Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

One-pot metal-free protocol for the synthesis of chalcogenated furans from 1, 4-enediones and thiols

Venkatachalam Rajeshkumar*, Chinnaraj Neelamegam, and Sambandam Anandan

Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.

E-mail: orgrajeshkumar@gmail.com; vrajesh@nitt.edu

Table of contents	Page no.
Copies of ¹ H and ¹³ C NMR spectra of furan derivatives	2-31
X-ray crystal data for compound 3b	32-38

B 0720 B 0720 B 0482 B 1487 B 1481 B 1473 B 1403 B 1403 B 1403 B 1403 B 1403

1.0628 1.0449 1.0270

8.0389 8.0359 8.0359 8.0359 8.0359 8.0359 8.0359 8.0359 8.0359 7.18656 7.18656 7.14423 7.133867 7.14423 7.15245 7.15245 7.15245 7.1549 7.1559 7.1549 7.1559

1.1063 1.0884 1.0705

P80334

Figure S8. ¹³C NMR spectrum of compound 3d (101 MHz, CDCl₃)

-1.0749 -1.0571 -1.0392

Figure S10. ¹³C NMR spectrum of compound 3e (101 MHz, CDCl₃)

1.0756 1.0577 1.0398

Figure S18. ¹³C NMR spectrum of compound 3i (101 MHz, CDCl₃)

Figure S21. ¹H NMR spectrum of compound 3k (400 MHz, CDCl₃)

—163.1525 —156.8200		-110.6764	-61.5543 	
------------------------	--	-----------	--------------	--

12

1.0924 1.0745 1.0566

8.3116 8.3069 8.2069 8.2089 8.2089 8.00848 8.00823 8.00523 8.005224 8.00522 8.005224 8.005218 8.003243 8.003240

1.1189 1.1010 1.0831

(8,13)74 (8,13)74 (8,13)7496 (17,796,0001 (7,55)74 (7,55)74 (7,45)2402 (7,44)72 (7,44)72 (7,42)29 (7,72)29

Sample and crystal data for compound 3b

$C_{26}H_{22}O_{3}S$				
414.49 g/mol				
296(2) K				
0.71073 Å				
0.100 x 0.220 x 0.250 mm				
clear light colourless Block				
monoclinic				
P 1 21/c 1				
a = 10.9451(3) Å	$\alpha = 90^{\circ}$			
b = 7.7900(2) Å	$\beta = 95.0229(14)^{\circ}$			
c = 25.6813(9) Å	$\gamma = 90^{\circ}$			
2181.24(11) Å ³				
4				
1.262 g/cm^3				
0.173 mm ⁻¹				
872				
	$\begin{array}{l} C_{26}H_{22}O_{3}S\\ 414.49 \text{ g/mol}\\ 296(2) \text{ K}\\ 0.71073 \text{ Å}\\ 0.100 \text{ x } 0.220 \text{ x } 0.250 \text{ mm}\\ \text{clear light colourless Block}\\ \text{monoclinic}\\ P 1 21/c 1\\ a = 10.9451(3) \text{ Å}\\ b = 7.7900(2) \text{ Å}\\ c = 25.6813(9) \text{ Å}\\ 2181.24(11) \text{ Å}^{3}\\ 4\\ 1.262 \text{ g/cm}^{3}\\ 0.173 \text{ mm}^{-1}\\ 872 \end{array}$			

Data collection and structure refinement for compound 3b Thete range for data collection 1.87 to 25.00°

Theta range for data collection	1.8 / to 25.00°	
Index ranges	-12<=h<=13, -9<=k<=9, -	30<=1<=29
Reflections collected	10933	
Independent reflections	3834 [R(int) = 0.0231]	
Coverage of independent reflections	100.0%	
Absorption correction	multi-scan	
Max. and min. transmission	0.9830 and 0.9580	
Refinement method	Full-matrix least-squares of	on F^2
Refinement program	SHELXL-2014/7 (Sheldrid	ck, 2014)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3834 / 0 / 273	
Goodness-of-fit on F ²	1.046	
Final R indices	2743 data; I>2σ(I)	R1 = 0.0424, $wR2 = 0.0934$
	all data	R1 = 0.0694, wR2 = 0.1082
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0373P) ² + where P=(F_o^2 +2 F_c^2)/3	0.6798P]
Largest diff. peak and hole	0.216 and -0.216 eÅ ⁻³	
R.M.S. deviation from mean	0.032 eÅ ⁻³	

