Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This block and the start of the

# **Supporting Information**

## HFIP-Promoted Michael Reactions: Direct para-Selective C-H

### Activation of Anilines with Maleimides

Bang Li, <sup>‡</sup><sup>a</sup> Qi Mao, <sup>‡</sup><sup>a</sup> Jia Zhou<sup>b</sup>, Feng Liu,<sup>a</sup> and Na Ye<sup>\*a</sup>

<sup>a</sup>Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric

Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou,

Jiangsu 215123, China.

Email: yena@suda.edu.cn

<sup>b</sup>Chemical Biology Program, Department of Pharmacology and Toxicology, University

of Texas Medical Branch, Galveston, Texas 77555, United States

‡These authors contributed equally to this work

### **Table of Contents**

| 1. | General Information                                       | -S2 |
|----|-----------------------------------------------------------|-----|
| 2. | General Procedures (GP)                                   | -S2 |
| 3. | Characterization of Synthesized Compounds 3a-3z and 5a-5j | -S3 |
| 4. | Synthesis of Succinimides Derivatives 6a-8a               | S12 |
| 5. | <sup>1</sup> H and <sup>13</sup> C NMR Spectra            | S14 |
| 6. | X-ray Crystallography of <b>3k</b>                        | S49 |

### **1. General Information**

<sup>1</sup>H NMR spectra were recorded on 400 or 600 MHz (100 or 150 MHz for <sup>13</sup>C NMR) agilent NMR spectrometer with CDCl<sub>3</sub> as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts were reported in parts per million (ppm,  $\delta$  scale) downfield from TMS at 0.00 ppm and referenced to the CDCl<sub>3</sub> at 7.26 ppm (for <sup>1</sup>H NMR) or 77.16 ppm (for <sup>13</sup>C NMR). HRMS was recorded on a GCT PremierTM (CI) Mass Spectrometer. Column chromatography was carried out on silica gel (200–300 mesh). All reactions were monitored using thin layer chromatography (TLC) on silica gel plates. All commercially available reagents, unless otherwise indicated, were used without further purification. The uncommercial 1-phenylpyrrolidines **1a**, **1f-1k** were readily prepared from tetrahydrofuran and the corresponding anilines (*Catal. Comm.* **2017**, *94*, 56-59), while the uncommercial maleimides **4a-4b** were readily prepared from *cis*-butenedioic anhydride and the corresponding alkylamines (*J. Agric. Food Chem.* **2016**, *64*, 4876–4881).

## 2. General Procedures (GP)

#### Coupling reaction of aromatic and hetro-aromatic compounds with maleimides

A 15 mL pressure tube equipped with screw cap and stirring was charged with aromatic amines or hetro-aromatic compounds 1 (0.5 mmol) and dissolved in HFIP (4 mL). Subsequently maleimides **2a** or **4** (2.0 mmol) were added. The reaction mixture was stirred under nitrogen at 100 °C for 24 h. The reaction mixture was cooled to room temperature. After removal of the solvent, the residue was purified by column chromatography on silica gel (PE : EA = 5 : 1) to afford corresponding products **3** or **5**.

## 3. Characterization of Synthesized Compounds 3a-3z and 5a-5j

#### 1-Methyl-3-(4-(pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (3a)



According to **GP**, 1-phenylpyrrolidine **1a** (74 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3a** (117 mg, 91%) as a white solid (mp 174.8–175.5 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.97 (d, *J* = 8.4 Hz, 2H), 6.45 (d, *J* = 8.4 Hz, 2H), 3.83 (dd, *J* = 9.1, 4.3 Hz, 1H), 3.20 – 3.15 (m, 4H), 3.14 – 3.04 (m, 1H), 2.97 (s, 3H), 2.71 (dd, *J* = 18.4, 4.2 Hz, 1H), 1.93 – 1.89 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.68, 176.80, 147.50, 128.00, 123.15, 112.02, 47.57, 45.20, 37.27, 25.44, 25.07. HRMS (CI) calcd for C<sub>15</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 259.1447, found 259.1440.

#### 1-Methyl-3-(4-(piperidin-1-yl)phenyl)pyrrolidine-2,5-dione (3b)



According to **GP**, 1-phenylpiperidine **1b** (81 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3b** (55 mg, 40%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.99 (d, J = 7.7 Hz, 2H), 6.82 (d, J = 7.8 Hz, 2H), 3.85 (dd, J = 8.9, 4.1 Hz, 1H), 3.11 – 3.04 (m, 5H), 2.97 (s, 3H), 2.72 (dd, J = 18.4, 3.8 Hz, 1H), 1.62 – 1.59 (m, 4H), 1.49 (d, J = 4.3 Hz, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.35, 176.58, 151.72, 127.92, 126.85, 116.73, 50.32, 45.15, 37.12, 25.67, 25.12, 24.22. HRMS (CI) calcd for C<sub>16</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 273.1603, found 273.1605.

#### 1-Methyl-3-(4-(4-methylpiperidin-1-yl)phenyl)pyrrolidine-2,5-dione (3c)



According to **GP**, 4-methyl-1-phenylpiperidine **1c** (87 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3c** (80 mg, 56%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDC13)  $\delta$  7.08 (d, J = 8.3 Hz, 2H), 6.92 (d, J = 7.7 Hz, 2H), 3.95 – 3.94 (m, 1H), 3.64 (d, J = 11.8 Hz, 2H), 3.17 (dd, J = 18.4, 9.5 Hz, 1H), 3.06 (s, 3H), 2.81 (dd, J = 18.4, 4.0 Hz, 1H), 2.69 (t, J = 12.0 Hz, 2H), 1.73 (d, J = 12.6 Hz, 2H), 1.52 – 1.51 (m, 1H), 1.33 (d, J = 10.7 Hz, 2H), 0.98 (d, J = 6.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.36, 176.59, 151.42, 127.94, 126.81, 116.71, 49.69, 45.15, 37.12, 33.91, 30.66, 25.13, 21.85. HRMS (CI) calcd for C<sub>17</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 287.1760, found 287.1756.

#### 3-(4-(Diethylamino)phenyl)-1-methylpyrrolidine-2,5-dione (3d)

According to **GP**, *N*,*N*-diethylaniline **1d** (75 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3d** (105 mg, 81%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.05 (d, *J* = 8.5 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 3.92 (dd, *J* = 9.3, 4.5 Hz, 1H), 3.35 (q, *J* = 7.0 Hz, 4H), 3.17 (dd, *J* = 18.4, 9.5 Hz, 1H), 3.06 (s, 3H), 2.81 (dd, *J* = 18.4, 4.5 Hz, 1H), 1.16 (t, *J* = 7.0 Hz, 6H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.70, 176.79, 147.30, 128.17, 123.01, 112.01, 45.07, 44.31, 37.20, 25.07, 12.49. HRMS

(CI) calcd for  $C_{15}H_{21}N_2O_2 [M+H]^+$ : 261.1603, found 261.1594.

#### 3-(4-(Dimethylamino)phenyl)-1-methylpyrrolidine-2,5-dione (3e)



According to **GP**, *N*,*N*-dimethylaniline **1e** (61 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3e** (46 mg, 40%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.07 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.5 Hz, 2H), 3.93 (dd, *J* = 9.3, 4.5 Hz, 1H), 3.16 (dd, *J* = 18.4, 9.5 Hz, 1H), 3.05 (s, 3H), 2.94 (s, 6H), 2.85 – 2.76 (m, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.55, 176.70, 150.10, 127.97, 124.41, 112.97, 45.11, 40.53, 37.17, 25.10. HRMS (CI) calcd for C<sub>13</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 233.1290, found 233.1292.

