Supporting Information

Metal- and Base-Free Domino Protocol for the Synthesis of 1,3-Benzoselenazines, 1,3-Benzothiazines and Related Scaffolds

V. P. Rama Kishore Putta,^{a,c} Raghuram Gujjarappa,^b Ujjawal Tyagi,^b Prasad P. Pujar,^{c,*} and Chandi C. Malakar^{b,*}

^a Department of Medicinal Chemistry, Jubilant Biosys, Bangalore - 560022, Karnataka, India
^b Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India, Phone: (+91) 0385-2058566, Fax: (+91) 0385-2445812, E-Mail: <u>chdeepm@gmail.com, cmalakar@nitmanipur.ac.in</u>
^c Department of Chemistry, CHRIST (Deemed to be University), Bangalore - 560029, India

Contents:	pages
1. General methods	1
2. General experimental procedure for the synthesis of 1,3-benzoselenazines (3aa-ah, 3h	oa-la)
and 1,3-benzothiazines (5aa-as, 5ba-oa, 5pt)	2
3. General experimental procedure for the synthesis of 2-aryl thiazin-4-ones (7aa-ca)	
and diaryl[<i>b,f</i>][1,5]diazocine-6,12(5H,11H)-diones (8aa-cc)	2
4. Experimental procedures and analytical data of synthesized 1,3-benzoselenazines	
(3aa-ah, 3ba-la)	2
5. Experimental procedures and analytical data of synthesized 1,3-benzothiazines	
(5aa-as, 5ba-oa, 5pt)	57
6. Experimental procedures and analytical data of synthesized 2-aryl thiazin-4-ones (7aa	-ca) 157
7. References	165

1. General methods

All starting materials were purchased from commercial suppliers (Sigma-Aldrich, Alfa-Aesar, SD fine chemicals, Merck, HI Media) and were used without further purification unless otherwise indicated. All reactions were carried out under an argon atmosphere in oven-dried glassware with magnetic stirring. The reactions were performed in pressure tube purchased from Sigma-Aldrich glassware. Solvents used in extraction and purification were distilled prior to use. Thin-layer chromatography (TLC) was performed on TLC plates purchase from Merck. Compounds were visualized with UV light ($\lambda = 254$ nm) and/or by immersion in KMnO₄ staining solution followed by heating. Products were purified by column chromatography on

silica gel, 100 - 200 mesh. ¹H (¹³C) NMR spectra were recorded at 400 (100) MHz on a Brucker spectrometer using CDCl₃ and DMSO-d₆ as a solvent. The ¹H and ¹³C chemical shifts were referenced to residual solvent signals at $\delta_{H/C}$ 7.26 /77.28 (CDCl₃) and $\delta_{H/C}$ 2.51 /39.50 (DMSO-d₆) relative to TMS as internal standards. Coupling constants J [Hz] were directly taken from the spectra and are not averaged. Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), overlapped and br (broad).

2. General experimental procedure for the synthesis of 1,3-benzoselenazines (3aa-ah, 3bala) and 1,3-benzothiazines (5aa-as, 5ba-oa, 5pt)

A 10 mL reaction vial was charged with aryl/htero-aryl alkyl alcohols **1a**-p (1.0 mmol), selenocarboxamide **2a-h** (1.0 mmol) or thiocarboxamides **4a**-s (1.0 mmol), T3P anhydride solution \geq 50 wt. % in ethyl acetate (1.1 mmol). The reaction mixture was then stirred at 25 °C for 20 minutes in an open vial. After completion of the reaction (progress was monitored by TLC; SiO₂, Hexane/EtOAc = 95:5), the mixture was diluted with ethyl acetate (15 mL) and water (20 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with brine (3 × 10 mL) and dried over anhydrous Na₂SO₄. Solvent was removed under reduced pressure and the remaining residue was purified by column chromatography over silica gel using hexane / ethyl acetate = 95:5 as an eluent to obtain the desired 1,3-benzoselenazines (**3aa-ah**, **3ba-la**) and 1,3-benzothiazines (**5aa-as**, **5ba-oa**, **5pt**) in high yields.

3. General experimental procedure for the synthesis of 2-aryl thiazin-4-ones (7aa-ca) and diaryl[*b*,*f*]/1,5]diazocine-6,12(*5H*,*11H*)-diones (8aa-cc)

A 10 mL reaction vial was charged with anthranilic acids **6a-c** (1.0 mmol), thiobenzamide **4a** (1.0 mmol), T3P anhydride solution \geq 50 wt. % in ethyl acetate (1.1 mmol). The reaction mixture was then stirred at 25 °C for 12 hours in an open vial. After completion of the reaction (progress was monitored by TLC; SiO₂, Hexane/EtOAc = 3:1), the mixture was diluted with ethyl acetate (15 mL) and water (20 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with brine (3 × 10 mL) and dried over anhydrous Na₂SO₄. Solvent was removed under reduced pressure and the remaining residue was purified by column chromatography over silica gel using hexane / ethyl acetate = 95:5 as an eluent to obtain the desired 2-aryl thiazin-4-ones (**7aa-ca**) and diaryl[*b*,*f*][1,5]diazocine-6,12(5H,11H)-diones (**8aa-cc**) in good yields.

4. Experimental procedures and analytical data of synthesized 1,3-benzoselenazines (3aa-ah, 3ba-la)

Synthesis of 2-phenyl-4H-benzo[d][1,3]selenazine (3aa); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), benzoselenoamide **2a** (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-phenyl-4H-benzo[d][1,3]selenazine **3aa** in 97% (265 mg) yield as pale yellow solid.

Figure 1. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3aa** in CDCl₃ and LC-MS in Acetonitrile

Pale yellow solid; $\mathbf{R}_{f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.10$ (dd, J = 8.0, 1.6 Hz, 2H), 7.51 – 7.44 (m, 4H), 7.35 (t, J = 7.6 Hz, 1H), 7.29 – 7.24 (m, 2H), 3.96 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.0, 146.4, 139.4, 131.5, 128.6, 128.5, 128.2, 127.6, 127.4, 126.9, 119.9, 22.2 ppm; MS (APCI): [M + 1]⁺ = 274.0 (99.70%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₂NSe: 274.0134; found: 274.0130.$

Synthesis of 2-(m-tolyl)-4H-benzo[d][1,3]selenazine (3ab); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 3-methylbenzoselenoamide **2b** (1.0 mmol, 198 mg), T3P (1.1 mmol, 349.8 mg) were

performed to obtain the desired 2-(m-tolyl)-4H-benzo[d][1,3]selenazine **3ab** in 95% (272 mg) yield as green solid.

Figure 2. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ab** in CDCl₃ and LC-MS in Acetonitrile.

Green solid; $\mathbf{R_f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.92 - 7.89$ (m, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.38 - 7.29 (m, 3H), 7.27 - 7.23 (m, 2H), 3.95 (s, 2H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.2$, 146.4, 139.4, 138.2, 132.3, 129.0, 128.3, 128.1, 127.5, 127.3, 126.8, 126.0, 120.0, 22.2, 21.3 ppm; MS (APCI): [M + 1]⁺ = 288.0 (99.67%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₄NSe: 288.0291; found: 288.0289.

Synthesis of 2-(4-methoxyphenyl)-4H-benzo[d][1,3]selenazine (3ac); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 4-methoxybenzoselenoamide **2c** (1.0 mmol, 214 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(4-methoxyphenyl)-4H-benzo[d][1,3]selenazine **3ac** in 92% (278 mg) yield as off-white solid.

Figure 3. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ac** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R_f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); ¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.08$ (d, J = 8.8 Hz, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.36 - 7.32 (m, 1H), 7.25 - 7.23 (m, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.95 (s, 2H) ppm; ¹³**C** NMR (100 MHz, CDCl₃) $\delta = 162.5$, 160.2, 146.6, 132.2, 130.4, 128.1, 127.1, 127.1, 126.8, 120.1, 113.8, 55.4, 22.3 ppm; MS (APCI): $[M + 1]^+ = 302.0$ (99.65%); **HRMS** (ESI, $[M + H]^+$): calculated for C₁₅H₁₄NOSe: 304.0240; found: 304.0241.

Synthesis of 2-(3-chlorophenyl)-4H-benzo[d][1,3]selenazine (3ad); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 3-chlorobenzoselenoamide **2d** (1.0 mmol, 218.5 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(3-chlorophenyl)-4H-benzo[d][1,3]selenazine **3ad** in 90% (276 mg) yield as off-white solid.

