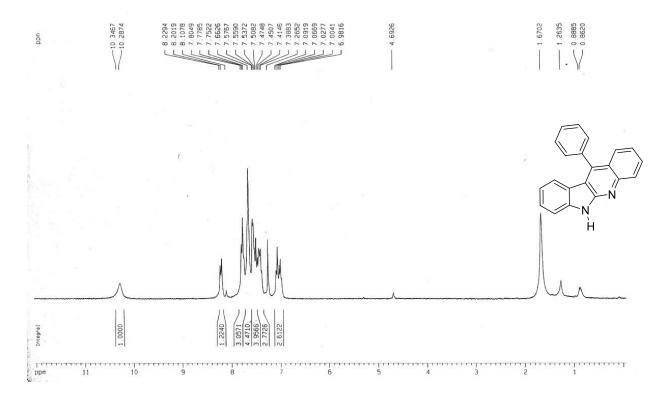

 ^{13}C NMR spectrum of compound $3j\text{, CDCl}_3\text{, }100\text{ MHz}$

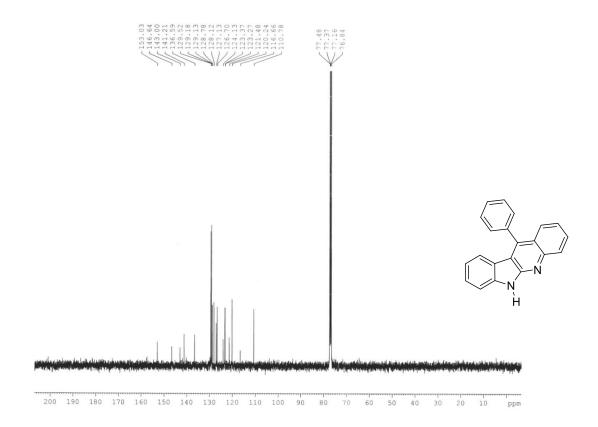

^{1}H NMR spectrum of compound **3k**, CDCl₃, 300 MHz


^{13}C NMR spectrum of compound **3k**, CDCl₃, 100 MHz


¹H NMR spectrum of compound **3I**, CDCl₃, 400 MHz


 ^{13}C NMR spectrum of compound **3I**, CDCl₃, 100 MHz


^{1}H NMR spectrum of compound **3m**, CDCl₃, 300 MHz


¹³C NMR spectrum of compound **3m**, CDCl₃, 100 MHz

^{1}H NMR spectrum of compound **4**, CDCl₃, 300 MHz

 ^{13}C NMR spectrum of compound **4**, CDCl₃, 100 MHz