#### 3-(2-Methoxy-4-(pyrrolidin-1-yl)phenyl)-1-methylpyrrolidine-2,5-dione (3f)



According to **GP**, 1-(3-methoxyphenyl)pyrrolidine **1f** (89 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3f** (125 mg, 87%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.97 (d, *J* = 7.9 Hz, 1H), 6.10 (d, *J* = 7.8 Hz, 1H), 6.04 (s, 1H), 3.86 – 3.76 (m, 1H), 3.72 (s, 3H), 3.28 – 3.26 (m, 4H), 3.05 (s, 3H), 3.09 – 2.98 (m, 1H), 2.71 (d, *J* = 18.0, Hz, 1H), 2.01 – 1.99 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  179.62, 177.41, 157.78, 149.20, 131.06, 112.45, 103.78, 95.36, 55.23, 47.70,

43.36, 36.77, 25.43, 24.85. HRMS (CI) calcd for  $C_{16}H_{21}N_2O_3$  [M+H]<sup>+</sup>: 289.1552, found 289.1549.

#### 3-(2-Chloro-4-(pyrrolidin-1-yl)phenyl)-1-methylpyrrolidine-2,5-dione (3g)



According to **GP**, 1-(3-chlorophenyl)pyrrolidine **1g** (91 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3g** (108 mg, 74%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.97 (d, J = 8.4 Hz, 1H), 6.55 (s, 1H), 6.40 (d, J = 6.4 Hz, 1H), 4.17 (dd, J = 9.4, 5.5 Hz, 1H), 3.26 – 3.23 (m, 4H), 3.17 (dd, J = 18.4, 9.6 Hz, 1H), 3.08 (s, 3H), 2.75 (dd, J = 18.4, 5.4 Hz, 1H), 2.02 – 1.99 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.14, 176.37, 148.33, 134.12, 130.35, 120.56, 112.60, 110.53, 47.57, 44.22, 36.88, 25.41, 25.08. HRMS (CI) calcd for C<sub>15</sub>H<sub>18</sub>ClN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>:

293.1057, found 293.1056.

#### 1-Methyl-3-(6-(pyrrolidin-1-yl)-[1,1'-biphenyl]-3-yl)pyrrolidine-2,5-dione (3h)



According to **GP**, 1-([1,1'-biphenyl]-2-yl)pyrrolidine **1h** (112 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3h** (134 mg, 80%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.29 – 7.23 (m, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.95 (s, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 3.94 (dd, *J* = 9.2, 4.5 Hz, 1H), 3.16 (dd, *J* = 18.5, 9.5 Hz, 1H), 3.03 (s, 3H), 2.87 – 2.79 (m, 5H), 1.74 – 1.71 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.43, 176.58, 147.49, 142.63, 131.15, 130.29, 129.04, 127.94,

126.68, 126.40, 125.86, 114.90, 50.93, 45.19, 37.23, 25.40, 25.12. HRMS (CI) calcd for  $C_{21}H_{23}N_2O_2$  [M+H]<sup>+</sup>: 335.1760, found 335.1750.

#### 1-Methyl-3-(3-methyl-4-(pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (3i)



According to **GP**, 1-(*o*-tolyl)pyrrolidine **1i** (81 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3i** (102 mg, 75%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.96 – 6.92 (m, 2H), 6.84 (d, *J* = 8.7 Hz, 1H), 3.93 (dd, *J* = 9.2, 4.4 Hz, 1H), 3.21 – 3.14 (m, 5H), 3.07 (s, 3H), 2.82 (dd, *J* = 18.5, 4.3 Hz, 1H), 2.32 (s, 3H), 1.95 – 1.92 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.46, 176.67, 149.18, 130.53, 129.09, 128.00, 125.07, 116.07, 50.96, 45.25, 37.24, 25.11, 24.99, 20.74. HRMS (CI) calcd for C<sub>16</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 273.1603, found 273.1605.

#### 1-Methyl-3-(2-methyl-4-(pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (3j)



According to **GP**, 1-(*m*-tolyl)pyrrolidine **1j** (81 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3j** (96 mg, 70%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.83 (d, J = 8.2 Hz, 1H), 6.39 – 6.36 (m, 2H), 4.14 (dd, J = 9.0, 4.5 Hz, 1H), 3.26 – 3.24 (m, 4H), 3.16 (dd, J = 18.5, 9.6 Hz, 1H), 3.07 (s, 3H), 2.67 (dd, J = 18.4, 4.3 Hz, 1H), 2.31 (s, 3H), 2.00 – 1.96 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  179.06, 176.82, 147.41, 136.95, 127.26, 122.42, 113.90, 109.85, 47.53, 42.53, 37.33, 25.42, 25.04, 20.25. HRMS (CI) calcd for C<sub>16</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 273.1603,

found 273.1604.

#### 3-(2,6-Dimethyl-4-(pyrrolidin-1-yl)phenyl)-1-methylpyrrolidine-2,5-dione (3k)



According to **GP**, 1-(3,5-dimethylphenyl)pyrrolidine **1k** (88 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3k** (116mg, 82%) as a white solid (mp: 192.1–193.2 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.24 (d, *J* = 13.6 Hz, 2H), 4.27 (dd, *J* = 9.2, 6.4 Hz, 1H), 3.24 – 3.21 (m, 4H), 3.17 – 3.03 (m, 1H), 3.6 (s, 3H), 2.64 (dd, *J* = 18.5, 6.1 Hz, 1H), 2.32 (s, 3H), 2.00 (s, 3H), 1.97 – 1.94 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  179.42, 176.52, 147.16, 138.08, 136.46, 120.29, 113.05, 111.75, 47.44, 41.16,

36.02, 25.40, 24.97, 21.50, 20.25. HRMS (CI) calcd for  $C_{17}H_{23}N_2O_2$  [M+H]<sup>+</sup>: 287.1760, found 287.1749.

#### 3-(1-Ethyl-1,2,3,4-tetrahydroquinolin-6-yl)-1-methylpyrrolidine-2,5-dione (31)



According to **GP**, 1-ethyl-1,2,3,4-tetrahydroquinoline **11** (81 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **31** (120 mg, 88%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.86 (d, *J* = 8.3 Hz, 1H), 6.75 (s, 1H), 6.54 (d, *J* = 8.4 Hz, 1H), 3.85 (dd, *J* = 9.3, 4.4 Hz, 1H), 3.32 (q, *J* = 7.0 Hz, 2H), 3.25 (t, *J* = 6.1 Hz, 2H), 3.14 (dd, *J* = 18.5, 9.4 Hz, 1H), 3.05 (s, 3H), 2.79 (dd, *J* = 18.5, 4.4 Hz, 1H), 2.71 (t, *J* = 6.1 Hz, 2H), 2.00 – 1.87

(m, 2H), 1.11 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.77, 176.85, 144.66, 127.86, 125.94, 123.10, 122.97, 110.75, 48.27, 45.26, 45.17, 37.30, 28.14, 25.07, 22.04, 10.74. HRMS (CI) calcd for C<sub>16</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 273.1603, found 273.1602.