Figure 4. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ad** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R_f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.11$ (s, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.48 - 7.35 (m, 4H), 7.31 - 7.24 (m, 2H), 3.96 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.2$, 146.1, 141.1, 135.5, 134.7, 131.3, 129.6, 128.3, 128.0, 127.7, 127.5, 126.9, 126.9, 119.7, 29.7, 26.8, 22.3 ppm; MS (APCI): [M + 1]⁺ = 308.0 (99.93%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁ClNSe: 307.9745; found: 307.9741.

Synthesis of 2-(4-chlorophenyl)-4H-benzo[d][1,3]selenazine (3ae); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 4-chlorobenzoselenoamide **2e** (1.0 mmol, 218.5 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(4-chlorophenyl)-4H-benzo[d][1,3]selenazine **3ae** in 91% (280 mg) yield as off-white solid.

Figure 5. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ae** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{\mathbf{f}} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.05$ (d, J = 9.2 Hz, 2H), 7.44 (d, J = 8.8 Hz, 3H), 7.36 (t, J = 7.6 Hz, 1H), 7.30 – 7.23 (m, 2H), 3.95 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.4$, 146.2, 137.8, 137.6, 129.8, 128.7, 128.3, 127.8, 127.4, 126.9, 119.7, 22.3 ppm; MS (APCI): [M + 1]⁺ = 308.0 (99.44%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁ClNSe: 307.9745; found: 307.9742.

Synthesis of 2-(pyridin-3-yl)-4H-benzo[d][1,3]selenazine (3af); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), pyridine-2-carboselenoamide **2f** (1.0 mmol, 185 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(pyridin-3-yl)-4H-benzo[d][1,3]selenazine **3af** in 89% (243 mg) yield as pale yellow solid.

Figure 6. ¹H (400 MHz) NMR spectra of **3af** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.50$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 9.30$ (s, 1H), 8.72 (d, J = 4.8 Hz, 1H), 8.44 (d, J = 8.0 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.39 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 4.00 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.2$, 152.2, 151.5, 146.0, 139.9, 131.7, 131.3, 128.5, 128.4, 128.0, 127.4, 120.5, 22.8 ppm; MS (APCI): [M + 1]⁺ = 275.0 (99.65%); HRMS (ESI, [M + H]⁺): calculated for C₁₃H₁₁N₂Se: 275.0087; found: 275.0084.

Synthesis of 2-(furan-2-yl)-4H-benzo[d][1,3]selenazine (3ag); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), furan-2-carboselenoamide **2g** (1.0 mmol, 174 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(furan-2-yl)-4H-benzo[d][1,3]selenazine **3ag** in 95% (249 mg) yield as brown semisolid.

Figure 7. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ag** in CDCl₃ and LC-MS in Acetonitrile.

Brown semisolid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.65$ (s, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 6.4 Hz, 1H), 7.27 - 7.20 (m, 2H), 7.14 (d, J = 2.8 Hz, 1H), 6.66 (q, J = 2, 3.2 Hz, 1H), 3.93 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.3$, 148.4, 145.9, 145.6, 128.4, 127.5, 127.3, 126.9, 120.0, 115.3, 112.1, 21.9 ppm; MS (APCI): [M + 1]⁺ = 264.0 (99.93%); HRMS (ESI, [M + H]⁺): calculated for C₁₂H₁₀NOSe: 263.9927; found: 263.9926.

Synthesis of 2-(thiophen-2-yl)-4H-benzo[d][1,3]selenazine (3ah); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), thiophene-2-carboselenoamide **2h** (1.0 mmol, 190 mg), T3P (1.1 mmol, 349.8 mg) were

performed to obtain the desired 2-(thiophen-2-yl)-4H-benzo[d][1,3]selenazine **3ah** in 93% (259 mg) yield as yellow semisolid.

Figure 8. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ah** in CDCl₃ and LC-MS in Acetonitrile.

Yellow semisolid; $\mathbf{R}_{f} = 0.60 \text{ (SiO}_{2}$, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.73 \text{ (d}, J = 3.2 \text{ Hz}, 1\text{H})$, 7.55 (d, J = 4.8 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 6.4 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.14 (t, J = 7.6 Hz, 1H), 3.94 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.3$, 146.2, 144.9, 130.6, 130.5, 128.2, 127.3, 127.3, 127.1, 126.9, 120.2, 29.6, 22.6 ppm; MS (APCI): [M + 1]⁺ = 280.0 (98.40%); HRMS (ESI, [M + H]⁺): calculated for C₁₂H₁₀NSSe: 279.9699; found: 279.9701.

Synthesis of 7-methyl-2-phenyl-4H-benzo[d][1,3]selenazine (3ba); new compound

According to the general procedure, reactions between 2-amino-4-methylbenzyl alcohol **1b** (1.0 mmol, 137 mg), benzoselenoamide **2a** (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were

performed to obtain the desired 7-methyl-2-phenyl-4H-benzo[d][1,3]selenazine **3ba** in 92% (263 mg) yield as brown solid.

Figure 9. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ba** in CDCl₃ and LC-MS in Acetonitrile.

Brown solid; $\mathbf{R}_{f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.12$ (d, J = 6.8 Hz, 2H), 7.49 – 7.47 (m, 3H), 7.31 (s, 1H), 7.14 – 7.08 (m, 2H), 3.92 (s, 2H), 2.42 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.7$, 146.2, 139.5, 138.0, 131.4, 128.6, 128.5, 128.2, 128.0, 126.6, 116.9, 22.0, 21.0 ppm; MS (APCI): [M + 1]⁺ = 288.0 (99.67%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₄NSe: 288.0291; found: 288.0293.

Synthesis of 8-methyl-2-phenyl-4H-benzo[d][1,3]selenazine (3ca); new compound

According to the general procedure, reactions between 2-amino-3-methylbenzyl alcohol 1c (1.0 mmol, 137 mg), benzoselenoamide 2a (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were

performed to obtain the desired 8-methyl-2-phenyl-4H-benzo[d][1,3]selenazine **3ca** in 91% (260 mg) yield as pale yellow solid.

Figure 10. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ca** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.16$ (d, J = 7.2 Hz, 2H), 7.50 – 7.49 (m, 3H), 7.24 (d, J = 7.6 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 6.8 Hz, 1H), 3.90 (s, 2H), 2.59 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.8$, 144.5, 139.8, 135.1, 131.4, 129.7, 128.8, 128.5, 127.0, 124.5, 120.2, 22.9, 18.2 ppm; MS (APCI): [M + 1]⁺ = 288.0 (99.87%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₄NSe: 288.0291; found: 288.0293.

Synthesis of 7-methoxy-2-phenyl-4H-benzo[d][1,3]selenazine (3da); new compound

According to the general procedure, reactions between 2-amino-4-methoxybenzyl alcohol 1d (1.0 mmol, 153 mg), benzoselenoamide 2a (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-methoxy-2-phenyl-4H-benzo[d][1,3]selenazine 3da in 96% (290 mg) yield as pale yellow solid.

Figure 11. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3da** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.11$ (d, J = 6.4 Hz, 2H), 7.52 - 7.46 (m, 3H), 7.14 (t, J = 8.4 Hz, 1H), 7.04 (d, J = 2.0 Hz, 1H), 6.84 (dd, J = 8.4 Hz, 1H), 3.92 (s, 2H), 3.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.6, 159.7, 147.3, 139.5, 131.5, 128.6, 128.5, 127.4, 113.9, 112.0, 111.9, 55.4, 21.8 ppm; MS (APCI): [M + 1]⁺ = 304.0 (99.88%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₄NOSe: 304.0240; found: 304.0241.$

Synthesis of 6-fluoro-2-phenyl-4H-benzo[d][1,3]selenazine (3ea); new compound

According to the general procedure, reactions between 2-amino-5-fluorobenzyl alcohol **1e** (1.0 mmol, 141 mg), benzoselenoamide **2a** (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 6-fluoro-2-phenyl-4H-benzo[d][1,3]selenazine **3ea** in 92% (267 mg) yield as off-white solid.