Atomic coordinates and equivalent isotropic atomic displacement parameter $(Å^2)$ for compound 3b.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.4903(2)	0.5450(3)	0.20684(9)	0.0622(6)
C2	0.5726(2)	0.5192(3)	0.24949(10)	0.0730(7)
C3	0.6841(2)	0.6006(3)	0.25356(10)	0.0729(7)
C4	0.7140(2)	0.7075(3)	0.21451(11)	0.0711(7)
C5	0.6332(2)	0.7335(3)	0.17112(10)	0.0617(6)
C6	0.51992(19)	0.6527(3)	0.16677(9)	0.0506(5)
C7	0.43451(19)	0.6804(3)	0.12061(9)	0.0513(5)
C8	0.3969(2)	0.7302(3)	0.03534(9)	0.0517(5)
C9	0.28623(19)	0.7301(3)	0.05592(9)	0.0516(5)
C10	0.31080(19)	0.6970(3)	0.11134(9)	0.0515(5)
C11	0.12788(18)	0.5206(3)	0.15875(8)	0.0492(5)
C12	0.1544(2)	0.3815(3)	0.12863(9)	0.0580(6)
C13	0.0839(2)	0.2344(3)	0.12920(10)	0.0634(6)
C14	0.9864(2)	0.2214(3)	0.15938(10)	0.0644(6)
C15	0.9618(2)	0.3606(4)	0.18962(11)	0.0743(7)
C16	0.0313(2)	0.5094(3)	0.18967(9)	0.0652(6)
C17	0.9090(3)	0.0597(4)	0.15837(13)	0.0971(10)
C18	0.4412(2)	0.7548(2)	0.98393(9)	0.0532(5)
C19	0.5594(2)	0.8153(3)	0.98021(10)	0.0635(6)
C20	0.6027(3)	0.8418(3)	0.93236(12)	0.0790(8)
C21	0.5294(3)	0.8094(4)	0.88749(12)	0.0881(9)
C22	0.4130(3)	0.7485(4)	0.89022(11)	0.0881(9)
C23	0.3684(2)	0.7216(3)	0.93812(10)	0.0723(7)
C24	0.1670(2)	0.7731(3)	0.02790(10)	0.0576(6)
C25	0.9522(2)	0.7253(4)	0.02515(11)	0.0790(8)
C26	0.8678(2)	0.6355(4)	0.05782(13)	0.0969(10)
01	0.48755(12)	0.69984(18)	0.07463(6)	0.0544(4)
O2	0.15273(16)	0.8708(3)	0.99161(8)	0.0916(6)
O3	0.07603(13)	0.6908(2)	0.04776(6)	0.0671(5)
S 1	0.21078(5)	0.71633(8)	0.16069(2)	0.06106(19)