#### 3-(1-Ethylindolin-5-yl)-1-methylpyrrolidine-2,5-dione (3m)



According to **GP**, 1-ethylindoline **1m** (74 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3m** (121 mg, 94%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.89 – 6.87 (m, 2H), 6.41 (d, *J* = 8.3 Hz, 1H), 3.90 (dd, *J* = 9.1, 4.2 Hz, 1H), 3.34 (t, *J* = 8.2 Hz, 2H), 3.19 – 3.09 (m, 3H), 3.05 (s, 3H), 2.93 (t, *J* = 8.2 Hz, 2H), 2.78 (dd, *J* = 18.4, 4.0 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.74, 176.77, 42, 126.51, 125.50, 123.17, 107.03, 52.22, 45.55, 42.88, 37.46, 28.34

152.12, 131.42, 126.51, 125.50, 123.17, 107.03, 52.22, 45.55, 42.88, 37.46, 28.34, 25.09, 11.81. HRMS (CI) calcd for  $C_{15}H_{19}N_2O_2$  [M+H]<sup>+</sup>: 259.1447, found 259.1443.

# 3-(1,2,3,5,6,7-Hexahydropyrido[3,2,1-ij]quinolin-9-yl)-1-methylpyrrolidine-2,5-di one (3n)



According to **GP**, 1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline **1n** (87 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3n** (84 mg, 59%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.59 (s, 2H), 3.80 (dd, *J* = 9.3, 4.4 Hz, 1H), 3.16 – 3.08 (m, 5H), 3.05 (s, 3H), 2.80 – 2.70 (m, 5H), 2.00 – 1.90 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.80, 176.89, 142.60,

125.68, 123.50, 122.03, 49.84, 45.28, 37.38, 27.62, 25.08, 21.85. HRMS (CI) calcd for  $C_{17}H_{21}N_2O_2 \left[M+H\right]^+$ : 285.1603, found 285.1607.

#### 3-(4-(Dimethylamino)naphthalen-1-yl)-1-methylpyrrolidine-2,5-dione (3p)



According to **GP**, *N*,*N*-dimethylnaphthalen-1-amine **1p** (86 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3p** (130 mg, 92%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 – 8.27 (m, 1H), 7.74 (d, *J* = 5.1 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.19 (d, *J* = 7.8 Hz, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 4.67 (dd, *J* = 9.3, 4.7 Hz, 1H), 3.34 (dd, *J* = 18.3, 9.6 Hz, 1H), 3.16 (s, 3H), 2.88 (s, 6H), 2.80 (dd, *J* = 18.4, 4.7 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.47, 176.25, 151.17, 132.36,

129.43, 127.92, 126.63, 125.35, 125.28, 124.78, 123.03, 113.53, 45.16, 42.97, 37.71, 25.21. HRMS (CI) calcd for  $C_{17}H_{19}N_2O_2$  [M+H]<sup>+</sup>: 283.1447, found 283.1446.

#### 1-Methyl-3-(1-methyl-1*H*-indol-3-yl)pyrrolidine-2,5-dione (3t)



According to **GP**, 1-methyl-1*H*-indole **1t** (66 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3t** (112 mg, 92%) as a white solid (mp 123.2–125.2 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (d, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 7.0 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.15 – 7.13 (m, 1H), 7.04 (s, 1H), 4.31 – 4.28 (m, 1H), 3.76 (s, 3H), 3.27 (dd, *J* = 18.1, 9.3 Hz, 1H), 3.12 (s, 3H), 2.92 (d, *J* = 18.2 Hz, 1H). <sup>13</sup>C

NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.33, 176.55, 137.35, 126.73, 126.12, 122.25, 119.61, 118.59, 109.85, 109.74, 38.13, 36.67, 32.77, 25.10. HRMS (CI) calcd for C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 243.1134, found 243.1134.

#### 3-(1*H*-indol-3-yl)-1-methylpyrrolidine-2,5-dione(3u)



According to **GP**, 1*H*-indole **1u** (59 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3u** (86 mg, 75%) as a white solid (mp 181.1–182.8 °C). <sup>1</sup>H NMR (400 MHz, d<sup>6</sup>-DMSO)  $\delta$  11.05 (s, 1H), 7.41 – 7.35 (m, 2H), 7.34 (s, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.99 (t, *J* = 7.4 Hz, 1H), 4.36 (dd, *J* = 9.1, 4.9 Hz, 1H), 3.23 (dd, *J* = 18.0, 9.4 Hz, 1H), 2.92 (s, 3H), 2.79 (dd, *J* = 18.0, 4.8 Hz, 1H). <sup>13</sup>C NMR

(151 MHz, d<sup>6</sup>-DMSO)  $\delta$  178.86, 177.08, 136.88, 126.35, 123.87, 121.76, 119.20, 118.82, 112.11, 111.16, 38.03, 36.57, 25.03. HRMS (CI) calcd for C<sub>13</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 229.0972, found 229.0962.

#### 3-(5-fluoro-1*H*-indol-3-yl)-1-methylpyrrolidine-2,5-dione(3v)



According to **GP**, 5-fluoro-1*H*-indole **1v** (68 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3v** (39 mg, 32%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, d<sup>6</sup>-DMSO)  $\delta$  11.16 (s, 1H), 7.42 (s, 1H), 7.37 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.20 (d, *J* = 9.8 Hz, 1H), 6.95 (t, *J* = 8.7 Hz, 1H), 4.35 (dd, *J* = 8.6, 5.3 Hz, 1H), 3.22 (dd, *J* = 17.9, 9.3 Hz, 1H), 2.91 (s, 3H), 2.82 (dd, *J* = 18.0, 4.9 Hz, 1H). <sup>13</sup>C

NMR (151 MHz, d<sup>6</sup>-DMSO)  $\delta$  178.68, 176.96, 157.94, 156.41, 133.50, 126.82, 126.76, 125.77, 113.09, 113.02, 111.41, 111.38, 110.04, 109.87, 103.85, 103.70, 37.82, 36.25, 25.03. HRMS (CI) calcd for  $C_{13}H_{11}FN_2O_2$  [M+H]<sup>+</sup>: 247.0877, found 247.0877.

#### 3-(5-methoxy-1*H*-indol-3-yl)-1-methylpyrrolidine-2,5-dione(3w)



According to **GP**, 5-methoxy-1*H*-indole **1w** (74 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3w** (89 mg, 69%) as a white solid (mp 155.3–156.1 °C). <sup>1</sup>H NMR (400 MHz, d<sup>6</sup>-DMSO)  $\delta$  10.89 (s, 1H), 7.27 (s, 2H), 6.87 (s, 1H), 6.75 (d, *J* = 8.7 Hz, 1H), 4.33 (dd, *J* = 8.7, 4.8 Hz, 1H), 3.73 (s, 3H), 3.23 (dd, *J* = 17.9, 9.3 Hz, 1H), 2.92 (s, 3H), 2.79 (dd, *J* = 17.9, 4.5 Hz, 1H). <sup>13</sup>C

NMR (151 MHz, d<sup>6</sup>-DMSO)  $\delta$  178.68, 176.96, 157.94, 156.41, 133.50, 126.82, 126.76, 125.77, 113.09, 113.02, 111.41, 111.38, 110.04, 109.87, 103.85, 103.70, 37.82, 36.25, 25.03. HRMS (CI) calcd for  $C_{14}H_{14}N_2O_3$  [M+H]<sup>+</sup>: 259.1077, found 259.1078.

#### 1-methyl-3-(1-methyl-1*H*-pyrrol-2-yl)pyrrolidine-2,5-dione(3x)



According to **GP**, 1-methyl-1*H*-pyrrole **1x** (45 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3x** (54 mg, 56%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.66 - 6.61 (m), 6.11 - 6.04 (m), 5.96 (dd, J = 3.5, 1.2 Hz), 4.10 (dd, J = 9.4, 4.8 Hz), 3.74 (s), 3.16 (dd, J = 18.3, 9.4 Hz), 3.01 (s), 2.91 (dd, J = 18.3, 4.8 Hz). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  178.68,

176.96, 157.94, 156.41, 133.50, 126.82, 126.76, 125.77, 113.09, 113.02, 111.41, 111.38, 110.04, 109.87, 103.85, 103.70, 37.82, 36.25, 25.03. HRMS (CI) calcd for  $C_{10}H_{12}N_2O_2$  [M+H]<sup>+</sup>: 193.0972, found 193.0971.