Figure 12. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ea** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.09$ (d, J = 6.8 Hz, 2H), 7.51 - 7.41 (m, 4H), 7.05 (dt, J = 8.4, 2.4 Hz, 1H), 6.96 (dd, J = 2.0, 8.4 Hz, 1H), 3.90 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.5$ (d, J = 249.0 Hz), 160.1, 142.7, 139.2, 131.5, 129.1, 129.1, 128.5, 121.9, 121.8, 115.0, 114.8, 113.7, 113.5, 21.9 ppm; MS (APCI): [M + 1]⁺ = 292.01 (99.74%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁FNSe: 292.0040; found: 292.0038.
Synthesis of 7-fluoro-2-phenyl-4H-benzo[d][1,3]selenazine (3fa); new compound

According to the general procedure, reactions between 2-amino-4-fluorobenzyl alcohol **1f** (1.0 mmol, 141 mg), benzoselenoamide **2a** (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-fluoro-2-phenyl-4H-benzo[d][1,3]selenazine **3fa** in 92% (267 mg) yield as brown solid.

Figure 13. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3fa** in CDCl₃ and LC-MS in Acetonitrile.

Brown solid; $\mathbf{R}_{\mathbf{f}} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.11$ (d, J = 7.2 Hz, 2H), 7.52 – 7.48 (m, 3H), 7.19 (d, J = 7.6 Hz, 2H), 7.00 (t, J = 7.2 Hz, 1H), 3.91 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.9$, 162.5 (d, J = 244.5 Hz), 147.7, 147.6, 139.1, 131.8, 128.7, 128.5, 127.8, 127.7, 115.7, 114.2, 114.0, 21.7 ppm; MS (APCI): [M + 1]⁺ = 292.0 (99.58%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁FNSe: 292.0040; found: 292.0038.

Synthesis of 8-fluoro-2-phenyl-4H-benzo[d][1,3]selenazine (3ga); new compound

According to the general procedure, reactions between 2-amino-3-fluorobenzyl alcohol **1g** (1.0 mmol, 141 mg), benzoselenoamide **2a** (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 8-fluoro-2-phenyl-4H-benzo[d][1,3]selenazine **3ga** in 90% (261 mg) yield as pale yellow solid.

Figure 14. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ga** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.13$ (d, J = 7.2 Hz, 2H), 7.52 – 7.44 (m, 3H), 7.21 – 7.18 (m, 1H), 7.11 (t, J = 9.2 Hz, 1H), 7.00 (d, J = 6.8 Hz, 1H), 3.92 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.8$, 157.2 (d, J = 252.9 Hz), 139.3, 135.0, 134.9, 131.8, 128.9, 128.5, 127.8, 127.7, 122.4, 122.2, 122.1, 115.3, 115.1, 22.0, 21.9 ppm; **MS** (APCI): [M + 1]⁺ = 292.01 (99.78%); **HRMS** (ESI, [M + H]⁺): calculated for C₁₄H₁₁FNSe: 292.0040; found: 292.0041.

Synthesis of 6-chloro-2-phenyl-4H-benzo[d][1,3]selenazine (3ha); new compound

According to the general procedure, reactions between 2-amino-5-chlorobenzyl alcohol **1h** (1.0 mmol, 158 mg), benzoselenoamide **2a** (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 6-chloro-2-phenyl-4H-benzo[d][1,3]selenazine **3ha** in 93% (285 mg) yield as pale yellow solid.

Figure 15. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ha** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R_f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.09$ (d, J = 6.8 Hz, 2H), 7.53 – 7.45 (m, 3H), 7.38 (d, J = 8.4 Hz, 1H), 7.32 (dd, J = 8.4 Hz, 1H), 7.24 (s, 1H), 3.89 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.5$, 144.9, 139.1, 132.5, 131.7, 128.6, 128.5, 128.2, 126.8, 121.5, 21.8 ppm; MS (APCI): $[M + 1]^+ = 308.0$ (98.16%); HRMS (ESI, $[M + H]^+$): calculated for C₁₄H₁₁ClNSe: 307.9745; found: 307.9744.

Synthesis of 7-chloro-2-phenyl-4H-benzo[d][1,3]selenazine (3ia); new compound

According to the general procedure, reactions between 2-amino-4-chlorobenzyl alcohol 1i (1.0 mmol, 158 mg), benzoselenoamide 2a (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-chloro-2-phenyl-4H-benzo[d][1,3]selenazine 3ia in 95% (291 mg) yield as pale yellow solid.

Figure 16. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ia** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.10$ (d, J = 7.2 Hz, 2H), 7.54 - 7.47 (m, 4H), 7.24 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 3.90 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.9$, 147.4, 139.0, 133.5, 131.9, 128.7, 128.6, 127.8, 127.2, 118.5, 21.7 ppm; MS (APCI): [M + 1]⁺ = 308.0 (99.77%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁CINSe: 307.9745; found: 307.9743.

Synthesis of 2-phenyl-7-(trifluoromethyl)-4H-benzo[d][1,3]selenazine (3ja); new compound

According to the general procedure, reactions between 2-amino-4-trifluoromethylbenzyl alcohol **1j** (1.0 mmol, 191 mg), benzoselenoamide **2a** (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-phenyl-7-(trifluoromethyl)-4H-benzo[d][1,3]selenazine **3ja** in 94% (320 mg) yield as off-white solid.

Figure 17. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3ja** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{f} = 0.67$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.13$ (d, J = 7.6 Hz, 2H), 7.73 (s, 1H), 7.56 – 7.47 (m, 4H), 7.36 (d, J = 7.6 Hz, 1H), 3.96 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.4$, 146.6, 138.9, 132.0, 130.6 (q, J = 32.8 Hz), 128.8, 128.6, 127.4, 124.3, 124.2, 123.98, 123.94, 123.92 (q, J = 274.6 Hz), 123.90, 21.8 ppm; MS (APCI): $[M + 1]^{+} = 342.0$ (99.76%); HRMS (ESI, $[M + H]^{+}$): calculated for C₁₅H₁₁F₃NSe: 342.0008; found: 342.0005.

Synthesis of 2,4-diphenyl-4H-benzo[d][1,3]selenazine (3ka); new compound

According to the general procedure, reactions between 2-aminobenzhydrol 1k (1.0 mmol, 199 mg), benzoselenoamide 2a (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2,4-diphenyl-4H-benzo[d][1,3]selenazine 3ka in 89% (310 mg) yield as pale yellow solid.

Figure 18. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of 3ka in CDCl₃.

Pale yellow solid; $\mathbf{R}_{f} = 0.67$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.02$ (d, J = 7.2 Hz, 2H), 7.62 (d, J = 8.0 Hz, 1H), 7.51 - 7.40 (m, 4H), 7.31 - 7.29 (m, 3H), 5.47 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.8$, 146.4, 141.8, 139.5, 131.4, 128.7, 128.6, 128.5, 128.4, 128.2, 127.9, 127.6, 127.4, 127.0, 122.7, 41.2 ppm; MS (APCI): [M + 1]⁺ = 350.0 (99.25%); HRMS (ESI, [M + H]⁺): calculated for C₂₀H₁₆NSe: 350.0447; found: 350.0445.

Synthesis of 4,4-dimethyl-2-phenyl-4H-benzo[d][1,3]selenazine (3la); new compound

According to the general procedure, reactions between 2-(2-aminophenyl)propan-2-ol 11 (1.0 mmol, 151 mg), benzoselenoamide 2a (1.0 mmol, 184 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 4,4-dimethyl-2-phenyl-4H-benzo[d][1,3]selenazine 3la in 86% (258 mg) yield as white solid.

Figure 19. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **3la** in CDCl₃ and LC-MS in Acetonitrile.

White solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.11$ (dd, J = 7.2, 2.0 Hz, 2H), 7.57 – 7.55 (m, 1H), 7.48 – 7.43 (m, 4H), 7.38 - 7.33 (m, 2H), 1.80 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.2, 146.0, 139.9, 131.7, 131.3, 128.5, 128.4, 128.0, 127.4, 120.5, 41.3, 29.8 ppm; MS (APCI): [M + 1]⁺ = 302.0 (99.65%); HRMS (ESI, [M + H]⁺): calculated for C₁₆H₁₆NSe: 302.0447; found: 302.0443.$

5. Experimental procedures and analytical data of synthesized 1,3-benzothiazines (5aa-as, 5ba-oa, 5pt)

Synthesis of 2-phenyl-4H-benzo[d][1,3]thiazine (5aa); known compound¹

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-phenyl-4H-benzo[d][1,3]thiazine **5aa** in 98% (221 mg) yield as white solid.

Figure 20. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5aa** in CDCl₃ and HRMS in Acetonitrile.