Bond lengths (Å) for compound 3b

C1-C2	1.371(3)	C1-C6	1.388(3)
C1-H1	11 0.93		1.371(3)
С2-Н2	0.93	C3-C4	1.366(3)
С3-Н3	0.93	C4-C5	1.376(3)
C4-H4	0.93	C5-C6	1.386(3)
С5-Н5	0.93	C6-C7	1.460(3)
C7-C10	1.360(3)	C7-O1	1.369(2)
C8-C9	1.364(3)	C8-O1	1.372(2)
C8-C18	1.458(3)	C9-C10	1.448(3)
C9-C24	1.472(3)	C10-S1	1.752(2)
C11-C12	1.377(3)	C11-C16	1.379(3)
C11-S1	1.773(2)	C12-C13	1.383(3)
C12-H12	0.93	C13-C14	1.376(3)
С13-Н13	0.93	C14-C15	1.374(4)
C14-C17	1.517(3)	C15-C16	1.386(3)
C15-H15	0.93	C16-H16	0.93
C17-H17A	0.96	C17-H17B	0.96
C17-H17C	0.96	C18-C23	1.387(3)
C18-C19	1.388(3)	C19-C20	1.371(3)
С19-Н19	0.93	C20-C21	1.369(4)
С20-Н20	0.93	C21-C22	1.368(4)
C21-H21	0.93	C22-C23	1.379(4)
С22-Н22	0.93	С23-Н23	0.93
C24-O2	1.203(3)	C24-O3	1.324(3)
C25-O3	1.452(3)	C25-C26	1.477(4)
C25-H25A	0.97	C25-H25B	0.97
C26-H26A	0.96	C26-H26B	0.96
С26-Н26С	0.96		
C2-C1-C6	120 1(2)	C2-C1-H1	120.0
C6-C1-H1	120.1(2)	C1-C2-C3	120.0 120.8(2)
C1-C2-H2	119.6	С3-С2-Н2	119.6
C4-C3-C2	119.0	C4-C3-H3	120.2
С2-С3-Н3	120.2	C3-C4-C5	120.2 120.4(2)
C3-C4-H4	119.8	C5-C4-H4	119.8
C4-C5-C6	1204(2)	С4-С5-Н5	119.8
C6-C5-H5	119.8	C5-C6-C1	118 7(2)
C5-C6-C7	120 2(2)	C1-C6-C7	121 13(19)
C10-C7-O1	109 23(19)	C10-C7-C6	135 5(2)
01-C7-C6	115.27(18)	C9-C8-O1	108 92(19)
			100.72(17)

C9-C8-C18	136.7(2)	O1-C8-C18	114.36(18)
C8-C9-C10	106.63(19)	C8-C9-C24	126.1(2)
C10-C9-C24	127.0(2)	C7-C10-C9	106.57(19)
C7-C10-S1	123.84(18)	C9-C10-S1	128.42(16)
C12-C11-C16	118.9(2)	C12-C11-S1	124.07(16)
C16-C11-S1	117.04(17)	C11-C12-C13	120.1(2)
С11-С12-Н12	120.0	С13-С12-Н12	120.0
C14-C13-C12	121.8(2)	С14-С13-Н13	119.1
С12-С13-Н13	119.1	C15-C14-C13	117.4(2)
C15-C14-C17	121.9(2)	C13-C14-C17	120.7(3)
C14-C15-C16	121.7(2)	С14-С15-Н15	119.1
С16-С15-Н15	119.1	C11-C16-C15	120.0(2)
С11-С16-Н16	120.0	С15-С16-Н16	120.0
С14-С17-Н17А	109.5	С14-С17-Н17В	109.5
H17A-C17-H17B	109.5	С14-С17-Н17С	109.5
H17A-C17-H17C	109.5	H17B-C17-H17C	109.5
C23-C18-C19	118.4(2)	C23-C18-C8	122.1(2)
C19-C18-C8	119.5(2)	C20-C19-C18	120.7(3)
С20-С19-Н19	119.7	С18-С19-Н19	119.7
C21-C20-C19	120.3(3)	С21-С20-Н20	119.9
С19-С20-Н20	119.9	C22-C21-C20	120.0(3)
С22-С21-Н21	120.0	C20-C21-H21	120.0
C21-C22-C23	120.2(3)	С21-С22-Н22	119.9
С23-С22-Н22	119.9	C22-C23-C18	120.4(3)
С22-С23-Н23	119.8	С18-С23-Н23	119.8
O2-C24-O3	123.6(2)	O2-C24-C9	124.9(2)
O3-C24-C9	111.5(2)	O3-C25-C26	107.0(2)
O3-C25-H25A	110.3	С26-С25-Н25А	110.3
O3-C25-H25B	110.3	С26-С25-Н25В	110.3
H25A-C25-H25B	108.6	С25-С26-Н26А	109.5
С25-С26-Н26В	109.5	H26A-C26-H26B	109.5
С25-С26-Н26С	109.5	H26A-C26-H26C	109.5
H26B-C26-H26C	109.5	C7-O1-C8	108.64(16)
C24-O3-C25	117.62(19)	C10-S1-C11	104.85(10)