#### 1-methyl-3-(1H-pyrrol-2-yl)pyrrolidine-2,5-dione(3y)



According to **GP**, 1*H*-pyrrole **1y** (34 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3w** (38 mg, 43%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.52 (s, 1H), 6.80 (s, 1H), 6.16 (d, *J* = 2.2 Hz, 1H), 6.02 (s, 1H), 4.09 (dd, *J* = 8.8, 5.0 Hz, 1H), 3.19 (dd, *J* = 18.3, 9.2 Hz, 1H), 2.99 (d, *J* = 10.7 Hz, 4H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub> + CD<sub>3</sub>OD)  $\delta$  177.84, 176.34, 125.31, 118.82, 108.15, 105.45, 38.66, 34.34, 24.92. HRMS (CI) calcd for  $C_{14}H_{14}N_2O_3$  [M+H]<sup>+</sup>: 179.0815, found 179.0812.

#### 1-Methyl-3-(5-methylfuran-2-yl)pyrrolidine-2,5-dione (3z)



According to **GP**, 2-methylfuran **1z** (41 mg, 0.5 mmol) and 1-methyl-1*H*-pyrrole-2,5-dione **2a** (222 mg, 2.0 mmol) were converted to the desired product **3z** (56 mg, 58%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.50 (d, J = 4.1 Hz, 1H), 6.31 (d, J = 5.2 Hz, 1H), 5.18 (s, 1H), 2.98 – 2.97 (m, 1H), 2.96 (s, 3H), 2.72 (d, J = 6.0 Hz, 1H), 1.73 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  176.22, 175.01, 140.47, 136.87, 88.08, 80.55, 50.65, 49.44, 24.85, 15.61. HRMS (CI) calcd for

 $C_{10}H_{12}NO_3 [M+H]^+$ : 194.0817, found 194.0816.

#### 1-Butyl-3-(4-(pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (5a)



According to **GP**, 1-phenylpyrrolidine **1a** (74 mg, 0.5 mmol) and 1-butyl-1*H*-pyrrole-2,5-dione **4a** (306 mg, 2.0 mmol) were converted to the desired product **5a** (116 mg, 77%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.95 (d, J = 8.4 Hz, 2H), 6.45 (d, J = 8.5 Hz, 2H), 3.80 (dd, J = 9.4, 4.4 Hz, 1H), 3.47 (t, J = 7.3 Hz, 2H), 3.18 (t, J = 6.0 Hz, 4H), 3.05 (dd, J = 18.4, 9.5 Hz, 1H), 2.67 (dd, J = 18.4, 4.4 Hz, 1H), 1.91 (t, J = 6.1 Hz, 4H), 1.56 – 1.44 (m, 2H), 1.28 – 1.22 (m, 2H), 0.85 (t, J =7.3 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.55, 176.76, 147.45, 127.94, 123.57, 112.04, 47.57, 45.06, 38.72, 37.32, 29.79, 25.45, 20.06, 13.64. HRMS (CI) calcd for C<sub>18</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 301.1916, found

301.1911.

#### 1-Isopropyl-3-(4-(pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (5b)



According to **GP**, 1-phenylpyrrolidine **1a** (74 mg, 0.5 mmol) and 1-isopropyl-1*H*-pyrrole-2,5-dione **4b** (278 mg, 2.0 mmol) were converted to the desired product **5b** (116 mg, 81%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.03 (d, *J* = 8.1 Hz, 2H), 6.53 (d, *J* = 8.1 Hz, 2H), 4.46 – 4.39 (m, 1H), 3.82 (dd, *J* = 9.3, 4.1 Hz, 1H), 3.28 – 3.25 (m, 4H), 3.09 (dd, *J* = 18.3, 9.6 Hz, 1H), 2.71 (dd, *J* = 18.3, 4.2 Hz, 1H), 2.01 - 1.97 (m, 4H), 1.41 (t, *J* = 6.5 Hz, 6H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.53, 176.75, 147.45, 127.85, 123.78, 112.06, 47.57, 44.83, 43.86, 37.26, 25.43, 19.32,

19.17. HRMS (ESI) calcd for  $C_{17}H_{23}N_2O_2$  [M+H]<sup>+</sup>: 287.1754, found 287.1756.

#### 1-Phenyl-3-(4-(pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (5c)



According to **GP**, 1-phenylpyrrolidine **1a** (74 mg, 0.5 mmol) and 1-phenyl-1*H*-pyrrole-2,5-dione **4c** (346 mg, 2.0 mmol) were converted to the desired product **5c** (128 mg, 80%) as a white solid (mp 180.6–181.8 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 – 7.44 (m, 2H), 7.31 – 7.29 (m, 1H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.55 (d, *J* = 8.1 Hz, 2H), 4.07 (dd, *J* = 9.4, 4.3 Hz, 1H), 3.43 – 3.19 (m, 5H), 2.96 (dd, *J* = 18.5, 4.2 Hz, 1H), 2.01 - 1.97 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  177.42, 175.70, 147.58, 132.06, 129.12, 128.54, 128.00, 126.49, 123.21, 112.11, 47.59, 45.25, 37.45, 25.45. HRMS (CI) calcd

for  $C_{20}H_{21}N_2O_2$  321.1603  $[M+H]^+$ , found 321.1602.

#### 3-(4-(Diethylamino)phenyl)-1-phenylpyrrolidine-2,5-dione (5d)



According to **GP**, *N*,*N*-diethylaniline **1d** (75 mg, 0.5 mmol) and 1-phenyl-1*H*-pyrrole -2,5-dione **4d** (346 mg, 2.0 mmol) were converted to the desired product **5d** (126 mg, 78%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 – 7.45 (m, 2H), 7.41 – 7.37 (m, 1H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.67 (d, *J* = 8.3 Hz, 2H), 4.08 (dd, *J* = 9.3, 4.3 Hz, 1H), 3.36 – 3.29 (m, 5H), 2.97 (dd, *J* = 18.5, 4.3 Hz, 1H), 1.15 (t, *J* = 6.9 Hz, 6H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  177.42, 175.69, 147.40, 132.05, 129.12, 128.54, 128.17, 126.49, 123.06, 112.08, 45.11,

44.33, 37.38, 12.50. HRMS (ESI) calcd for  $C_{20}H_{23}N_2O_2$  [M+H]<sup>+</sup>: 323.1754, found 323.1753.

#### 1-Benzyl-3-(4-(pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (5e)



According to **GP**, 1-phenylpyrrolidine **1d** (74 mg, 0.5 mmol) and 1-benzyl-1*H*-pyrrole-2,5-dione **4e** (374 mg, 2.0 mmol) were converted to the desired product **5e** (135 mg, 81%) as a white solid (mp 161.0–161.8 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, *J* = 6.5 Hz, 2H), 7.33 – 7.22 (m, 3H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.49 (d, *J* = 8.6 Hz, 2H), 4.69 (q, *J* = 14.0 Hz, 2H), 3.89 (dd, *J* = 9.5, 4.6 Hz, 1H), 3.24 (t, *J* = 6.5 Hz, 4H), 3.13 (dd, *J* = 18.5, 9.5 Hz, 1H), 2.76 (dd, *J* = 18.5, 4.6 Hz, 1H), 2.01 – 1.94 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.20, 176.27, 147.49, 135.92, 128.73, 128.61, 127.98, 127.86, 123.27, 112.03, 47.57,

45.14, 42.55, 37.32, 25.43. HRMS (CI) calcd for  $C_{21}H_{23}N_2O_2$  [M+H]<sup>+</sup>: 335.1760, found 335.1758.