White solid; $\mathbf{R}_{f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 55 - 56$ °C (Lit¹ 55 - 58 °C); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.15$ (d, J = 6.0 Hz, 2H), 7.51 - 7.45 (m, 4H), 7.38 (t, J = 7.2 Hz, 1H), 7.28 - 7.25 (m, 1H), 7.17 (d, J = 7.6 Hz, 1H), 4.00 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) = δ 161.0, 144.4, 138.0, 131.5, 128.4, 128.2, 127.6, 127.0, 126.8, 119.6, 28.5 ppm; HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₂NS: 226.0690; found: 226.0693.

Synthesis of 2-(p-tolyl)-4H-benzo[d][1,3]thiazine (5ab); known compound²

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 4-methylbenzothioamide **4b** (1.0 mmol, 151 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(p-tolyl)-4H-benzo[d][1,3]thiazine **5ab** in 92% (220 mg) yield as white solid.

Figure 21. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ab** in CDCl₃ and LC-MS in Acetonitrile.

White solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); m.p = 103 - 105 °C (Lit² 104 - 106 °C); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.07$ (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.29 - 7.24 (m, 3H), 7.16 (d, J = 7.2 Hz, 1H), 3.99 (s, 2H), 2.43 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.9$, 144.5, 142.0, 135.3, 129.2, 128.4, 128.1, 127.3, 126.9, 126.8, 119.7, 28.6, 21.5 ppm; MS (APCI): [M + 1]⁺ = 240.1 (99.52%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₄NS: 240.0846; found: 240.0843.

Synthesis of 2-(4-methoxyphenyl)-4H-benzo[d][1,3]thiazine (5ac); known compound²

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 4-methoxybenzothioamide **4c** (1.0 mmol, 167 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(4-methoxyphenyl)-4H-benzo[d][1,3]thiazine **5ac** in 95% (242 mg) yield as off-white solid.

Figure 22. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ac** in CDCl₃ and LC-MS in Acetonitrile.

Off-White solid; $\mathbf{R}_{f} = 0.66$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 123 - 124$ °C (Lit² 122 - 123 °C); ¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.12$ (d, J = 8.4 Hz, 2H), 7.43 (d, J = 7.2 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.24 (t, J = 6.4 Hz, 1H), 7.15 (d, J = 7.2 Hz, 1H), 6.98 (d, J = 8.4 Hz, 2H), 3.98 (s, 2H), 3.87 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.5$, 160.3, 144.6, 130.7, 129.9, 128.3, 127.1, 126.8, 126.7, 119.7, 113.8, 55.4, 28.6 ppm; **MS** (APCI): $[M + 1]^+ = 256.1$ (99.39%); **HRMS** (ESI, $[M + H]^+$): calculated for C₁₅H₁₄NOS: 256.0796; found: 256.0793.

Synthesis of 4-(4H-benzo[d][1,3]thiazin-2-yl)phenol (5ad); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 4-hydroxybenzothioamide **4d** (1.0 mmol, 153 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 4-(4H-benzo[d][1,3]thiazin-2-yl)phenol **5ad** in 92% (222 mg) yield as off-white solid.

Figure 23. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ad** in DMSO-*d*₆ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{f} = 0.45$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 183 - 184$ °C; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 10.15$ (s, 1H), 7.95 (d, J = 7.6 Hz, 2H), 7.33 - 7.21 (m, 4H), 6.89 (d, J = 8.0 Hz, 2H), 4.05 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 161.4$, 160.0, 144.6, 130.0, 128.9, 128.6, 127.5, 127.4, 126.5, 120.6, 115.9, 27.7 ppm; MS (APCI): [M + 1]⁺ = 242.1 (96.16%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₂NOS: 242.0639; found: 242.0641.

Synthesis of 2-(3-fluorophenyl)-4H-benzo[d][1,3]thiazine (5ae); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 3-fluorobenzothioamide **4e** (1.0 mmol, 155 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(3-fluorophenyl)-4H-benzo[d][1,3]thiazine **5ae** in 95% (231 mg) yield as off-white solid.

Figure 24. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ae** in DMSO- d_6 and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{\mathbf{f}} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 65 - 67$ °C; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 7.89 - 7.86$ (m, 2H), 7.45 - 7.36 (m, 3H), 7.28 (t, *J* = 7.2 Hz, 1H), 7.22 - 7.16 (m, 2H), 4.01 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 162.8$ (d, *J* = 246.0 Hz), 159.4, 144.1, 140.2, 140.1, 129.9, 129.8, 128.5, 127.9, 127.1, 126.9, 123.8, 119.4, 118.4, 118.1, 114.9, 114.6, 28.5 ppm; **MS** (APCI): $[M + 1]^+ = 244.1$ (99.16%); **HRMS** (ESI, $[M + H]^+$): calculated for C₁₄H₁₁FNS: 244.0596; found: 244.0594.

Synthesis of 2-(4-fluorophenyl)-4H-benzo[d][1,3]thiazine (5af); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 4-fluorobenzothioamide **4f** (1.0 mmol, 155 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(4-fluorophenyl)-4H-benzo[d][1,3]thiazine **5af** in 95% (231 mg) yield as off-white solid.

Figure 25. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5af** in DMSO-*d*₆ and HRMS in Acetonitrile

Off-white solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 114 - 115$ °C; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 8.15$ (t, J = 6.8 Hz, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.28 - 7.25 (m, 1H), 7.18 - 7.13 (m, 3H), 4.00 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 164.9$ (d, J = 252.4 Hz), 159.6, 144.3, 134.1, 134.1, 130.3, 130.2, 128.5, 127.6, 126.9, 126.8, 119.4, 115.6, 115.3, 28.6 ppm; **HRMS** (ESI, [M + H]⁺): calculated for C₁₄H₁₁FNS: 244.0596; found: 240.0598.

Synthesis of 2-(2-bromophenyl)-4H-benzo[d][1,3]thiazine (5ag); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 2-bromobenzothioamide **4g** (1.0 mmol, 216 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(2-bromophenyl)-4H-benzo[d][1,3]thiazine **5ag** in 94% (286 mg) yield as orange liquid.

Figure 26. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ag** in CDCl₃ and LC-MS in Acetonitrile.

Orange liquid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.66$ (d, J = 8.0 Hz, 1H), 7.25 (d, J = 6.8 Hz, 1H), 7.44 - 7.36 (m, 3H), 7.30 (t, J = 6.8 Hz, 2H), 7.17 (d, J = 7.6 Hz, 1H), 4.09 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 143.6$, 139.9, 133.5, 130.9, 130.3, 128.6, 128.3, 127.3, 127.0, 121.7, 118.6, 29.2 ppm; MS (APCI): [M]⁺, [M + 2]⁺ = 302, 304 (99.20%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁BrNS: 303.9795; found: 303.9790.

Synthesis of 2-(3-(trifluoromethyl)phenyl)-4H-benzo[d][1,3]thiazine (5ah); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 3-(trifluoromethyl)benzothioamide **4h** (1.0 mmol, 205 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(3-(trifluoromethyl)phenyl)-4H-benzo[d][1,3]thiazine **5ah** in 90% (264 mg) yield as off-white solid.

Figure 27. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ah** in DMSO- d_6 and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{f} = 0.55$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 160 - 161$ °C; ¹H NMR (400 MHz, DMSO- d_{6}) $\delta = 8.25$ (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 4.04 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_{6}) $\delta = 159.3$, 144.0, 141.0, 132.8 (q, J = 32.3 Hz), 128.6, 128.3, 128.2, 127.3, 126.9, 125.4, 125.3, 123.8 (q, J = 270.07 Hz), 119.2, 28.4 ppm; MS (APCI): [M + 1]⁺ = 294.1 (99.74%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₁F₃NS: 294.0564; found: 294.0560.

Synthesis of 2-(4-(trifluoromethyl)phenyl)-4H-benzo[d][1,3]thiazine (5ai); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 4-(trifluoromethyl)benzothioamide **4i** (1.0 mmol, 205 mg), T3P (1.1 mmol, 349.8 mg) were

performed to obtain the desired 2-(4-(trifluoromethyl)phenyl)-4H-benzo[d][1,3]thiazine **5ai** in 94% (276 mg) yield as off-white solid.

Figure 28. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ai** in DMSO- d_6 and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{f} = 0.55$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 159 - 160$ °C; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 8.25$ (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 7.2 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 4.03 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 159.3$, 144.0, 141.0, 132.8 (q, J = 32.5 Hz), 128.6, 128.3, 128.2, 127.9, 127.3, 126.9, 125.4, 125.3, 122.5, 119.8, 119.2, 28.4 ppm; MS (APCI): [M + 1]⁺ = 294.1 (99.53%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₁F₃NS: 294.0564; found: 294.0560.