Torsion angles (°) for compound 3b

C6-C1-C2-C3	0.9(4)	C1-C2-C3-C4	-0.5(4)
C2-C3-C4-C5	-0.3(4)	C3-C4-C5-C6	0.7(4)
C4-C5-C6-C1	-0.3(3)	C4-C5-C6-C7	-179.9(2)
C2-C1-C6-C5	-0.5(3)	C2-C1-C6-C7	179.1(2)
C5-C6-C7-C10	-142.7(3)	C1-C6-C7-C10	37.7(4)
C5-C6-C7-O1	35.1(3)	C1-C6-C7-O1	-144.5(2)
O1-C8-C9-C10	-0.2(2)	C18-C8-C9-C10	-179.7(2)

01-C8-C9-C24	174.15(19)	C18-C8-C9-C24	-5.4(4)
O1-C7-C10-C9	-0.4(2)	C6-C7-C10-C9	177.5(2)
O1-C7-C10-S1	-169.02(14)	C6-C7-C10-S1	8.9(4)
C8-C9-C10-C7	0.4(2)	C24-C9-C10-C7	-173.9(2)
C8-C9-C10-S1	168.27(16)	C24-C9-C10-S1	-6.0(3)
C16-C11-C12-C13	0.7(3)	S1-C11-C12-C13	-179.37(17)
C11-C12-C13-C14	-0.1(4)	C12-C13-C14-C15	-0.6(4)
C12-C13-C14-C17	178.7(2)	C13-C14-C15-C16	0.5(4)
C17-C14-C15-C16	-178.8(2)	C12-C11-C16-C15	-0.8(3)
S1-C11-C16-C15	179.33(19)	C14-C15-C16-C11	0.1(4)
C9-C8-C18-C23	-25.8(4)	O1-C8-C18-C23	154.7(2)
C9-C8-C18-C19	153.4(2)	O1-C8-C18-C19	-26.1(3)
C23-C18-C19-C20	0.1(3)	C8-C18-C19-C20	-179.1(2)
C18-C19-C20-C21	0.3(4)	C19-C20-C21-C22	-0.8(4)
C20-C21-C22-C23	0.9(4)	C21-C22-C23-C18	-0.5(4)
C19-C18-C23-C22	0.0(3)	C8-C18-C23-C22	179.2(2)
C8-C9-C24-O2	-29.2(4)	C10-C9-C24-O2	144.0(2)
C8-C9-C24-O3	151.1(2)	C10-C9-C24-O3	-35.7(3)
C10-C7-O1-C8	0.3(2)	C6-C7-O1-C8	-178.06(17)
C9-C8-O1-C7	-0.1(2)	C18-C8-O1-C7	179.57(16)
O2-C24-O3-C25	-1.9(3)	C9-C24-O3-C25	177.9(2)
C26-C25-O3-C24	-173.3(2)	C7-C10-S1-C11	-110.40(18)
C9-C10-S1-C11	83.6(2)	C12-C11-S1-C10	7.8(2)
C16-C11-S1-C10	-172.32(17)		