1-Benzyl-3-(4-(diethylamino)phenyl)pyrrolidine-2,5-dione (5f)



According to GP, N,N-diethylaniline 1d (75 mg, 0.5 mmol) and 1-phenyl-1H-pyrrole-2,5-dione 4f (346 mg, 2.0 mmol) were converted to the desired product 5f (126 mg, 78%) as a white solid (mp 99.2–100.2 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.43 (d, J = 6.9 Hz, 2H), 7.36 - 7.31 (m, 3H), 7.01 (d, J = 8.4 Hz, 2H), 6.64 (d, J = 8.4 Hz, 2H), 4.74 (q, J = 14.0 Hz, 2H), 3.93 (dd, J = 9.3, 4.5 Hz, 1H), 3.36 (q, J = 7.0 Hz, 4H), 3.17 (dd, J = 18.5, 9.5 Hz, 1H), 2.81 (dd, J = 18.5, 4.5 Hz, 1H), 1.17 (t, J = 7.0 Hz, 6H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  178.21, 176.26, 147.31, 135.92, 128.74, 128.62, 128.15, 127.87, 123.14, 112.04, 45.02, 44.30, 42.57,

37.27, 12.50. HRMS (ESI) calcd for  $C_{21}H_{25}N_2O_2$  [M+H]<sup>+</sup>: 337.1911, found 337.1909.

#### 3-(4-(Pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (5g)



According to GP, 1-phenylpyrrolidine 1a (74 mg, 0.5 mmol) and 1H-pyrrole-2,5-dione 4g (194 mg, 2.0 mmol) were converted to the desired product 5g (101 mg, 82%) as a white solid (mp 165.8–167.3 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.28 (s, 1H), 7.09 (d, J = 8.1 Hz, 2H), 6.55 (d, J = 8.1 Hz, 2H), 3.98 (dd, J = 9.3, 4.9 Hz, 1H), 3.38 - 3.16 (m, 5H),2.85 (dd, J = 18.6, 4.7 Hz, 1H), 2.02 - 1.98 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) & 178.73, 176.54, 147.58, 128.03, 122.66, 112.07, 47.58, 46.63, 38.40, 25.44. HRMS (CI) calcd for  $C_{14}H_{17}N_2O_2$  [M+H]<sup>+</sup>: 245.1290, found

245.1301.

#### 3-(4-(Diethylamino)phenyl)pyrrolidine-2,5-dione (5h)



According to GP, N,N-diethylaniline 1d (75 mg, 0.5 mmol) and 1H-pyrrole-2,5-dione 4h (194 mg, 2.0 mmol) were converted to the desired product **5h** (75 mg, 61%) as a colorless oil. <sup>1</sup>H NMR (400 MHz,  $CDCl_3$ )  $\delta$  8.52 (s, 1H), 7.09 (d, J = 8.3 Hz, 2H), 6.68 (d, J = 8.1 Hz, 2H), 3.99 (dd, *J* = 9.3, 4.9 Hz, 1H), 3.36 (q, *J* = 6.9 Hz, 4H), 3.22 (dd, *J* = 18.6, 9.6 Hz, 1H), 2.87 (dd, J = 18.6, 4.9 Hz, 1H), 1.17 (t, J = 7.0 Hz, 6H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 178.96, 176.72, 147.39, 128.22, 122.55, 112.03, 46.51, 44.32, 38.36, 12.49. HRMS (ESI) calcd for C<sub>14</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub>

[M+H]<sup>+</sup>: 247.1441, found 247.1446.

#### 4-(4-(pyrrolidin-1-yl)phenyl)pentan-2-one (5i)



According to GP, 1-phenylpyrrolidine 1a (74 mg, 0.5 mmol) and 3-penten-2-one 4i (168 mg, 2.0 mmol) were converted to the desired product **5i** (25 mg, 21%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.07 (d, J = 7.7 Hz, 2H), 6.52 (d, J = 7.7 Hz, 2H), 3.32 - 3.17 (m, 5H), 2.66 (ddd, J = 23.5, 15.7, 7.2 Hz, 2H), 2.05 (s, 3H), 1.98 (s, 4H), 1.23 (d, J = 6.7 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  208.67, 146.60, 132.74, 127.39, 111.72, 52.55, 47.67, 34.84, 30.59, 25.47, 22.32. HRMS (ESI)

calcd for C<sub>15</sub>H<sub>21</sub>NO [M+H]<sup>+</sup>: 232.1698, found 232.1696.

#### 4. Synthesis of Succinimides Derivatives 6a-8a



1-Methyl-3-(4-(pyrrolidin-1-yl)phenyl)-1H-pyrrole-2,5-dione (6a)

The compound **3a** (60 mg, 0.23 mmol 1 equiv),  $K_2CO_3$  (5 equiv) and diethyl azodicarboxylate (1 equiv) were taken in a dried schlenk tube with a magnetic stir bar. Then dry DMF (2 mL) was added and the reaction mixture was allowed to stir for 4 h at room temperature. After completion of the reaction (TLC monitored), the reaction mixture was extracted with EtOAc and washed with brine solution. The organic layer was dried with anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was directly purified by silica gel column chromatography (PE: EA = 5: 1) to provide the product **6a** (40 mg, 69%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 8.6 Hz, 2H), 6.59 (d, *J* = 8.6 Hz, 2H), 6.43 (s, 1H), 3.41 – 3.39 (m, 4H), 3.07 (s, 3H), 2.09 – 2.05 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  171.83, 171.64, 149.55, 143.89, 130.32, 115.91, 115.83, 111.75, 47.51, 25.42, 23.58. HRMS (ESI) calcd for C<sub>15</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 257.1285, found 257.1284.

#### 1-Methyl-3-(4-(pyrrolidin-1-yl)phenyl)pyrrolidine (7a)



The compound **3a** (65 mg, 0.25 mmol, 1 equiv) and LiAlH<sub>4</sub> (5 equiv) were taken in a dried schlenk tube with a magnetic stir bar. Then dry THF (2 mL) was added and the reaction mixture was allowed to stir for 4 h at room temperature. After completion, the reaction mixture was quenched with 10% NaOH solution. The reaction mixture was extracted with EtOAc (5 mL  $\times$  3), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The resulting residue was directly purified by silica gel column chromatography (DCM: MeOH = 15: 1) to provide desired product

**7a** as a colorless oil. (39 mg, 68%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.13 (d, *J* = 8.3 Hz, 2H), 6.53 (d, *J* = 8.3 Hz, 2H), 3.65 – 3.55 (m, 3H), 3.40 – 3.35 (m, 1H), 3.28 – 3.24 (m, 4H), 3.11 – 3.05 (m, 1H), 2.90 (s, 3H), 2.55 – 2.45 (m, 1H), 2.27 – 2.17 (m, 1H), 2.03 – 1.97 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  147.38, 127.78, 124.05, 123.99, 111.92, 70.50, 61.30, 55.50, 47.57, 42.58, 41.47, 25.40. HRMS (ESI) calcd for C<sub>15</sub>H<sub>23</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 231.1856, found 231.1863.