Synthesis of 1-(4-(4H-benzo[d][1,3]thiazin-2-yl)phenyl)ethan-1-one (5aj); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 4-acetylbenzothioamide **4j** (1.0 mmol, 179 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 1-(4-(4H-benzo[d][1,3]thiazin-2-yl)phenyl)ethan-1-one **5aj** in 87% (232 mg) yield as pale yellow solid.

Figure 29. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5aj** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.55$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 131 - 132$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.23$ (d, J = 8.4 Hz, 2H), 8.04 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 6.8 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 4.04 (s, 2H), 2.65 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 197.5$, 159.6, 144.1, 141.7, 139.0, 128.5, 128.3, 128.1, 127.3, 126.9, 119.2, 28.4, 26.7 ppm; MS (APCI): [M + 1]⁺ = 268.0 (99.71%); HRMS (ESI, [M + H]⁺): calculated for C₁₆H₁₄NOS: 268.0796; found: 268.0793.

Synthesis of 2-(tert-butyl)-4H-benzo[d][1,3]thiazine (5ak); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), 2,2-dimethylpropanethioamide **4k** (1.0 mmol, 117 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(*tert*-butyl)-4H-benzo[d][1,3]thiazine **5ak** in 95% (195 mg) yield as off-white solid.

Figure 30. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ak** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{\mathbf{f}} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 51 - 53$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.32 - 7.25$ (m, 2H), 7.19 (dt, J = 2.0 Hz, 9.2 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 3.82 (s, 2H), 1.33 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 173.6$, 143.7, 128.1, 127.1, 126.6, 119.7, 42.3, 28.2 ppm; MS (APCI): [M + 1]⁺ = 206.0 (99.00%); HRMS (ESI, [M + H]⁺): calculated for C₁₂H₁₆NS: 206.1003; found: 206.1002.

Synthesis of Ethyl 4H-benzo[d][1,3]thiazine-2-carboxylate (5al); known compound³

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), ethyl thiooxamate **4l** (1.0 mmol, 133 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired ethyl 4h-benzo[d][1,3]thiazine-2-carboxylate **5al** in 90% (199 mg) yield as orange liquid.

Figure 31. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5al** in CDCl₃ and LC-MS in Acetonitrile.

Orange liquid; $\mathbf{R_f} = 0.55$ (SiO₂, Hexane/EtOAc = 95:5); **b.p** = 148 - 150 °C (Lit³ 150 °C); ¹**H NMR** (400 MHz CDCl₃) $\delta = 7.49$ (d, J = 7.2 Hz, 1H), 7.32 - 7.39 (m, 2H), 7.13 (d, J = 6.8 Hz, 1H), 4.45 (q, J = 7.2, 6.8 Hz, 2H), 3.96 (s, 2H), 1.42 (t, J = 7.2 Hz, 3H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) $\delta = 162.3$, 154.3, 142.9, 130.0, 129.3, 128.7, 128.2, 127.1, 126.1, 123.3, 119.0, 62.9, 27.8, 13.9 ppm; **MS** (APCI): $[M + 1]^+ = 222.1$ (99.50%); **HRMS** (ESI, $[M + H]^+$): calculated for C₁₁H₁₂NO₂S: 222.0588; found: 222.0583.

Synthesis of 2-(pyridin-2-yl)-4H-benzo[d][1,3]thiazine (5am); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), pyridine-2-carbothioamide **4m** (1.0 mmol, 138 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(pyridin-2-yl)-4H-benzo[d][1,3]thiazine **5am** in 88% (199 mg) yield as pale yellow solid.

Figure 32. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5am** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.45$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 97 - 98$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.69$ (d, J = 4.4 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H), 7.81 (dt, J = 7.2, 2.0 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.39 - 7.34 (m, 2H), 7.28 (dt, J = 7.6, 1.2 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 4.03 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.2$, 154.5. 148.7, 143.8, 136.5, 128.3, 127.3, 127.1, 125.4, 120.7, 119.4, 27.9 ppm; MS (APCI): [M + 1]⁺ = 227.1 (99.6%); HRMS (ESI, [M + H]⁺): calculated for C₁₃H₁₁N₂S: 227.0642; found: 227.0644.

Synthesis of 2-(pyridin-3-yl)-4H-benzo[d][1,3]thiazine (5an); known compound¹

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), pyridine-3-carbothioamide **4n** (1.0 mmol, 138 mg), T3P (1.1 mmol, 349.8 mg) were

performed to obtain the desired 2-(pyridin-3-yl)-4H-benzo[d][1,3]thiazine **5an** in 90% (203 mg) yield as pale yellow solid.

Figure 33. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5an** in CDCl₃ and HRMS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.55$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 181 - 182$ °C (Lit¹ 182 °C); ¹**H NMR** (400 MHz, CDCl₃) $\delta = 9.32$ (d, J = 1.6 Hz, 1H), 8.72 (dd, J = 5.2, 2.0 Hz, 1H), 8.40 (td, J = 8.4, 1.6 Hz, 1H), 7.45 (d, J = 7.2 Hz, 1H), 7.41 - 7.37 (m, 2H), 7.31 - 7.27 (m, 1H), 7.18 (d, J = 7.2 Hz, 1H), 4.04 (s, 2H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) $\delta = 158.33$, 152.03, 149.41, 144.0, 135.28, 133.55, 128.63, 128.14, 127.18, 126.98, 123.27, 119.25, 28.41 ppm; **HRMS** (ESI, [M + H]⁺): calculated for C₁₃H₁₁N₂S: 227.0642; found: 227.0647.

Synthesis of 2-(pyrimidin-5-yl)-4H-benzo[d][1,3]thiazine (5ao); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), pyrimidine-5-carbothioamide **4o** (1.0 mmol, 139 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(pyrimidin-5-yl)-4H-benzo[d][1,3]thiazine **5ao** in 92% (209 mg) yield as pale yellow solid.

Figure 34. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ao** in CDCl₃ and HRMS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.45$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 9.38$ (s, 2H), 9.31 (s, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 4.04 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 155.9, 155.4, 143.6, 131.2, 128.8, 128.6, 127.3, 127.0, 118.9, 28.2 ppm; HRMS (ESI, [M + H]⁺): calculated for C₁₂H₁₀N₃S: 228.0595; found: 228.0595.

Synthesis of 2-(pyrazin-2-yl)-4H-benzo[d][1,3]thiazine (5ap); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), pyrazine-2-carbothioamide **4p** (1.0 mmol, 139 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(pyrazin-2-yl)-4H-benzo[d][1,3]thiazine **5ap** in 93% (211 mg) yield as pale yellow solid.

Figure 35. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ap** in CDCl₃ and LC-MS in Acetonitrile.

Pale yellow solid; $\mathbf{R}_{f} = 0.40$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 97 - 98$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.55$ (s, 1H), 8.63 (d, J = 9.2 Hz, 2H), 7.46 (d, J = 7.2 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 6.8 Hz, 1H), 4.06 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 155.3$, 144.7, 141.0, 138.6, 138.3, 138.0, 124.2, 123.8, 122.9, 122.4, 114.2, 23.0 ppm; MS (APCI): [M + 1]⁺ = 228.1 (99.81%); HRMS (ESI, [M + H]⁺): calculated for C₁₂H₁₀N₃S: 228.0595; found: 228.0593.

Synthesis of *tert*-butyl 4-(4H-benzo[d][1,3]thiazin-2-yl)piperidine-1-carboxylate (5aq); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), *tert*-butyl 4-carbamothioylpiperidine-1-carboxylate **4q** (1.0 mmol, 244 mg), T3P (1.1

mmol, 349.8 mg) were performed to obtain the desired *tert*-butyl 4-(4H-benzo[d][1,3]thiazin-2-yl)piperidine-1-carboxylate **5aq** in 95% (316 mg) yield as orange semisolid.

Figure 36. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5aq** in CDCl₃ and LC-MS in Acetonitrile.

Orange semisolid; $\mathbf{R}_{f} = 0.40$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 73 - 75$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.31 - 7.18$ (m, 3H), 7.06 (d, J = 7.2 Hz, 1H), 4.16 (bs, 2H), 3.87 (s, 2H), 2.81 (t, J = 12 Hz, 2H), 2.78 - 2.59 (m, 1H), 1.93 (d, J = 11.6 Hz, 2H), 1.85 - 1.76 (m, 2H), 1.46 (s, 9H) ppm; ¹³C NMR (100 MHz CDCl₃) $\delta = 168.2$, 154.7, 143.2, 128.4, 127.4, 126.9, 126.6, 119.0, 79.4, 48.1, 43.4, 29.6, 28.4, 28.0 ppm; **MS** (APCI): $[M + 1]^+ = 333.1$ (99.29%); **HRMS** (ESI, $[M + H]^+$): calculated for C₁₈H₂₅N₂O₂S: 333.1636; found: 333.1630.

Synthesis of 5-(4H-benzo[d][1,3]thiazin-2-yl)oxazole (5ar); new compound

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), oxazole-5-carbothioamide **4r** (1.0 mmol, 128 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 5-(4H-benzo[d][1,3]thiazin-2-yl)oxazole **5ar** in 89% (192 mg) yield as pale yellow solid.

Figure 37. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ar** in CDCl₃ and LC-MS in Acetonitrile.

Pale Yellow solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.05$ (s, 1H), 7.73 (s, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 7.16 (d, J = 7.2 Hz, 1H), 4.01 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.8$, 148.84, 147.91, 143.43, 130.34, 128.84, 128.41, 127.23, 127.0, 119.46, 28.1 ppm; MS (APCI): [M + 1]⁺ = 217.1 (99.46%); HRMS (ESI, [M + H]⁺): calculated for C₁₁H₉N₂OS: 217.0435; found: 217.0433.

Synthesis of 2-(thiophen-2-yl)-4H-benzo[d][1,3]thiazine (5as); known compound⁴

According to the general procedure, reactions between 2-aminobenzyl alcohol **1a** (1.0 mmol, 123 mg), thiophene-2-carbothioamide **4s** (1.0 mmol, 143 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-(thiophen-2-yl)-4H-benzo[d][1,3]thiazine **5as** in 89% (206 mg) yield as light brown solid.

Figure 38. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5as** in CDCl₃ and LC-MS in Acetonitrile.

Light brown solid; $\mathbf{R_f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m.p} = 208 - 211 \text{ °C}$ (Lit⁴ 210 °C); ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.74$ (d, J = 3.2 Hz, 1H), 7.53 (d, J = 7.2 Hz, 1H), 7.46 - 7.33 (m, 2H), 7.24 - 7.22 (m, 1H), 7.16 - 7.11 (m, 2H), 3.98 (s, 2H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) $\delta = 154.1$, 144.2, 143.5, 130.6, 129.7, 128.4, 127.6, 127.3, 126.8, 126.7, 119.8, 28.7 ppm; **MS** (APCI): [M + 1]⁺ = 232.1 (99.55%); **HRMS** (ESI, [M + H]⁺): calculated for C₁₂H₁₀NS₂: 232.0254; found: 232.0250.

Synthesis of 7-methyl-2-phenyl-4H-benzo[d][1,3]thiazine (5ba); new compound

According to the general procedure, reactions between 2-amino-4-methylbenzyl alcohol **1b** (1.0 mmol, 137 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-methyl-2-phenyl-4H-benzo[d][1,3]thiazine **5ba** in 92% (220 mg) yield as white solid.

Figure 39. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ba** in CDCl₃ and LC-MS in Acetonitrile.

White solid; $\mathbf{R}_{\mathbf{f}} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 100 - 101 \,^{\circ}\text{C}; {}^{1}\text{H}$ NMR (400 MHz, CDCl₃) $\delta = 8.16$ (d, J = 6.8 Hz, 2H), 7.51 - 7.46 (m, 3H), 7.30 (s, 1H), 7.10 - 7.04 (m, 1H), 3.98 (s, 2H), 2.41 (s, 3H) ppm; {}^{13}\text{C} NMR (100 MHz CDCl₃) $\delta = 160.8$, 144.2, 138.2, 138.0, 131.4, 128.4, 128.3, 128.1, 127.6, 126.6, 116.6, 28.3, 21.0 ppm; MS (APCI): [M + 1]⁺ = 240.1 (99.78%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₄NS: 240.0846; found: 240.0845.

Synthesis of 8-methyl-2-phenyl-4H-benzo[d][1,3]thiazine (5ca); new compound

According to the general procedure, reactions between 2-amino-3-methylbenzyl alcohol 1c (1.0 mmol, 137 mg), thiobenzamide 4a (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 8-methyl-2-phenyl-4H-benzo[d][1,3]thiazine 5ca in 90% (215 mg) yield as off-white solid.

Figure 40. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ca** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{\mathbf{f}} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 86 - 87$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.20$ (d, J = 6.8 Hz, 2H), 7.54 - 7.47 (m, 3H), 7.26 (t, J = 6.8 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 3.96 (s, 2H), 2.61 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.8$, 142.6, 138.4, 134.9, 131.4, 129.9, 128.4, 128.3, 127.1, 124.5, 119.8, 29.0, 17.8 ppm; MS (APCI): [M + 1]⁺ = 240.1 (99.91); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₄NS: 240.0846; found: 240.0845.

Synthesis of 7-methoxy-2-phenyl-4H-benzo[d][1,3]thiazine (5da); new compound

According to the general procedure, reactions between 2-amino-4-methoxybenzyl alcohol 1d (1.0 mmol, 153 mg), thiobenzamide 4a (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-methoxy-2-phenyl-4H-benzo[d][1,3]thiazine 5da in 92% (235 mg) yield as off-white solid.

Figure 41. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5da** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 93 - 94$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.15$ (d, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 6.84 (dd, J = 7.2 Hz, 2H), 7.53 - 7.45 (m, 3H), 7.07 - 7.03 (m, 2H), 7.53 - 7.53

8.4, 2.4 Hz, 1H), 3.97 (s, 2H), 3.86 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 161.7, 159.8, 137.9, 131.5, 128.4, 128.2, 127.4, 114.0, 111.6, 111.6, 55.4, 28.1 ppm; MS (APCI): [M + 1]⁺ = 256.1 (99.75%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₄NOS: 256.0796; found: 256.0794.

Synthesis of 6-fluoro-2-phenyl-4H-benzo[d][1,3]thiazine (5ea); new compound

According to the general procedure, reactions between 2-amino-5-fluorobenzyl alcohol 1e (1.0 mmol, 141 mg), thiobenzamide 4a (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 6-fluoro-2-phenyl-4H-benzo[d][1,3]thiazine 5ea in 95% (231 mg) yield as white solid.

Figure 42. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ea** in DMSO-*d*₆ and LC-MS in Acetonitrile.

White solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); m.p = 84 - 85 °C; ¹H NMR (400 MHz, DMSO-*d*₆) $\delta = 8.12$ (d, J = 8.0 Hz, 2H), 7.53 - 7.39 (m, 4H), 7.07 (dt, J = 8.4, 2.4 Hz, 1H), 6.89 (dd, J = 8.4, 2.4 Hz, 1H), 3.98 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 161.5$ (d, J = 247.5 Hz), 160.0, 140.8, 137.7, 131.5, 128.7, 128.6, 128.5, 128.0, 121.4, 121.3, 115.2, 115.0, 113.7, 113.5, 28.4 ppm; MS (APCI): [M + 1]⁺ = 244.1 (99.84%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁FNS: 244.0596; found: 244.0595.

Synthesis of 7-fluoro-2-phenyl-4H-benzo[d][1,3]thiazine (5fa); new compound

According to the general procedure, reactions between 2-amino-4-fluorobenzyl alcohol **1f** (1.0 mmol, 141 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-fluoro-2-phenyl-4H-benzo[d][1,3]thiazine **5fa** in 92% (224 mg) yield as white solid.

Figure 43. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5fa** in CDCl₃ and LC-MS in Acetonitrile.

White solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 71 - 72$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.15$ (d, J = 7.6 Hz, 2H), 7.53 - 7.46 (m, 3H), 7.19 - 7.17 (m, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.99 - 6.95 (m, 1H), 3.97 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.69$ (d, J = 244.5 Hz), 162.66, 145.8, 145.7, 137.6, 131.8, 128.5, 128.3, 127.7, 127.7, 115.3, 114.2, 114.0, 113.8, 113.5, 28.0 ppm; MS (APCI): [M + 1]⁺ = 244.1 (99.21%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁FNS: 244.0596; found: 244.0595.

Synthesis of 8-fluoro-2-phenyl-4H-benzo[d][1,3]thiazine (5ga); new compound

According to the general procedure, reactions between 2-amino-3-fluorobenzyl alcohol **1g** (1.0 mmol, 141 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 8-fluoro-2-phenyl-4H-benzo[d][1,3]thiazine **5ga** in 90% (219 mg) yield as off-white solid.

Figure 44. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ga** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 64 - 66$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.18$ (d, J = 7.2 Hz, 2H), 7.54 - 7.45 (m, 3H), 7.25 - 7.18 (m, 1H), 7.12 (t, J = 9.6 Hz, 1H), 6.94 (d, J = 7.6Hz, 1H), 4.00 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.3$, 157.1 (d, J = 253.5 Hz), 137.7, 133.1, 133.0, 131.8, 128.5, 128.4, 127.9, 127.8, 122.1, 122.0, 115.5, 115.3, 28.3 ppm; MS (APCI): [M + 1]⁺ = 244.1 (98.58%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁FNS: 244.0596; found: 244.0595.

Synthesis of 6-chloro-2-phenyl-4H-benzo[d][1,3]thiazine (5ha); new compound

According to the general procedure, reactions between 2-amino-5-chlorobenzyl alcohol **1h** (1.0 mmol, 158 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 6-chloro-2-phenyl-4H-benzo[d][1,3]thiazine **5ha** in 90% (234 mg) yield as white solid.

Figure 45. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ha** in CDCl₃ and LC-MS in Acetonitrile.

White solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); m.p = 104 - 108 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.13$ (d, J = 7.2 Hz, 2H), 7.54 - 7.45 (m, 3H), 7.39 - 7.32 (m, 2H), 7.16 (s, 1H), 3.96 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.4$, 143.0, 137.6, 132.5, 131.7, 128.5, 128.1, 126.8, 121.1, 28.3 ppm; MS (APCI): [M + 1]⁺ = 260.0 (97.31%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁CINS: 260.0300; found: 260.0302.

Synthesis of 7-chloro-2-phenyl-4H-benzo[d][1,3]thiazine (5ia); new compound

According to the general procedure, reactions between 2-amino-4-chlorobenzyl alcohol **1i** (1.0 mmol, 158 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-chloro-2-phenyl-4H-benzo[d][1,3]thiazine **5ia** in 96% (250 mg) yield as off-white solid.

Figure 46. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ia** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{f} = 0.60$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 105 - 106$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.13$ (d, J = 7.2 Hz, 2H), 7.54 - 7.45 (m, 4H), 7.24 (dd, J = 6.0, 8.0 Hz, 1H), 7.10 (d, J = 8 Hz, 1H), 3.97 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.7, 145.5, 137.5, 133.7, 131.8, 128.5, 128.2, 127.7, 127.3, 126.8, 118.0, 28.1 ppm; MS (APCI): [M + 1]⁺ = 260.0 (99.54%); HRMS (ESI, [M + H]⁺): calculated for C₁₄H₁₁CINS: 260.0300; found: 260.0302.$

Synthesis of 2-phenyl-7-(trifluoromethyl)-4H-benzo[d][1,3]thiazine (5ja); new compound

According to the general procedure, reactions between (2-amino-4-(trifluoromethyl)benzyl alcohol **1i** (1.0 mmol, 191 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-phenyl-7-(trifluoromethyl)-4H-benzo[d][1,3]thiazine **5ja** in 94% (276 mg) yield as white solid.

Figure 47. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ja** in CDCl₃ and LC-MS in Acetonitrile.

White solid; $\mathbf{R}_{f} = 0.55$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 114 - 115$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.16$ (d, J = 8.0 Hz, 1H), 7.25 (d, J = 7.2 Hz, 2H), 7.72 (s, 1H), 7.56 - 7.47 (m, 4H), 7.28 (d, J = 8.0 Hz, 1H), 4.03 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 163.0$, 144.7, 137.4, 132.0, 130.9 (q, J = 32.7 Hz), 128.5, 128.3, 127.4, 123.96, 123.93, 123.92 (q, J = 271.6 Hz), 123.3, 28.3 ppm; **MS** (APCI): [M + 1]⁺ = 294.1 (99.85%); **HRMS** (ESI, [M + H]⁺): calculated for C₁₅H₁₁F₃NS: 294.0564; found: 294.0560.

Synthesis of 2,4-diphenyl-4H-benzo[d][1,3]thiazine (5ka); new compound

According to the general procedure, reactions between 2-aminobenzhydrol 1k (1.0 mmol, 199 mg), thiobenzamide 4a (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2,4-diphenyl-4H-benzo[d][1,3]thiazine 5ka in 92% (277 mg) yield as off-white solid.

Figure 48. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ka** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{\mathbf{f}} = 0.55$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 83 - 85$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.07$ (d, J = 7.2 Hz, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.47 - 7.40 (m, 4H), 7.29 - 7.20 (m, 6H), 7.07 (d, J = 7.2 Hz, 1H), 5.38 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.2$, 144.2, 141.3, 138.0, 131.4, 128.8, 128.6, 128.5, 128.2, 127.9, 127.84, 127.81, 127.6, 127.3, 122.7, 45.6 ppm; MS (APCI): $[M + 1]^+ = 302.1$ (99.91%); HRMS (ESI, $[M + H]^+$): calculated for C₂₀H₁₆NS: 302.1003; found: 302.1000.

Synthesis of 4,4-dimethyl-2-phenyl-4H-benzo[d][1,3]thiazine (5la); new compound

According to the general procedure, reactions between 2-(2-aminophenyl)propan-2-ol 11 (1.0 mmol, 151 mg), thiobenzamide 4a (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were

performed to obtain the desired 4,4-dimethyl-2-phenyl-4H-benzo[d][1,3]thiazine **5la** in 89% (225 mg) yield as colorless viscous solid

Figure 49. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5la** in CDCl₃ and LC-MS in Acetonitrile.

Colorless viscous solid; $\mathbf{R_f} = 0.60 \text{ (SiO}_2$, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.18 \text{ (d, } J = 6.0 \text{ Hz}, 2\text{H})$, 7.58 (d, J = 7.6 Hz, 1H), 7.53 - 7.47 (m, 3H), 7.41 - 7.33 (m, 3H), 1.68 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.7$, 143.7, 138.4, 131.3, 130.92, 128.4, 128.0, 127.9, 127.6, 121.2, 43.3, 28.9 ppm; MS (APCI): [M + 1]⁺ = 254.1 (99.9%); HRMS (ESI, [M + H]⁺): calculated for C₁₆H₁₆NS: 254.1003; found: 254.1001.

Synthesis of 4-ethyl-2-phenyl-4H-benzo[d][1,3]thiazine (5ma); new compound

According to the general procedure, reactions between 1-(2-aminophenyl)propan-1-ol 1m (1.0 mmol, 151 mg), thiobenzamide 4a (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were
performed to obtain the desired 4-ethyl-2-phenyl-4H-benzo[d][1,3]thiazine **5ma** in 91% (230 mg) yield as colorless viscous solid.

Figure 50. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5ma** in CDCl₃ and LC-MS in Acetonitrile.

Colorless viscous solid; $\mathbf{R_f} = 0.55$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m.p} = 111 - 112 \,^{\circ}\text{C}$; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.15$ (d, $J = 6.4 \,\text{Hz}$, 2H), 7.48 (t, $J = 7.6 \,\text{Hz}$, 4H), 7.38 (t, $J = 7.6 \,\text{Hz}$, 1H), 7.29 (t, $J = 7.2 \,\text{Hz}$, 1H), 7.15 (d, $J = 7.2 \,\text{Hz}$, 1H), 3.95 (t, $J = 6.8 \,\text{Hz}$, 1H), 1.73 (m, 2H), 0.96 (t, $J = 7.2 \,\text{Hz}$, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.2$, 143.3, 138.5, 131.3, 128.4, 128.37, 128.33, 128.2, 128.1, 127.6, 127.4, 127.0, 124.2, 44.4, 30.5, 11.08 ppm; MS (APCI): [M + 1]⁺ = 253.9 (99.67%); HRMS (ESI, [M + H]⁺): calculated for C₁₆H₁₆NS: 254.1003; found: 254.1000.

Synthesis of 4-(2,5-dimethylphenyl)-2-phenyl-4H-benzo[d][1,3]thiazine (5na); new compound

According to the general procedure, reactions between (2-aminophenyl)(2,5-dimethylphenyl)methanol **1n** (1.0 mmol, 227 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 4-(2,5-dimethylphenyl)-2-phenyl-4H-benzo[d][1,3]thiazine **5na** in 95% (313 mg) yield as colorless viscous solid.

Figure 51. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5na** in CDCl₃ and LC-MS in Acetonitrile.

Colorless viscous solid; $\mathbf{R_f} = 0.50 \text{ (SiO}_2$, Hexane/EtOAc = 95:5); ¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.06 \text{ (d}, J = 6.8 \text{ Hz}, 2\text{H})$, 7.61 (d, J = 7.2 Hz, 1H), 7.48-7.41 m, 4H), 7.24 (overlapped, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.96 (t, J = 8.4 Hz, 2H), 6.72 (s, 1H), 5.60 (s, 1H), 2.47 (s, 3H), 2.16 (s, 3H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) $\delta = 160.1$, 144.9, 138.0, 137.9, 136.1, 132.3, 131.4, 130.7, 129.0, 128.5, 128.4, 128.2, 128.0, 127.6, 127.0, 122.7, 42.2, 21.0, 19.4 ppm; **MS** (APCI):

 $[M + 1]^+ = 329.9 (91.55\%);$ **HRMS** (ESI, $[M + H]^+$): calculated for C₂₂H₂₀NS: 330.1316; found: 330.1312.

Synthesis of 2-phenyl-4H-thieno[3,2-d][1,3]thiazine (50a); new compound

According to the general procedure, reactions between (3-aminothiophen-2-yl)methanol **10** (1.0 mmol, 129 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-phenyl-4H-thieno[3,2-d][1,3]thiazine **50a** in 93% (215 mg) yield as off-white solid.

Figure 52. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **50a** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{\mathbf{f}} = 0.50$ (SiO₂, Hexane/EtOAc = 95:5); $\mathbf{m}.\mathbf{p} = 111 - 112$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.04$ (d, J = 6.8 Hz, 2H), 7.50 - 7.42 (m, 3H), 7.16 - 7.13 (m, 2H), 4.26 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 157.9$, 145.7, 137.8, 131.2, 128.4, 128.2, 128.0, 128.9, 128.7, 126.9, 121.9, 113.3, 24.8 ppm; **MS** (APCI): $[M + 1]^+ = 232.0$ (99.52%); **HRMS** (ESI, $[M + H]^+$): calculated for C₁₂H₁₀NS₂: 232.0254; found: 232.0250.

Synthesis of 2-(4-chlorophenyl)-4-methyl-4H-benzo[d][1,3]thiazine (5pt); new compound

According to the general procedure, reactions between 1-(2-aminophenyl)ethan-1-ol 1p (1.0 mmol, 137 mg), 4-chlorobenzothioamide 4t (1.0 mmol, 171.6 mg), T3P (1.1 mmol, 349.8 mg)

were performed to obtain the desired 2-(4-chlorophenyl)-4-methyl-4H-benzo[d][1,3]thiazine **5pt** in 91% (248 mg) yield as colorless viscous solid

Figure 53. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **5pt** in CDCl₃ and LC-MS in Acetonitrile.

Colorless viscous solid; $\mathbf{R}_{f} = 0.65$ (SiO₂, Hexane/EtOAc = 95:5); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.10$ (d, J = 7.6 Hz, 2H), 7.49 (d, J = 7.2 Hz, 1H), 7.45 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 4.22 (q, J = 7.2 Hz, 1H), 1.50 (d, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 157.8$, 143.0, 137.5, 136.8, 129.4, 128.7, 128.2, 128.1, 128.0, 127.6, 125.59, 125.51, 37.3, 23.4 ppm; MS (APCI): [M + 1]⁺ = 273.9 (95.6%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₃CINS: 274.0457; found: 274.0454.

6. Experimental procedures and analytical data of synthesized 2-aryl thiazin-4-ones (7aa-ca)

Synthesis of 2-phenyl-4H-benzo[d][1,3]thiazin-4-one (7aa); known compound⁵

According to the general procedure, reactions between anthranilic acid **6a** (1.0 mmol, 137 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 2-phenyl-4H-benzo[d][1,3]thiazin-4-one **7aa** in 70% (167 mg) yield as white solid.

Figure 54. ¹H (400 MHz) NMR spectra of 7aa in CDCl₃ and LC-MS in Acetonitrile.

White solid; $\mathbf{R_f} = 0.55$ (SiO₂, Hexane/EtOAc = 3:1); $\mathbf{m.p} = 114 - 116$ °C (Lit⁵ 116 °C); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.29$ (d, J = 8.0 Hz, 1H), 8.09 (d, J = 7.2 Hz, 2H), 7.94 (d, J = 8.0 Hz, 1H), 7.85 (t, J = 7.2 Hz, 1H), 7.58 - 7.50 (m, 4H) ppm; MS (APCI): $[M + 1]^+ = 240.1$ (98.68%); HRMS (ESI, $[M + H]^+$): calculated for C₁₄H₁₀NOS: 240.0483; found: 240.0480.

Synthesis of 7-methoxy-2-phenyl-4H-benzo[d][1,3]thiazin-4-one (7ba); new compound

According to the general procedure, reactions between 4-methoxyanthranilic acid **6b** (1.0 mmol, 167 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-methoxy-2-phenyl-4H-benzo[d][1,3]thiazin-4-one **7ba** in 72% (194 mg) yield as off-white solid.

Figure 55. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **7ba** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{\mathbf{f}} = 0.50$ (SiO₂, Hexane/EtOAc = 3:1); $\mathbf{m}.\mathbf{p} = 156 - 157$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.19$ (d, J = 7.2 Hz, 1H), 8.05 (d, J = 7.2 Hz, 2H), 7.56 - 7.48 (m, 3H), 7.31 (d, J = 2.4 Hz, 1H), 7.08 (dd, J = 2.0 Hz, 7.2 Hz, 1H), 3.96 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) $\delta = 182.3$, 165.4, 163.4, 151.0, 137.3, 132.0, 128.9, 127.0, 126.6, 117.5, 114.0, 112.9, 55.8 ppm; MS (APCI): [M + 1]⁺ = 270.1 (99.38%); HRMS (ESI, [M + H]⁺): calculated for C₁₅H₁₂NO₂S: 270.0588; found: 270.0585.

Synthesis of 7-fluoro-2-phenyl-4H-benzo[d][1,3]thiazin-4-one (7ca); new compound

According to the general procedure, reactions between 4-fluoroanthranilic acid **6c** (1.0 mmol, 155 mg), thiobenzamide **4a** (1.0 mmol, 137 mg), T3P (1.1 mmol, 349.8 mg) were performed to obtain the desired 7-fluoro-2-phenyl-4H-benzo[d][1,3]thiazin-4-one **7ca** in 60% (154 mg) yield as off-white solid.

Figure 56. ¹H (400 MHz), ¹³C (100 MHz) NMR spectra of **7ca** in CDCl₃ and LC-MS in Acetonitrile.

Off-white solid; $\mathbf{R}_{\mathbf{f}} = 0.55$ (SiO₂, Hexane/EtOAc = 3:1); $\mathbf{m}.\mathbf{p} = 163 - 165$ °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.28$ (dt, J = 6.8 Hz, 2.0 Hz, 1H), 8.05 (d, J = 7.6 Hz, 2H), 7.55 (d, J = 6.8 Hz, 2H), 7.50 (t, J = 7.6 Hz, 2H), 7.26 - 7.22 (m, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz) $\delta = 182.4$, 166.9 (d, J = 256.40 Hz), 163.9, 151.0 (d, J = 13.24 Hz), 136.8, 132.3, 128.9, 127.6, 127.1, 116.9 (d, J = 22.5 Hz) ppm; **MS** (APCI): [M + 1]⁺ = 258.0 (98.61%); **HRMS** (ESI, [M + H]⁺): calculated for C₁₄H₉FNOS: 258.0388; found: 258.0385.

7. References

(1) El-Desoky, S. I.; Kandeel, E. M.; Abd-El-Rahman, A. H.; Schmidt, R. R. J. Heterocycl. Chem. 1999, 36, 153.

- (2) Csomós, P.; Fodor, L.; Csámpai, A.; Sohár, P. Tetrahedron 2010, 66, 3207.
- (3) Sorkin, E.; Hinden, W. Helv. Chim. Acta 1949, 32, 63.
- (4) Nishio, T.; Sekiguchi, H. Heterocycles 2002, 58, 203.
- (5) Clausen, K.; Lawesson, S.-O. Bull. Soc. Chim. Belg. 2010, 88, 305.