Anisotropic atomic displacement parameters (Å²) for compound 3b

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0666(15)	0.0585(14)	0.0620(15)	0.0017(12)	0.0093(12)	-0.0146(11)
C2	0.0907(19)	0.0687(16)	0.0602(16)	0.0107(13)	0.0090(14)	-0.0068(14)
C3	0.0747(18)	0.0784(17)	0.0638(17)	0.0031(15)	-0.0043(13)	0.0051(14)
C4	0.0520(14)	0.0801(17)	0.0804(18)	0.0065(15)	0.0010(13)	-0.0043(13)
C5	0.0511(13)	0.0642(14)	0.0708(16)	0.0123(13)	0.0117(12)	-0.0020(11)
C6	0.0497(12)	0.0471(12)	0.0557(13)	-0.0014(11)	0.0087(10)	-0.0008(10)
C7	0.0541(13)	0.0465(12)	0.0548(13)	0.0026(11)	0.0141(11)	-0.0048(10)
C8	0.0548(13)	0.0436(11)	0.0568(14)	0.0033(11)	0.0047(11)	-0.0012(10)
C9	0.0497(12)	0.0418(11)	0.0634(15)	0.0024(11)	0.0062(10)	-0.0008(9)
C10	0.0497(13)	0.0426(11)	0.0631(15)	-0.0016(11)	0.0107(10)	-0.0068(9)
C11	0.0441(12)	0.0523(12)	0.0515(13)	0.0027(11)	0.0061(10)	0.0019(9)
C12	0.0540(13)	0.0543(13)	0.0674(15)	-0.0004(12)	0.0160(11)	-0.0008(10)
C13	0.0679(15)	0.0513(13)	0.0716(16)	-0.0014(12)	0.0102(13)	-0.0017(11)
C14	0.0571(14)	0.0603(14)	0.0750(17)	0.0149(14)	0.0007(12)	-0.0067(11)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C15	0.0615(15)	0.0805(18)	0.0851(19)	0.0131(16)	0.0296(13)	-0.0064(13)
C16	0.0631(15)	0.0673(15)	0.0684(16)	-0.0041(13)	0.0234(12)	0.0002(12)
C17	0.085(2)	0.0774(18)	0.129(3)	0.0199(18)	0.0084(18)	-0.0257(15)
C18	0.0590(14)	0.0418(12)	0.0600(14)	0.0040(11)	0.0119(11)	0.0046(10)
C19	0.0633(15)	0.0584(14)	0.0710(16)	-0.0043(13)	0.0181(12)	0.0044(11)
C20	0.0845(19)	0.0642(16)	0.095(2)	-0.0015(16)	0.0433(18)	0.0026(14)
C21	0.117(3)	0.081(2)	0.072(2)	0.0121(17)	0.0425(19)	0.0194(18)
C22	0.102(2)	0.102(2)	0.0613(18)	-0.0035(16)	0.0103(16)	0.0161(18)
C23	0.0705(17)	0.0780(17)	0.0689(17)	-0.0023(15)	0.0090(13)	-0.0005(13)
C24	0.0614(15)	0.0469(12)	0.0650(15)	0.0030(12)	0.0086(12)	0.0051(11)
C25	0.0550(15)	0.0814(18)	0.098(2)	0.0118(16)	-0.0106(14)	0.0111(13)
C26	0.0521(15)	0.104(2)	0.134(3)	0.014(2)	0.0005(16)	-0.0007(15)
01	0.0494(8)	0.0566(9)	0.0580(9)	0.0042(8)	0.0087(7)	0.0003(7)
O2	0.0776(13)	0.0922(13)	0.1058(15)	0.0444(12)	0.0120(11)	0.0184(10)
03	0.0483(9)	0.0669(10)	0.0843(12)	0.0169(9)	-0.0050(8)	-0.0021(8)
S 1	0.0582(4)	0.0565(3)	0.0706(4)	-0.0139(3)	0.0179(3)	-0.0076(3)

Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for compound 3b

	x/a	y/b	z/c	U(eq)
H1	0.4145	0.4903	0.2048	0.075
H2	0.5526	0.4456	0.2760	0.088
H3	0.7391	0.5830	0.2828	0.088
H4	0.7895	0.7632	0.2173	0.085
H5	0.6547	0.8056	0.1446	0.074
H12	0.2197	0.3866	0.1079	0.07
H13	0.1028	0.1415	0.1086	0.076
H15	-0.1031	0.3548	0.2106	0.089
H16	0.0128	0.6017	0.2106	0.078
H17A	-0.1497	0.0688	0.1839	0.146
H17B	-0.0389	-0.0378	0.1663	0.146
H17C	-0.1332	0.0456	0.1243	0.146
H19	0.6097	0.8382	0.0105	0.076
H20	0.6822	0.8819	-0.0696	0.095
H21	0.5589	0.8289	-0.1449	0.106
H22	0.3638	0.7251	-0.1403	0.106
H23	0.2889	0.6810	-0.0603	0.087
H25A	-0.0586	0.6834	-0.0105	0.095
H25B	-0.0639	0.8478	0.0249	0.095
H26A	-0.1104	0.5162	0.0604	0.145

	x/a	y/b	z/c	U(eq)
H26B	-0.2148	0.6465	0.0422	0.145
H26C	-0.1261	0.6855	0.0921	0.145