#### 3-Benzyl-1-methyl-3-(4-(pyrrolidin-1-yl)phenyl)pyrrolidine-2,5-dione (8a)



The compound **3a** (70 mg, 0.27 mmol, 1 equiv) and K<sub>2</sub>CO<sub>3</sub> (5 equiv) and benzyl bromide (1.5 equiv) were taken in a dried schlenk tube with a magnetic stir bar. Then dry DMF (2 mL) was added and the reaction mixture was allowed to stir for 8 h at room temperature. After completion of the reaction (TLC monitored), the reaction mixture was extracted with EtOAc and washed with brine solution. The organic layer was dried with anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was directly purified by silica gel column chromatography (PE : EA = 5: 1) to provide the product **8a** (49 mg, 52%) as a yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (d, *J* = 8.5 Hz, 2H), 7.26 – 7.23 (m, 3H), 7.08 (d, *J* = 6.4 Hz, 2H), 6.56 (d, *J* = 8.5 Hz, 2H), 3.52 (d, *J* = 13.4 Hz, 1H), 3.31 – 3.26 (m, 4H), 3.06 (d, *J* = 13.5 Hz, 1H), 2.98 (s, 2H), 2.82 (s, 3H), 2.03 – 1.98 (m, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  180.49, 175.67, 135.92, 130.03, 128.47, 127.26, 126.96, 111.74, 52.49, 47.59, 45.09, 39.90, 25.44, 24.70. HRMS (ESI) calcd for C<sub>22</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 349.1911, found 349.1912.

# 5. <sup>1</sup>H and <sup>13</sup>C-NMR Spectra





# $\int_{-7.073}^{7.094}$

# $\begin{array}{c} \begin{array}{c} -3.952\\ -3.052\\ -3.628\\ -3.628\\ -3.628\\ -3.661\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2.837\\ -2$











S18









230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)















6.252
6.218







230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-6.885< 6.422< 6.401 





















 $\begin{array}{c} 6.641\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.636\\ 6.$ 



































# 6. X-ray Crystallography of 3k

| Identification code                                          | entification code a                      |                                             |  |  |
|--------------------------------------------------------------|------------------------------------------|---------------------------------------------|--|--|
| Empirical formula                                            | C17 H22 N2 O2                            | C17 H22 N2 O2                               |  |  |
| Formula weight                                               | 286.36                                   | 286.36                                      |  |  |
| Temperature                                                  | 296(2) K                                 |                                             |  |  |
| Wavelength                                                   | 0.71073 Å                                |                                             |  |  |
| Crystal system                                               | Monoclinic                               |                                             |  |  |
| Space group                                                  | C2/c                                     |                                             |  |  |
| Unit cell dimensions                                         | a = 18.8452(14) Å                        | <i>α</i> = 90°.                             |  |  |
|                                                              | b = 5.9542(4)  Å                         | β=103.868(2)°.                              |  |  |
|                                                              | c = 27.679(2)  Å                         | $\gamma = 90^{\circ}$ .                     |  |  |
| Volume                                                       | 3015.3(4) Å <sup>3</sup>                 |                                             |  |  |
| Z                                                            | 8                                        |                                             |  |  |
| Density (calculated)                                         | 1.262 Mg/m <sup>3</sup>                  |                                             |  |  |
| Absorption coefficient 0.083 mm <sup>-1</sup>                |                                          |                                             |  |  |
| F(000)                                                       | 1232                                     |                                             |  |  |
| Crystal size                                                 | 0.300 x 0.200 x 0.100 m                  | m <sup>3</sup>                              |  |  |
| Theta range for data collection                              | 3.598 to 27.536°.                        | 3.598 to 27.536°.                           |  |  |
| Index ranges -24<=h<=24, -7<=k<=7, -36<=l<=35                |                                          | , -36<=l<=35                                |  |  |
| Reflections collected 36497                                  |                                          |                                             |  |  |
| Independent reflections                                      | 3460 [R(int) = 0.0426]                   |                                             |  |  |
| Completeness to theta = $25.242^{\circ}$                     | 99.5 %                                   |                                             |  |  |
| Absorption correction                                        | None                                     | None                                        |  |  |
| Max. and min. transmission                                   | 0.992 and 0.980                          |                                             |  |  |
| Refinement method                                            | Full-matrix least-squares                | Full-matrix least-squares on F <sup>2</sup> |  |  |
| Data / restraints / parameters                               | ' restraints / parameters 3460 / 0 / 193 |                                             |  |  |
| Goodness-of-fit on F <sup>2</sup>                            | 1.028                                    |                                             |  |  |
| Tinal R indices [I>2sigma(I)] $R1 = 0.0522$ , $wR2 = 0.1608$ |                                          | 608                                         |  |  |
| R indices (all data) $R1 = 0.0632, wR2 = 0.1714$             |                                          | 714                                         |  |  |
| Extinction coefficient                                       | n/a                                      | n/a                                         |  |  |
| Largest diff. peak and hole                                  | 0.253 and -0.183 e.Å <sup>-3</sup>       | 0.253 and -0.183 e.Å <sup>-3</sup>          |  |  |

Table 1. Crystal data and structure refinement for a.

|       | Х       | У        | Z       | U(eq) |
|-------|---------|----------|---------|-------|
| O(1)  | 974(1)  | 9096(3)  | 6583(1) | 79(1) |
| O(2)  | 2255(1) | 2886(2)  | 7202(1) | 57(1) |
| N(1)  | 3930(1) | 27(2)    | 5546(1) | 44(1) |
| N(2)  | 1506(1) | 5885(2)  | 6950(1) | 41(1) |
| C(1)  | 4779(1) | -2707(4) | 5422(1) | 70(1) |
| C(2)  | 4683(1) | -700(4)  | 5733(1) | 55(1) |
| C(3)  | 3614(1) | 1508(3)  | 5820(1) | 37(1) |
| C(4)  | 2859(1) | 1797(3)  | 5722(1) | 37(1) |
| C(5)  | 2536(1) | 3232(2)  | 6003(1) | 33(1) |
| C(6)  | 2969(1) | 4468(2)  | 6395(1) | 32(1) |
| C(7)  | 2638(1) | 5925(2)  | 6733(1) | 35(1) |
| C(8)  | 2137(1) | 4659(3)  | 6989(1) | 38(1) |
| C(9)  | 933(1)  | 5214(4)  | 7189(1) | 68(1) |
| C(10) | 4043(1) | -3241(4) | 5094(1) | 59(1) |
| C(11) | 4043(1) | 2822(3)  | 6199(1) | 41(1) |
| C(12) | 3733(1) | 4278(3)  | 6483(1) | 38(1) |
| C(13) | 2187(1) | 7993(3)  | 6511(1) | 42(1) |
| C(14) | 1485(1) | 7819(3)  | 6674(1) | 46(1) |
| C(15) | 1710(1) | 3301(3)  | 5879(1) | 42(1) |
| C(16) | 4242(1) | 5631(4)  | 6881(1) | 58(1) |
| C(17) | 3495(1) | -1800(3) | 5275(1) | 46(1) |
|       |         |          |         |       |

Table 2. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for a. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| O(1)-C(14)  | 1.206(2)   |
|-------------|------------|
| O(2)-C(8)   | 1.2038(19) |
| N(1)-C(3)   | 1.3873(19) |
| N(1)-C(2)   | 1.455(2)   |
| N(1)-C(17)  | 1.457(2)   |
| N(2)-C(8)   | 1.377(2)   |
| N(2)-C(14)  | 1.377(2)   |
| N(2)-C(9)   | 1.452(2)   |
| C(1)-C(10)  | 1.497(3)   |
| C(1)-C(2)   | 1.509(3)   |
| C(1)-H(5)   | 0.9700     |
| C(1)-H(1)   | 0.9700     |
| C(2)-H(6)   | 0.9700     |
| C(2)-H(7)   | 0.9700     |
| C(3)-C(4)   | 1.395(2)   |
| C(3)-C(11)  | 1.400(2)   |
| C(4)-C(5)   | 1.390(2)   |
| C(4)-H(17)  | 0.9300     |
| C(5)-C(6)   | 1.401(2)   |
| C(5)-C(15)  | 1.5117(19) |
| C(6)-C(12)  | 1.406(2)   |
| C(6)-C(7)   | 1.5135(19) |
| C(7)-C(8)   | 1.511(2)   |
| C(7)-C(13)  | 1.538(2)   |
| C(7)-H(13)  | 0.9800     |
| C(9)-H(10)  | 0.9600     |
| C(9)-H(11)  | 0.9600     |
| C(9)-H(2)   | 0.9600     |
| C(10)-C(17) | 1.517(2)   |
| C(10)-H(3)  | 0.9700     |
| C(10)-H(4)  | 0.9700     |
| C(11)-C(12) | 1.390(2)   |
| C(11)-H(8)  | 0.9300     |
| C(12)-C(16) | 1.510(2)   |
| C(13)-C(14) | 1.499(2)   |
| С(13)-Н(12) | 0.9700     |
|             |            |

Table 3. Bond lengths [Å] and angles  $[\circ]$  for a.

| C(13)-H(9)      | 0.9700     |
|-----------------|------------|
| C(15)-H(15)     | 0.9600     |
| C(15)-H(14)     | 0.9600     |
| C(15)-H(16)     | 0.9600     |
| C(16)-H(20)     | 0.9600     |
| C(16)-H(18)     | 0.9600     |
| C(16)-H(19)     | 0.9600     |
| C(17)-H(21)     | 0.9700     |
| C(17)-H(22)     | 0.9700     |
| C(3)-N(1)-C(2)  | 120.25(13) |
| C(3)-N(1)-C(17) | 119.61(13) |
| C(2)-N(1)-C(17) | 109.96(14) |
| C(8)-N(2)-C(14) | 113.35(13) |
| C(8)-N(2)-C(9)  | 122.77(15) |
| C(14)-N(2)-C(9) | 123.86(15) |
| C(10)-C(1)-C(2) | 107.08(16) |
| C(10)-C(1)-H(5) | 110.3      |
| C(2)-C(1)-H(5)  | 110.3      |
| C(10)-C(1)-H(1) | 110.3      |
| C(2)-C(1)-H(1)  | 110.3      |
| H(5)-C(1)-H(1)  | 108.6      |
| N(1)-C(2)-C(1)  | 105.79(15) |
| N(1)-C(2)-H(6)  | 110.6      |
| C(1)-C(2)-H(6)  | 110.6      |
| N(1)-C(2)-H(7)  | 110.6      |
| C(1)-C(2)-H(7)  | 110.6      |
| H(6)-C(2)-H(7)  | 108.7      |
| N(1)-C(3)-C(4)  | 121.57(13) |
| N(1)-C(3)-C(11) | 121.26(13) |
| C(4)-C(3)-C(11) | 117.15(13) |
| C(5)-C(4)-C(3)  | 122.03(13) |
| C(5)-C(4)-H(17) | 119.0      |
| C(3)-C(4)-H(17) | 119.0      |
| C(4)-C(5)-C(6)  | 120.32(13) |
| C(4)-C(5)-C(15) | 117.03(13) |
| C(6)-C(5)-C(15) | 122.60(13) |
| C(5)-C(6)-C(12) | 118.25(13) |

| C(5)-C(6)-C(7)    | 122.03(13) |
|-------------------|------------|
| C(12)-C(6)-C(7)   | 119.68(12) |
| C(8)-C(7)-C(6)    | 113.50(12) |
| C(8)-C(7)-C(13)   | 103.79(12) |
| C(6)-C(7)-C(13)   | 118.84(13) |
| C(8)-C(7)-H(13)   | 106.7      |
| C(6)-C(7)-H(13)   | 106.7      |
| С(13)-С(7)-Н(13)  | 106.7      |
| O(2)-C(8)-N(2)    | 123.89(15) |
| O(2)-C(8)-C(7)    | 127.23(15) |
| N(2)-C(8)-C(7)    | 108.87(12) |
| N(2)-C(9)-H(10)   | 109.5      |
| N(2)-C(9)-H(11)   | 109.5      |
| H(10)-C(9)-H(11)  | 109.5      |
| N(2)-C(9)-H(2)    | 109.5      |
| H(10)-C(9)-H(2)   | 109.5      |
| H(11)-C(9)-H(2)   | 109.5      |
| C(1)-C(10)-C(17)  | 106.58(15) |
| C(1)-C(10)-H(3)   | 110.4      |
| С(17)-С(10)-Н(3)  | 110.4      |
| C(1)-C(10)-H(4)   | 110.4      |
| С(17)-С(10)-Н(4)  | 110.4      |
| H(3)-C(10)-H(4)   | 108.6      |
| C(12)-C(11)-C(3)  | 121.76(14) |
| С(12)-С(11)-Н(8)  | 119.1      |
| C(3)-C(11)-H(8)   | 119.1      |
| C(11)-C(12)-C(6)  | 120.36(13) |
| C(11)-C(12)-C(16) | 117.75(14) |
| C(6)-C(12)-C(16)  | 121.89(14) |
| C(14)-C(13)-C(7)  | 105.54(13) |
| С(14)-С(13)-Н(12) | 110.6      |
| C(7)-C(13)-H(12)  | 110.6      |
| С(14)-С(13)-Н(9)  | 110.6      |
| C(7)-C(13)-H(9)   | 110.6      |
| H(12)-C(13)-H(9)  | 108.8      |
| O(1)-C(14)-N(2)   | 123.96(16) |
| O(1)-C(14)-C(13)  | 127.71(16) |
| N(2)-C(14)-C(13)  | 108.33(13) |

| C(5)-C(15)-H(15)  | 109.5      |
|-------------------|------------|
| C(5)-C(15)-H(14)  | 109.5      |
| H(15)-C(15)-H(14) | 109.5      |
| C(5)-C(15)-H(16)  | 109.5      |
| H(15)-C(15)-H(16) | 109.5      |
| H(14)-C(15)-H(16) | 109.5      |
| C(12)-C(16)-H(20) | 109.5      |
| C(12)-C(16)-H(18) | 109.5      |
| H(20)-C(16)-H(18) | 109.5      |
| C(12)-C(16)-H(19) | 109.5      |
| H(20)-C(16)-H(19) | 109.5      |
| H(18)-C(16)-H(19) | 109.5      |
| N(1)-C(17)-C(10)  | 104.37(13) |
| N(1)-C(17)-H(21)  | 110.9      |
| C(10)-C(17)-H(21) | 110.9      |
| N(1)-C(17)-H(22)  | 110.9      |
| C(10)-C(17)-H(22) | 110.9      |
| H(21)-C(17)-H(22) | 108.9      |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| O(1)  | 51(1)           | 69(1)           | 124(1)          | 32(1)           | 34(1)           | 26(1)           |
| O(2)  | 79(1)           | 46(1)           | 50(1)           | 16(1)           | 24(1)           | 13(1)           |
| N(1)  | 33(1)           | 50(1)           | 49(1)           | -15(1)          | 11(1)           | 1(1)            |
| N(2)  | 37(1)           | 44(1)           | 44(1)           | 4(1)            | 14(1)           | -2(1)           |
| C(1)  | 52(1)           | 73(1)           | 85(2)           | -28(1)          | 14(1)           | 12(1)           |
| C(2)  | 36(1)           | 68(1)           | 61(1)           | -17(1)          | 10(1)           | 7(1)            |
| C(3)  | 33(1)           | 42(1)           | 36(1)           | -4(1)           | 10(1)           | 0(1)            |
| C(4)  | 32(1)           | 42(1)           | 35(1)           | -6(1)           | 5(1)            | -3(1)           |
| C(5)  | 28(1)           | 36(1)           | 34(1)           | 2(1)            | 6(1)            | 0(1)            |
| C(6)  | 31(1)           | 32(1)           | 33(1)           | 0(1)            | 7(1)            | 1(1)            |
| C(7)  | 34(1)           | 34(1)           | 38(1)           | -3(1)           | 8(1)            | 2(1)            |
| C(8)  | 44(1)           | 38(1)           | 32(1)           | 1(1)            | 10(1)           | 2(1)            |
| C(9)  | 55(1)           | 77(1)           | 80(1)           | 17(1)           | 36(1)           | -2(1)           |
| C(10) | 54(1)           | 60(1)           | 62(1)           | -20(1)          | 14(1)           | 7(1)            |
| C(11) | 26(1)           | 48(1)           | 46(1)           | -9(1)           | 7(1)            | 0(1)            |
| C(12) | 32(1)           | 41(1)           | 40(1)           | -6(1)           | 5(1)            | -2(1)           |
| C(13) | 44(1)           | 31(1)           | 56(1)           | 4(1)            | 20(1)           | 3(1)            |
| C(14) | 38(1)           | 41(1)           | 59(1)           | 5(1)            | 14(1)           | 4(1)            |
| C(15) | 30(1)           | 48(1)           | 45(1)           | -5(1)           | 4(1)            | 2(1)            |
| C(16) | 35(1)           | 71(1)           | 64(1)           | -30(1)          | 6(1)            | -5(1)           |
| C(17) | 42(1)           | 50(1)           | 48(1)           | -13(1)          | 14(1)           | -4(1)           |

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$  for a.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$  ]

|       | х    | у     | Z    | U(eq) |
|-------|------|-------|------|-------|
|       |      |       |      |       |
| H(5)  | 5123 | -2364 | 5221 | 84    |
| H(1)  | 4964 | -3979 | 5634 | 84    |
| H(6)  | 4772 | -1112 | 6081 | 66    |
| H(7)  | 5019 | 489   | 5698 | 66    |
| H(17) | 2562 | 1005  | 5460 | 44    |
| H(13) | 3046 | 6480  | 6995 | 43    |
| H(10) | 850  | 3627  | 7147 | 101   |
| H(11) | 491  | 6007  | 7040 | 101   |
| H(2)  | 1079 | 5564  | 7537 | 101   |
| H(3)  | 3932 | -4821 | 5119 | 70    |
| H(4)  | 4033 | -2897 | 4750 | 70    |
| H(8)  | 4550 | 2717  | 6263 | 49    |
| H(12) | 2443 | 9366  | 6635 | 51    |
| H(9)  | 2093 | 7983  | 6151 | 51    |
| H(15) | 1521 | 2687  | 5552 | 63    |
| H(14) | 1549 | 4828  | 5886 | 63    |
| H(16) | 1535 | 2432  | 6118 | 63    |
| H(20) | 4739 | 5349  | 6868 | 87    |
| H(18) | 4176 | 5203  | 7202 | 87    |
| H(19) | 4136 | 7201  | 6828 | 87    |
| H(21) | 3123 | -1228 | 4997 | 55    |
| H(22) | 3260 | -2652 | 5492 | 55    |

Table 5. Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2x\;10^{\;3}$  ) for a.

Table 6. Torsion angles [°] for a.

| C(3)-N(1)-C(2)-C(1)    | 165.39(17)  |
|------------------------|-------------|
| C(17)-N(1)-C(2)-C(1)   | 20.3(2)     |
| C(10)-C(1)-C(2)-N(1)   | -6.0(3)     |
| C(2)-N(1)-C(3)-C(4)    | -163.38(16) |
| C(17)-N(1)-C(3)-C(4)   | -21.6(2)    |
| C(2)-N(1)-C(3)-C(11)   | 18.3(2)     |
| C(17)-N(1)-C(3)-C(11)  | 160.16(16)  |
| N(1)-C(3)-C(4)-C(5)    | 178.26(14)  |
| C(11)-C(3)-C(4)-C(5)   | -3.4(2)     |
| C(3)-C(4)-C(5)-C(6)    | 0.8(2)      |
| C(3)-C(4)-C(5)-C(15)   | -176.61(14) |
| C(4)-C(5)-C(6)-C(12)   | 2.4(2)      |
| C(15)-C(5)-C(6)-C(12)  | 179.61(14)  |
| C(4)-C(5)-C(6)-C(7)    | -175.70(13) |
| C(15)-C(5)-C(6)-C(7)   | 1.5(2)      |
| C(5)-C(6)-C(7)-C(8)    | 57.00(18)   |
| C(12)-C(6)-C(7)-C(8)   | -121.05(15) |
| C(5)-C(6)-C(7)-C(13)   | -65.43(19)  |
| C(12)-C(6)-C(7)-C(13)  | 116.52(16)  |
| C(14)-N(2)-C(8)-O(2)   | -177.85(16) |
| C(9)-N(2)-C(8)-O(2)    | 3.7(3)      |
| C(14)-N(2)-C(8)-C(7)   | 3.12(18)    |
| C(9)-N(2)-C(8)-C(7)    | -175.32(17) |
| C(6)-C(7)-C(8)-O(2)    | 47.2(2)     |
| C(13)-C(7)-C(8)-O(2)   | 177.59(16)  |
| C(6)-C(7)-C(8)-N(2)    | -133.85(13) |
| C(13)-C(7)-C(8)-N(2)   | -3.43(16)   |
| C(2)-C(1)-C(10)-C(17)  | -9.4(3)     |
| N(1)-C(3)-C(11)-C(12)  | -178.72(15) |
| C(4)-C(3)-C(11)-C(12)  | 2.9(2)      |
| C(3)-C(11)-C(12)-C(6)  | 0.1(2)      |
| C(3)-C(11)-C(12)-C(16) | -179.74(17) |
| C(5)-C(6)-C(12)-C(11)  | -2.8(2)     |
| C(7)-C(6)-C(12)-C(11)  | 175.31(14)  |
| C(5)-C(6)-C(12)-C(16)  | 177.06(16)  |
| C(7)-C(6)-C(12)-C(16)  | -4.8(2)     |
|                        |             |

| C(8)-C(7)-C(13)-C(14) | 2.56(17)    |
|-----------------------|-------------|
| C(6)-C(7)-C(13)-C(14) | 129.71(15)  |
| C(8)-N(2)-C(14)-O(1)  | 177.87(19)  |
| C(9)-N(2)-C(14)-O(1)  | -3.7(3)     |
| C(8)-N(2)-C(14)-C(13) | -1.4(2)     |
| C(9)-N(2)-C(14)-C(13) | 177.05(17)  |
| C(7)-C(13)-C(14)-O(1) | 179.9(2)    |
| C(7)-C(13)-C(14)-N(2) | -0.91(19)   |
| C(3)-N(1)-C(17)-C(10) | -171.32(15) |
| C(2)-N(1)-C(17)-C(10) | -25.9(2)    |
| C(1)-C(10)-C(17)-N(1) | 21.2(2)     |
|                       |             |

Symmetry transformations used to generate equivalent atoms: