Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Design, Synthesis and Glycosidase Inhibition Studies of Novel Triazole Fused Iminocyclitol-δ-lactams

Venkatesan Santhanam, Pradeep Pant, B. Jayaram and Namakkal G Ramesh*

Department of Chemistry Indian Institute of Technology Delhi Hauz Khas – 110016, New Delhi, India

E-mail: ramesh@chemistry.iitd.ac.in

Table of contents

Experimental section:	S2-S20

Copies of ¹H–NMR, ¹³C–NMR and DEPT-135 spectra: S21 - S73

(2*S*,3*R*,4*R*,5*S*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(*tert*-butyldimethyl silanyloxymethyl)-pyrrolidine 17.

A solution of compound 11 (5.0 g, 7.1 mmol) in dry THF (50 mL) was cooled to -78 °C. A solution of sodium napthalenide (prepared separately by the addition of sodium (1.56 g, 67.6 mmol) to naphthalene (9.2 g, 71.2 mmol) in dry THF} was added slowly and the reaction mixture was stirred at -78 °C for 20 minutes. The reaction mixture was brought to room temperature and quenched with aqueous sodium carbonate solution (50 mL). It was then extracted with ethyl acetate (50 mL). The organic layer was dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (3:1) as an eluent to get **17** (3.3 g, 85%) as a pale yellow viscous oil. *R_f*: 0.4 (hexane/ethyl acetate, 2:1); Specific rotation: $[\alpha]_D^{34}$ -3.6 (*c* 1.3, CHCl₃); IR (KBr): \bar{v} = 3348, 3062, 3031, 2928, 2858, 1600, 1460, 1363, 1251, 1093, 840, 777, 739, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.32–7.25 (m, 15H), 4.52–4.43 (m, 6H), 3.99 (brm, 2H), 3.78–3.65 (m, 4H), 3.57–3.45 (m, 2H), 2.06–2.02 (br m, 1H exchangeable with D₂O), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 138.3 (2 x s), 138.2 (s), 128.2 (d), 127.5 (d), 127.4 (d), 127.3 (d), 82.5 (d), 82.2 (d), 73.1 (t), 72.1 (t), 72.0 (t), 69.8 (t), 61.9 (t), 60.2 (d), 57.9 (d), 25.8 (q), 18.1 (s), -5.4 (q); HRMS (ESI): *m*/*z* calcd for C₃₃H₄₆NO₄Si [M+H]⁺ 548.3191 found 548.3207.

(2*S*,3*R*,4*R*,5*S*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(*tert*-butyldimethyl silanyloxymethyl)-1-*N*-(*tert*-butoxycarbonyl)-pyrrolidine 19.

To a solution of pyrrolidine **17** (2.65 g, 4.83 mmol) in dry ethyl acetate (25 mL), potassium carbonate (2.0 g, 14.47 mmol) and Boc_2O (1.35 mL, 5.87 mmol) were added and the reaction mixture was stirred at 35 °C for 16 h. The reaction mixture was then

diluted with ethyl acetate (50 mL) and washed with water (2 x 50 mL). The organic layer was dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (9:1) as an eluent to get **19** (2.89 g, 92%) as a colourless oil. The data provided is for a mixture of rotamers in the ratio of 56:44. *R_f*: 0.8 (hexane/ethyl acetate, 5:1); Specific rotation: $[\alpha]_D{}^{30}-19.1$ (*c* 1.22, CHCl₃); IR (KBr): \bar{v} = 3061, 3030, 2928, 2859, 1695, 1461, 1389, 1325, 1252, 1113, 1058, 839, 775, 737, 699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.56–7.46 (m, 15H), 4.98–4.55 (m, 8H), 4.29 (dd, *J* = 9.9, 3.0 Hz, 1H), 4.23–4.09 (m, 2H), 4.05–3.77 (m, 3H), 1.68 (s, 5H), 1.63 (s, 4H), 1.05 (s, 9H), 0.19 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 153.8 (s), 153.7 (s), 139.0 (s), 138.8 (s), 138.7 (s), 138.6 (s), 128.2 (d), 128.17 (d), 128.11 (d), 127.5 (d), 127.45 (d), 127.40 (d), 127.3 (d), 127.28 (d), 127.20 (d), 80.9 (d), 80.48 (d), 80.41 (d), 79.4 (s), 73.3 (t), 73.2 (t), 72.9 (t), 72.8 (t), 72.6 (t), 67.6 (t), 66.1 (t), 59.0 (t), 57.6 (t), 57.5 (d), 57.2 (d), 56.4 (d), 28.5 (q), 28.4 (q), 25.8 (q), 18.0 (s), -5.5 (q), -5.6 (q); HRMS (ESI): *m/z* calcd for C₃₈H₅₃NNaO₆Si [M+Na]⁺ 670.3534 found 670.3532.

(2*S*,3*R*,4*R*,5*S*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(hydroxymethyl)-1-*N*-(*tert*-butoxycarbonyl)-pyrrolidine 9.

To a solution of compound **19** (2.6 g, 4.01 mmol) in dry methanol (25 mL), camphorsulfonic acid (260 mg, 10% w/w) was added and the reaction mixture was stirred at 31 °C for 16 h. Solvent was then concentrated under reduced pressure and the residue was dissolved in ethyl acetate (50 mL). It was then washed with aqueous sodium bicarbonate solution (2 x 25 mL), dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (3:1) as an eluent to get **9** (1.85 g, 86%) as a colourless oil. The data provided is for a mixture of rotamers in the ratio of 63:36. R_f : 0.4 (hexane/ethyl acetate, 4:1); Specific rotation: $[\alpha]_D^{30}$ –19.3 (*c* 1.28, CHCl₃); IR (KBr): \bar{v} = 3548, 3474, 3416, 3029, 2969, 2925, 2871, 1688, 1455, 1389, 1109, 1032, 738, 697, 610 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ

7.31–7.26 (m, 15H), 4.81–4.59 (m, 4H), 4.53–4.47 (m, 3H), 4.31–4.15 (m, 1H), 4.06– 3.89 (m, 3H), 3.81–3.67 (m, 2H), 3.61–3.55 (m, 1H), 3.40 (br s, 0.6H, exchangeable with D₂O), 2.54 (br s, 0.3H, exchangeable with D₂O), 1.46 (s, 4H), 1.41 (s, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 155.0 (s), 153.7 (s), 138.6 (s), 138.2 (s), 138.0 (s), 137.9 (s), 137.7 (s), 128.4 (d), 128.3 (d), 128.2 (d), 128.1 (d), 127.7 (d), 127.6 (d), 127.4 (d), 127.37 (d), 127.33 (d), 127.1 (d), 81.6 (d), 81.5 (d), 81.4 (d), 80.8 (d), 80.3 (s), 80.1 (s), 73.4 (t), 73.39 (t), 73.32 (t), 73.1 (t), 72.9 (t), 66.5 (t), 65.2 (t), 62.3 (t), 61.8 (t), 58.6 (d), 57.4 (d), 56.3 (d), 55.9 (d), 28.3 (q); HRMS (ESI): *m/z* calcd for C₃₂H₃₉NNaO₆ [M+Na]⁺ 556.2670 found 556.2672.

(2*S*,3*R*,4*R*,5*S*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(azidomethyl)-1-*N*-(*tert*-butoxycarbonyl)-pyrrolidine 7.

Compound 9 (1.0 g, 1.87 mmol) was dissolved in dry THF (10 mL), and the solution was cooled to 0 °C. Triphenylphosphine (0.74 g, 2.82 mmol) and trimethylsilyl azide (0.38 mL, 2.86 mmol) were added followed by dropwise addition of diethyl azodicarboxylate (0.74 mL, 4.68 mmol), after which the reaction mixture was warmed to 21 °C. When TLC indicated the completion of the reaction (24 h), the reaction was stopped and solvent was evaporated under vacuum. The residue was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (10:1) as an eluent to get 7 (754 mg, 72%) as a pale yellow oil. The data provided is for a mixture of rotamers in the ratio of 63:36. R_f: 0.8 (hexane/ethyl acetate, 9:1); Specific rotation: $[\alpha]_D^{30}$ -17.0 (*c* 0.60, CHCl₃); IR (KBr): $\bar{\upsilon}$ = 3061, 3030, 2973, 2928, 2870, 2102, 1695, 1448, 1386, 1257, 1151, 1110, 1024, 742, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.31-7.24 (m, 15H), 4.75-4.58 (m, 4H), 4.54-4.30 (m, 4H), 4.04-3.89 (m, 3H), 3.75-3.66 (m, 1H), 3.57 (d, J = 9.6 Hz, 1H), 3.38 (d, J = 12.0 Hz, 0.4H), 3.26 (d, J = 11.4 Hz, 0.6H), 1.46 (s, 3H), 1.41 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 153.7 (s), 153.4 (s), 138.7 (s), 138.3 (s), 138.2 (s), 138.1 (s), 138.0 (s), 128.3 (d), 128.2 (d), 128.1 (d), 127.6 (d), 127.5 (d), 127.4 (d), 127.3 (d), 127.2 (d), 81.3 (d), 80.7 (d), 80.4 (d), 80.3 (s), 80.2 (s), 80.0 (d), 73.35 (t), 73.32 (t), 73.2 (t), 73.19 (t), 73.11 (t), 66.6 (t), 65.3 (t), 56.3 (d), 56.1

(d), 55.9 (d), 49.7 (t), 48.1 (t), 28.3 (q); HRMS (ESI): *m/z* calcd for C₃₂H₃₈N₄NaO₅ [M+Na]⁺ 581.2734 found 581.2720.

Diethyl-1-(((2*S*,3*R*,4*R*,5*S*)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-1-(*tert*-butoxy carbonyl)pyrrolidin-2-yl) methyl)1*H*-1',2',3'-triazole-4',5'-dicarboxylate 21.

Compound 7 (1.1 g, 1.97 mmol) was dissolved in dry toluene (12 mL) and diethyl acetylene dicarboxylate (1.6 mL, 9.97 mmol) was added. The reaction mixture was heated at 110 °C for 4 h, after which the solvent was evaporated under reduced pressure and the residue was purified column chromatography over silica gel using a mixture of hexane and ethyl acetate (4:1) as an eluent to get **21** (1.2 g, 83%) as a pale yellow oil. The data provided is for a mixture of rotamers in the ratio of 60:40. Rf: 0.5 (hexane/ethyl acetate, 4:1); Specific rotation: $[\alpha]_D^{30}$ +13.9 (*c* 0.48, CHCl₃); IR (KBr): $\overline{\upsilon}$ =3029, 2976, 2931, 2874, 1729, 1698, 1552, 1457, 1372, 1271, 1213, 1161, 1100, 1064, 1020, 771, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.29–7.20 (m, 15H), 5.10 (dd, J = 14.4, 3.9 Hz, 0.6H), 4.91 (dd, J = 13.8, 4.8 Hz, 0.4H), 4.75 (dd, J = 14.1, 4.5 Hz, 1H), 4.69–4.12 (m, 12H), 4.00–3.95 (m, 0.4H), 3.88–3.84 (m, 0.4H), 3.76–3.66 (m, 2H), 3.53–3.46 (m, 1H), 3.27 (t, J = 8.7 Hz, 0.6H), 1.42–1.28 (m, 15H); ¹³C NMR (75 MHz, CDCl₃): δ 160.2 (s), 158.7 (s), 153.9 (s), 153.3 (s), 139.6 (s), 139.4 (s), 138.5 (s), 138.2 (s), 137.7 (s), 137.4 (s), 131.5 (s), 131.1 (s), 128.38 (d), 128.31 (d), 128.2 (d), 128.1 (d), 127.8 (d), 127.7 (d), 127.59 (d), 127.54 (d), 127.4 (d), 127.3 (d), 127.1 (d), 80.7 (s), 80.3 (s), 80.2 (d), 79.9 (d), 79.8 (d), 79.5 (d), 73.2 (t), 73.1 (t), 73.0 (t), 72.9 (t), 72.8 (t), 66.2 (t), 64.4 (t), 62.4 (t), 62.2 (t), 61.58 (t), 61.51 (t), 56.1 (d), 55.4 (d), 55.0 (d), 49.2 (t), 47.7 (t), 28.3 (q), 28.1 (q), 14.1 (q), 13.7 (q); HRMS (ESI): *m/z* calcd for C₄₀H₄₈N₄NaO₉ [M+Na]⁺ 751.3314 found 751.3312.

Diethyl-1-(((2*S*,3*R*,4*R*,5*S*)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)pyrrolidin-2-yl) methyl)-1*H*-1',2',3'-triazole-4',5'-dicarboxylate 5.

To a solution of compound 21 (1.2 g, 1.64 mmol) in dry dichloromethane (15 mL), trifluoroacetic acid (1.26 mL, 16.45 mmol) was added at 0 °C and the reaction mixture was stirred at 26 °C for 4 h. Solvent was then concentrated under reduced pressure and the residue was dissolved in ethyl acetate (25 mL). It was then washed with aqueous sodium bicarbonate solution (2 x 20 mL), dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (2:1) as an eluent to get 5 (815 mg, 79%) as a light brown oil. Rf: 0.4 (hexane/ethyl acetate, 3:1); Specific rotation: $[\alpha]_D^{30}$ +5.9 (*c* 0.9, CHCl₃); IR (KBr): $\overline{\upsilon}$ =3334, 3030, 2982, 2922, 2866, 1730, 1551, 1457, 1369, 1308, 1268, 1208, 1095, 1021, 740, 699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.33–7.24 (m, 15H), 4.67–4.65 (m, 2H), 4.59-4.26 (m, 10H), 4.06-4.00 (m, 2H), 3.85-3.83 (m, 1H), 3.55-3.46 (m, 3H), 1.84 (br s, 1H, exchangeable with D₂O), 1.38 (dt, J = 7.2, 3.0 Hz, 3H), 1.29 (dt, J = 7.2, 3.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 160.2 (s), 158.8 (s), 139.6 (s), 138.1 (s), 137.9 (s), 137.6 (s), 131.5 (s), 128.5 (d), 128.46 (d), 128.40 (d), 127.9 (d), 127.8 (d), 127.77 (d), 127.73 (d), 127.6 (d), 82.37 (d), 82.35 (d), 73.3 (t), 72.4 (t), 72.2 (t), 68.7 (t), 62.6 (t), 61.6 (t), 58.7 (d), 58.5 (d), 50.8 (t), 14.2 (q), 13.8 (q); HRMS (ESI): m/z calcd for C₃₅H₄₁N₄O₇ [M+H]⁺ 629.2970 found 629.2967.

(6*S*,7*R*,8*R*,8a*S*)-Ethyl-7,8-bis(benzyloxy)-6-((benzyloxy)methyl)-4-oxo-4,6,7,8,8a,9hexahydropyrrolo[1,2*a*] [1',2',3']triazolo[1',5'-*d*]pyrazine-3-carboxylate 23.

Compound **5** (400 mg, 0.636 mmol) was dissolved in dry toluene (4 mL) and camphorsulfonic acid monohydrate (32 mg, 0.127 mmol) was added. The reaction mixture was heated at 110 °C for 9 h, after which the solvent was evaporated under reduced pressure and the residue was purified column chromatography over silica gel using a mixture of hexane and ethyl acetate (2:1) as an eluent to get **23** (311 mg, 84%) as a light brown oil. R_f : 0.6 (hexane/ethyl acetate, 1:1); Specific rotation: [α] $_0^{28}$ -60.9 (*c* 0.34, CHCl₃); IR (KBr): \bar{v} =3060, 3029, 2927, 2867, 1734, 1676, 1448, 1411, 1361, 1206, 1096, 1021, 743, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.36–7.21 (m, 15H),4.68 (d, *J* = 11.7 Hz, 2H), 4.61–4.58 (m, 2H), 4.51–4.34 (m, 9H), 4.25–4.21 (m, 1H), 4.04 (dd, *J* = 9.3, 1.8 Hz, 1H), 3.87 (dd, *J* = 9.3, 5.4 Hz, 1H), 1.42 (t, *J* = 7.2 Hz, 3H);¹³C NMR (75 MHz, CDCl₃): δ 159.6 (s), 152.8 (s), 139.1 (s), 137.8 (s), 137.1 (s), 136.9 (s), 129.9 (s), 128.6 (d), 128.5 (d), 128.3 (d), 128.2 (d), 128.1 (d), 127.8 (d), 127.7 (d), 127.6 (d), 127.5 (d), 81.1 (d), 80.1 (d), 73.5 (t), 73.3 (t), 72.9 (t), 66.2 (t), 61.8 (t), 57.1 (d), 56.9 (d), 46.7 (t), 14.1 (q); HRMS (ESI): *m/z* calcd for C₃₃H₃₄N₄NaO₆ [M+Na]⁺ 605.2370 found 605.2366.

(6*S*,7*R*,8*R*,8a*S*)-7,8-Bis(benzyloxy)-6-((benzyloxy)methyl)-7,8,8a,9-tetrahydro pyrrolo[1,2-*a*][1',2',3']triazolo[1',5'*d*]pyrazin-4(6*H*)-one 29.

Compound **23** (500 mg, 0.86 mmol) was dissolved in dry methanol (5 mL) and potassium carbonate (356 mg, 2.57 mmol) was added. The reaction mixture was stirred at 25 °C for 6 h, after which the solvent was evaporated under reduced pressure. To the resulting milky white residue, a mixture of ethyl acetate and water (20 mL, 1:1) was added. Conc. HCl was then added to the mixture until a clear solution was obtained. The organic layer was then separated, dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue contains **27** was dissolved in glacial acetic acid (5 mL) and heated at 120 °C for 24 h. The reaction mixture was then quenched with aqueous sodium bicarbonate solution (20 mL) and extracted with ethyl acetate (2 x 10 mL). The organic layer was then dried over anhydrous sodium sulphate and concentrated under reduced pressure.

was purified column chromatography over silica gel using a mixture of hexane and ethyl acetate (2:1) as an eluent to get **29** (250 mg, 57% over two steps) as a pale yellow oil. R_f : 0.6 (hexane/ethyl acetate, 1:1); Specific rotation: [α]_D²⁸–29.8 (*c* 1.75, CHCl₃); IR (KBr): \bar{v} =3060, 3029, 2926, 2865, 1664, 1551, 1450, 1413, 1360, 1204, 1095, 1025, 739, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.09 (s, 1H), 7.39–7.24 (m, 15H), 4.67 (d, *J* = 11.7 Hz, 2H), 4.61–4.45 (m, 7H), 4.42–4.29 (m, 2H), 4.24 (dd, *J* = 6.6, 5.1 Hz, 1H), 4.02 (dd, *J* = 9.3, 2.4 Hz, 1H), 3.85 (dd, *J* = 9.3, 5.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 154.7 (s), 137.8 (s), 137.2 (s), 137.0 (s), 134.1 (d), 129.6 (s), 128.6 (d), 128.5 (d), 128.3 (d), 128.2 (d), 128.1 (d), 127.86 (d), 127.80 (d), 127.7 (d), 127.6 (d), 81.5 (d), 80.4 (d), 73.6 (t), 73.3 (t), 72.9 (t), 66.3 (t), 57.5 (d), 56.7 (d), 46.1 (t); HRMS (ESI): *m/z* calcd for C₃₀H₃₀N₄NaO₄ [M+Na]⁺ 533.2159 found 533.2152.

(6*S*,7*R*,8*R*,8a*S*)-7,8-Dihydroxy-6-(hydroxymethyl)-7,8,8a,9-tetrahydropyrrolo[1,2-*a*] [1,2,3]triazolo[1,5-*d*]pyrazin-4(6*H*)-one 1.

Compound **29** (250 mg, 0.49 mmol) was dissolved in dry methanol (5 mL). 10% Pd/C (250 mg, 100% w/w) was added. Hydrogen gas was bubbled into the reaction mixture continuously while stirring at 22 °C for 24 h. The reaction mixture was then filtered through a celite pad and solvent was concentrated under reduced pressure and the crude residue was purified by column chromatography over silica gel using a mixture of acetonitrile and ammonium hydroxide solution (10:1) as an eluent to get **1** as colourless oil (102 mg, 87%). *R_f*: 0.3 (acetonitrile/NH₄OH, 9:1); Specific rotation: $[\alpha]_D^{29}$ -46.1 (*c* 0.41, CH₃OH); IR (KBr): \bar{v} =3338, 3198, 1661, 1403, 1205, 1112, 1075, 756, 570 cm⁻¹; ¹H NMR (400 MHz, D₂O): δ 8.20 (s, 1H), 4.99 (dd, *J* = 13.2, 5.2 Hz, 1H), 4.72–4.66 (m, 1H), 4.53 (d, *J* = 13.2 Hz, 1H), 4.49–4.45 (m, 2H), 4.32 (q, *J* = 4.8 Hz, 1H), 4.07 (dd, *J* = 12.0, 4.4 Hz, 1H), 4.03 (dd, *J* = 12.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, D₂O): δ 156.7 (s), 133.7 (d), 129.8 (s), 75.3 (d), 73.5 (d), 60.9 (d), 58.9 (d), 58.2 (t), 45.0 (t); HRMS (ESI): *m/z* calcd for C₉H₁₂N₄NaO₄ [M+Na]⁺ 263.0751 found 263.0751.

(6*S*,7*R*,8*R*,8a*S*)-7,8-Bis(benzyloxy)-6-((benzyloxy)methyl)-3-(hydroxymethyl)-7,8, 8a,9-tetrahydropyrrolo[1,2*a*][1,2,3]triazolo[1,5-*d*]pyrazin-4(6*H*)-one 25.

Compound **23** (430 mg, 0.74 mmol) was dissolved in dry THF (5 mL) and lithium borohydride (16 mg, 0.74 mmol) was added. The reaction mixture was stirred at 21 °C for 2 h, after which the solvent was evaporated under reduced pressure and the residue was purified column chromatography over silica gel using a mixture of hexane and ethyl acetate (1:1) as an eluent to get **25** (281 mg, 70%) as a pale yellow oil. R_f : 0.4 (hexane/ethyl acetate, 1:1); Specific rotation: $[\alpha]_D^{29}$ –26.4 (*c* 0.47, CHCl₃); IR (KBr): \bar{v} =3471, 2922, 2857, 1647, 1453, 1365, 1267, 1200, 1108, 1029, 751, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.37–7.22 (m, 15H), 4.92 (d, *J* = 6.3 Hz, 2H), 4.67 (d, *J* = 11.7 Hz, 2H), 4.62–4.58 (m, 2H, 1H exchangeable with D₂O), 4.53–4.41 (m, 6H), 4.39–4.33 (m, 2H), 4.24 (t, *J* = 6.0 Hz, 1H), 4.04 (dd, *J* = 9.6, 2.4 Hz, 1H), 3.85 (dd, *J* = 9.3, 5.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 156.2 (s), 150.2 (s), 137.7 (s), 137.1 (s), 136.9 (s), 128.69 (d), 128.64 (d), 128.4 (d), 128.3 (d), 128.2 (d), 127.9 (d), 127.8 (d), 57.2 (t), 57.1 (d), 46.1 (t); HRMS (ESI): *m/z* calcd for C₃₁H₃₂KN₄O₅ [M+K]⁺ 579.2004 found 579.2011.

(6*S*,7*R*,8*R*,8a*S*)-7,8-Dihydroxy-3,6-bis(hydroxymethyl)-7,8,8a,9-tetrahydropyrrolo [1,2-*a*][1,2,3]triazolo[1,5-*d*]pyrazin-4(6*H*)-one 2.

Compound **25** (340 mg, 0.63 mmol) was dissolved in dry methanol (5 mL). 10% Pd/C (340 mg, 100% w/w) was added. Hydrogen gas was bubbled into the reaction mixture continuously while stirring at 24 °C for 24 h. The reaction mixture was then filtered through a celite pad and solvent was concentrated under reduced pressure

and the crude residue was purified by column chromatography over silica gel using a mixture of acetonitrile and ammonium hydroxide solution (6:1) as an eluent to get **2** as colourless oil (120 mg, 70%). R_f : 0.3 (acetonitrile/NH₄OH, 4:1); Specific rotation: $[\alpha]_D^{28}$ -14.9 (*c* 0.78, CH₃OH); IR (KBr): \bar{v} = 3343, 2942, 1646, 1588, 1448, 1373, 1332, 1199, 1112, 1074, 1026, 751, 623 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆): δ 5.70 (d, *J* = 4.5 Hz, 1H exchangeable with D₂O), 5.54 (d, *J* = 4.2 Hz, 1H exchangeable with D₂O), 5.54 (d, *J* = 4.2 Hz, 1H exchangeable with D₂O), 4.86–4.82 (m, 2H, 1H exchangeable with D₂O), 4.71 (dd, *J* = 12.6, 6.0 Hz, 1H), 4.62 (dd, *J* = 12.6, 5.4 Hz, 1H), 4.47–4.30 (m, 2H), 4.17–4.10 (m, 2H), 3.99–3.95 (m, 2H), 3.77–3.70 (m, 1H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 155.8 (s), 147.6 (s), 125.7 (s), 74.9 (d), 73.4 (d), 61.9 (d), 59.2 (d), 58.0 (t), 53.8 (t), 44.9 (t); HRMS (ESI): *m/z* calcd for C₁₀H₁₄N₄NaO₅ [M+Na]⁺ 293.0856 found 293.0859.

Compound 15:

To a solution of compound 14 (4.2 g, 5.83 mmol) in dry dichloromethane (45 mL), Dess-Martin periodinane (4.95 g, 11.67 mmol) was added at 0 °C and the reaction mixture was stirred at room temperature for 5 h. Then the reaction mixture was diluted with dichloromethane (50 mL), washed with aqueous sodium thiosulfate solution (50 mL x 2) followed by water (50 mL). The organic layer was dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (9:1) as an eluent to get 15 (3.57 g, 85%) as a colourless oil in a diastereomeric ratio of 3:1. Data for the mixture of diastereomers: R_f : 0.8 (hexane/ethyl acetate, 4:1); Specific rotation: $[\alpha]_D^{31}$ –18.59 (c 0.57, CHCl₃); IR (KBr): \bar{v} = 3476, 3034, 2937, 2867, 1602, 1457, 1346, 1253, 1147, 1101, 837, 742, 697, 670, 564 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) (mixture of diastereomers) δ 7.84 (d, J = 6.6 Hz, 2H), 7.77 (d, J = 6.6 Hz, 0.5H), 7.68 (d, J = 7.8 Hz, 0.2H), 7.32–7.20 (m, 23H), 7.14 (m, 0.5H), 7.10-7.09 (m, 3H), 4.83-4.76 (m, 0.6H), 4.70-4.51 (m, 8H), 4.42-4.30 (m, 2H), 4.26–4.17 (m, 2H), 4.09–3.95 (m, 3H, 1H exchangeable with D₂O), 3.89–3.67 (m, 5H), 3.56–3.53 (m, 1H), 3.42–3.36 (m, 0.15H), 3.31–3.26 (m, 0.12H), 2.39 (s, 3H), 2.31 (s, 0.7H), 0.89 (s, 9H), 0.80 (s, 2H), 0.79 (s, 1H), 0.25 (s, 6H), (-0.05)–(-0.077) (m, 2H), (-0.086)–(-0.11) (m, 0.75H); ¹³C NMR (75 MHz, CDCl₃) (mixture of diastereomers) δ 143.0 (s), 138.3 (s), 138.0 (s), 137.7 (s), 137.5 (s), 137.4 (s), 129.6 (d), 129.2 (d), 129.0 (d), 128.5 (d), 128.4 (d), 128.29 (d), 128.26 (d), 128.24 (d), 128.21 (d), 128.15 (d), 128.07 (d), 127.9 (d), 127.8 (d), 127.7 (d), 127.6 (d), 127.5 (d), 127.4 (d), 127.3 (d), 127.2 (d), 127.1 (d), 92.6 (s), 88.9 (s), 83.8 (d), 80.2 (d), 78.2 (d), 75.1 (t), 73.7 (t), 73.3 (t), 72.8 (t), 72.7 (t), 62.3 (t), 59.8 (d), 59.3 (d), 25.9 (q), 25.8 (q), 25.7 (q), 21.4 (q), 18.3 (s), -5.5 (q); HRMS (ESI): *m/z* calcd for C₄₀H₅₁NNaO₇SSi [M+Na]⁺740.3048 found 740.3041.

1-O-(*tert*-Butyldimethylsilyl)-3,4,6-tri-O-benzyl-2-deoxy-2-(*p*-toluenesulfonamido)-L-iditol 16:

To a solution of compound 15 (3.4 g, 4.73 mmol) in dry MeOH (35 mL), CeCl₃.7H₂O (2.12 g, 5.68 mmol) was added at -78 °C and stirred for 1 h. Sodium borohydride (720 mg, 18.97 mmol) was added in portions and the reaction mixture was stirred at –78 °C for 4 h. It was brought to room temperature and the solvent was concentrated under reduced pressure. The resulting residue was dissolved in ethyl acetate (20 mL) and washed with water (20 mL). The organic layer was dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (9:1) as an eluent to get 16 (1.89 g, 56%) as an offwhite solid, alongwith compound 14 (1.02 g, 30%) as an off white solid. Data for compound **16**: M.P: 72–75 °C; *R_f*: 0.5 (hexane/ethyl acetate, 4:1); Specific rotation: [α]_D²⁹+4.58 (*c* 1.92, CHCl₃); IR (KBr): *v*̄ = 3546, 3475, 3416, 3150, 3030, 2931, 2861, 1620, 1462, 1330, 1156, 1100, 1052, 837, 772, 745, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, J = 7.5 Hz, 2H), 7.38–7.24 (m, 17H), 5.02 (d, J = 7.2 Hz, 1H, exchangeable with D_2O), 4.87 (d, J = 11.1 Hz, 1H), 4.79 (d, J = 11.1 Hz, 1H), 4.60 (d, J = 11.1 Hz, 1H), 4.52 (m, 2H), 4.47 (d, J = 11.1 Hz, 1H), 4.24 (d, J = 8.7 Hz, 1H), 3.82 (br m, 1H), 3.58 (d, J = 9.0 Hz, 1H), 3.51–3.43 (m, 4H), 3.23 (dd, J = 9.3 Hz, 4.2 Hz, 1H), 2.41 (s, 3H), 2.33 (br s, 1H, exchangeable with D₂O), 0.87 (s, 9H), 0.00 (s, 3H), -0.013 (s, 3H); ¹³C NMR (75 MHz,

CDCl₃) δ 143.3 (s), 138.3 (s), 138.2 (s), 137.98 (s), 137.96 (s), 129.6 (d), 128.38 (d), 128.30 (d), 128.2 (d), 127.84 (d), 127.80 (d), 127.7 (d), 127.6 (d), 126.9 (d), 79.0 (d), 76.9 (d), 75.5 (t), 75.0 (t), 73.3 (t), 71.8 (t), 69.3 (d), 61.9 (t), 54.9 (d), 25.7 (q), 21.4 (q), 18.0 (s), -5.5 (q), -5.6 (q); HRMS (ESI): *m/z* calcd for C₄₀H₅₃NNaO₇SSi [M+Na]⁺742.3204 found 742.3222.

(2*S*,3*R*,4*R*,5*R*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(*tert*-butyldimethyl silanyloxymethyl)-1-*N*-(*p*-tolylsulfonyl)pyrrolidine 12.

Compound 16 (3.0 g, 4.16 mmol) was dissolved in dry THF (30 mL), and the solution was cooled to 0 °C. Triphenylphosphine (2.73 g, 10.4 mmol) was added followed by dropwise addition of diethyl azodicarboxylate (1.65 mL, 10.4 mmol), after which the reaction mixture was warmed to room temperature. When TLC indicated the completion of the reaction (3 h), the reaction was stopped and solvent was evaporated under vacuum. The residue was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (10:1) as an eluent to get 12 (2.45 g, 84%) as a pale yellow oil. R_f : 0.8 (hexane/ethyl acetate, 4:1); Specific rotation: $[\alpha]_D^{29}$ -14.9 (c 0.53, CHCl₃); IR (KBr): \bar{v} =3031, 2932, 2859, 1620, 1458, 1349, 1253, 1161, 1089, 838, 776, 740, 698, 666 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 2H), 7.21– 7.11 (m, 15H), 6.88 (d, J = 3.6 Hz, 2H), 4.48–4.32 (m, 4H), 4.09–4.05 (m, 3H), 3.92–3.83 (m, 2H), 3.75–3.67 (m, 4H), 3.55–3.51 (m, 1H), 2.24 (s, 3H), 0.82 (s, 9H), 0.0 (s, 3H), – 0.017 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.5 (s), 138.3 (s), 137.8 (s), 137.6 (s), 133.7 (s), 129.4 (d), 128.3 (d), 128.2 (d), 128.1 (d), 127.9 (d), 127.67 (d), 127.61 (d), 127.5 (d), 127.4 (d), 127.3 (d), 81.7 (d), 80.8 (d), 73.2 (t), 72.8 (t), 71.2 (t), 70.7 (t), 64.6 (d), 63.7 (d), 61.4 (t), 25.9 (q), 21.4 (q), 18.2 (s), -5.3 (q), -5.4 (q); HRMS (ESI): *m/z* calcd for C₄₀H₅₁NNaO₆SSi [M+Na]⁺724.3099 found 724.3073.

(2*S*,3*R*,4*R*,5*R*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(*tert*-butyldimethylsilanyl oxymethyl)pyrrolidine 18:

A solution of compound 12 (2.45 g, 3.49 mmol) in dry THF (25 mL) was cooled to -78 °C. A solution of sodium napthalenide {prepared separately by the addition of sodium (765 mg, 33.26 mmol) to naphthalene (4.5 g, 35.12 mmol) in dry THF} was added slowly and the reaction mixture was stirred at -78 °C for 20 minutes. The reaction mixture was brought to room temperature, quenched with aqueous sodium carbonate solution (25 mL) and extracted with ethyl acetate (25 mL). The organic layer was dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (3:1) as an eluent to get 18 (1.55 g, 81%) as a pale yellow viscous oil. R_f: 0.4 (hexane/ethyl acetate, 2:1); Specific rotation: [α]_D²⁹+6.9 (*c* 3.8, CHCl₃); IR (KBr): *v̄* =3436, 3030, 2929, 2859, 1640, 1457, 1363, 1253, 1097, 839, 776, 739, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.29–7.19 (m, 15H), 4.51– 4.41 (m, 6H), 3.89–3.88 (m, 1H), 3.82–3.74 (m, 2H), 3.68 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 3.54 (dd, J = 9.0 Hz, 5.7 Hz, 1H), 3.46 (dd, J = 9.0 Hz, 6.0 Hz, 1H), 3.34–3.23 (m, 2H), 2.08 (br s, 1H exchangeable with D₂O), 0.84 (s, 9H), 0.00 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 138.4 (s), 138.28 (s), 138.21 (s), 128.3 (d), 128.28 (d), 128.25 (d), 127.6 (d), 127.5 (d), 127.4 (d), 85.0 (d), 82.9 (d), 73.1 (t), 71.8 (t), 71.59 (t), 71.56 (t), 63.2 (d), 62.8 (d), 61.9 (t), 25.9 (q), 18.2 (s), -5.3 (q), -5.4 (q); HRMS (ESI): *m/z* calcd for C₃₃H₄₆NO₄Si [M+H]⁺ 548.3191 found 548.3192.

(2*S*,3*R*,4*R*,5*R*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(*tert*-butyldimethylsilanyl oxymethyl)-1-*N*-(*tert*-butoxycarbonyl)-pyrrolidine 20.

To a solution of pyrrolidine **18** (4.2 g, 7.66 mmol) in dry ethyl acetate (50 mL), sodium carbonate (2.5 g, 23.59 mmol) and Boc_2O (2.0 mL, 8.70 mmol) were added and

the reaction mixture was stirred at 25 °C for 16 h. The reaction mixture was then diluted with ethyl acetate (20 mL) and washed with water (2 x 20 mL). The organic layer was dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (9:1) as an eluent to get **20** (4.1 g, 83%) as a colourless oil. The data provided is for a mixture of rotamers: R_f : 0.8 (hexane/ ethyl acetate, 5:1); Specific rotation: $[\alpha]_D^{23}$ –9.7 (*c* 0.3, CHCl₃); IR (KBr): \bar{v} = 3029, 2931, 2865, 1696, 1605, 1461, 1379, 1252, 1172, 1097, 842, 742, 699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.27–7.21 (m, 15H), 4.63–4.47 (m, 6H), 4.18–4.06 (m, 3H), 3.85–3.60 (m, 5H), 1.41 (*br* s, 9H), 0.84 (s, 9H), 0.00 (s, 3H), -0.014 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 154.8 (s), 138.4 (s), 138.3 (s), 138.2 (s), 128.2 (d), 127.7 (d), 127.5 (d), 127.49 (d), 127.42 (d), 83.7 (d), 82.8 (d), 82.2 (d), 79.8 (s), 73.0 (t), 72.7 (t), 71.8 (t), 70.3 (t), 69.5 (t), 61.7 (d), 60.9 (t), 59.9 (d), 28.3 (q), 25.9 (q), 18.2 (s), -5.3 (q), -5.4 (q); HRMS (ESI): *m/z* calcd for C₃₈H₅₃KNO₆Si [M+K]⁺ 686.3274 found 686.3238.

(2*S*,3*R*,4*R*,5*R*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(hydroxymethyl)-1-*N*-(*tert*-butoxycarbonyl)-pyrrolidine 10.

To a solution of compound **20** (4.0 g, 6.17 mmol) in dry methanol (40 mL), camphorsulfonic acid monohydrate (400 mg, 10% w/w) was added and the reaction mixture was stirred at 25 °C for 16 h. Solvent was then concentrated under reduced pressure and the residue was dissolved in ethyl acetate (40 mL). It was then washed with aqueous sodium bicarbonate solution (2 x 20 mL), dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (3:1) as an eluent to get **10** (2.7 g, 82%) as a colourless oil. The data provided is for a mixture of rotamers in a ratio of 2:1. R_f : 0.4 (hexane/ethyl acetate, 4:1); Specific rotation: [α]_D²³–10.6 (*c* 0.7, CHCl₃); IR (KBr): \bar{v} = 3438, 3061, 3030, 2970, 2927, 2869, 1691, 1605, 1454, 1395, 1315, 1256, 1171, 1100, 1033, 914, 854, 743, 700, 606 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.30–7.23 (m, 15H), 4.66–4.41 (m, 6H), 4.31–

3.89 (m, 4H), 3.85–3.68 (m, 4H), 3.55–3.52 (m, 1H), 3.33 (br s, 0.3H exchangeable with D₂O, for –OH signal of one rotamer), 1.44 (s, 3H), 1.39 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 155.7 (s), 154.2 (s), 137.9 (s), 137.6 (s), 137.3 (s), 129.8 (d), 128.8 (d), 128.4 (d), 128.35 (d), 128.32 (d), 128.2 (d), 128.18 (d), 128.11 (d), 128.0 (d), 127.8 (d), 127.79 (d), 127.77 (d), 127.73 (d), 127.5 (d), 127.3 (d), 126.8 (d), 126.7 (d), 82.9 (d), 82.2 (d), 81.2 (d), 80.6 (s), 80.2 (s), 73.1 (t), 72.5 (t), 72.2 (t), 72.0 (t), 68.4 (t), 67.7 (t), 62.4 (t), 61.8 (d), 61.2 (d), 60.6 (d), 59.5 (d), 28.2 (q); HRMS (ESI): *m/z* calcd for C₃₂H₃₉NNaO₆ [M+Na]⁺ 556.2670 found 556.2673.

(2*S*,3*R*,4*R*,5*R*)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(azidomethyl)-1-*N*-(*tert*-butoxycarbonyl)-pyrrolidine 8.

Compound 10 (460 mg, 0.86 mmol) was dissolved in dry THF (5 mL), and the solution was cooled to 0 °C. Triphenylphosphine (452 mg, 1.72 mmol) and trimethylsilyl azide (0.28 mL, 2.15 mmol) were added followed by dropwise addition of diethyl azodicarboxylate (0.4 mL, 2.58 mmol), after which the reaction mixture was warmed to 24 °C. When TLC indicated the completion of the reaction (24 h), the reaction was stopped and solvent was evaporated under vacuum. The residue was purified by column chromatography over silica gel using a mixture of hexane and ethyl acetate (10:1) as an eluent to get 8 (274 mg, 57%) as a colourless oil. The data provided is for a mixture of rotamers: R_f : 0.8 (hexane/ethyl acetate, 9:1); Specific rotation: $[\alpha]_D^{23}$ –9.4 (*c* 0.82, CHCl₃); IR (KBr): $\bar{\upsilon}$ = 3062, 3031, 2973, 2926, 2866, 2099, 1696, 1453, 1386, 1289, 1171, 1098, 1030, 911, 856, 741, 699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.29– 7.23 (m, 15H), 4.59–4.47 (m, 6H), 4.26–4.23 (m, 2H), 4.10–4.06 (m, 1H), 4.00 (m, 0.4H), 3.85 (m, 0.6H), 3.66–3.55 (m, 3H), 3.35 (dd, J = 11.7, 6.6 Hz, 1H), 1.44 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 154.7 (s), 138.1 (s), 137.9 (s), 137.3 (s), 128.4 (d), 128.36 (d), 128.31 (d), 127.9 (d), 127.8 (d), 127.77 (d), 127.72 (d), 127.6 (d), 82.3 (d), 81.8 (d), 80.8 (d), 80.4 (s), 73.0 (t), 72.5 (t), 72.0 (t), 68.8 (t), 61.8 (d), 58.1 (d), 49.6 (t), 28.3 (q); HRMS (ESI): *m/z* calcd for C₃₂H₃₈N₄NaO₅ [M+Na]⁺ 581.2734 found 581.2734.

Diethyl-1-(((2*S*,3*R*,4*R*,5*R*)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-1-(*tert*-butoxy carbonyl)pyrrolidin-2-yl)methyl)-1*H*-1',2',3'-triazole-4',5'-dicarboxylate 22.

Compound 8 (0.52 g, 0.93 mmol) was dissolved in dry toluene (6 mL) and diethylacetylene dicarboxylate (0.75 mL, 4.67 mmol) was added. The reaction mixture was heated at 110 °C for 4 h, after which the solvent was evaporated under reduced pressure and the residue was purified column chromatography over silica gel using a mixture of hexane and ethyl acetate (4:1) as an eluent to get 22 (515 mg, 76%) as a pale yellow oil. The data provided is for a mixture of rotamers: R_f: 0.5 (hexane/ethyl acetate, 4:1); Specific rotation: $[\alpha]_D^{23}$ –52.9 (c 0.61, CHCl₃); IR (KBr): $\bar{\upsilon}$ =3063, 3030, 2979, 2930, 2873, 1730, 1696, 1555, 1471, 1454, 1391, 1272, 1208, 1171, 1100, 1015, 854, 739, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.33–7.25 (m, 15H), 4.86–4.39 (m, 14H), 4.19–4.18 (m, 1H), 4.00 (br m, 0.5H, due to one rotamer), 3.83 (br m, 1H), 3.70– 3.63 (m, 1.5H), 1.42–1.22 (m, 15H); ¹³C NMR (75 MHz, CDCl₃): δ 160.4 (s), 158.6 (s), 154.3 (s), 153.8 (s), 140.2 (s), 139.9 (s), 138.1 (s), 137.9 (s), 137.1 (s), 130.1 (s), 129.7 (s), 128.4 (d), 128.3 (d), 128.2 (d), 127.9 (d), 127.7 (d), 127.6 (d), 127.4 (d), 82.7 (d), 81.8 (d), 81.5 (d), 80.5 (s), 73.2 (t), 72.4 (t), 72.2 (t), 69.2 (t), 68.7 (t), 62.5 (t), 61.8 (d), 61.6 (t), 61.3 (d), 57.4 (d), 57.1 (d), 50.3 (t), 49.7 (t), 28.1 (q), 27.8 (q), 14.1 (q), 13.7 (q); HRMS (ESI): *m*/*z* calcd for C₄₀H₄₈KN₄O₉ [M+K]⁺ 767.3053 found 767.3049.

Diethyl-1-(((2*S*,3*R*,4*R*,5*R*)-3,4-bis(benzyloxy)-5-((benzyloxy)methyl)pyrrolidin-2-yl) methyl)-1*H*-1',2',3'-triazole-4',5'-dicarboxylate 6.

To a solution of compound **22** (650 mg, 0.89 mmol) in dry dichloromethane (7 mL), trifluoroacetic acid (0.7 mL, 9.14 mmol) was added at 0 °C and the reaction mixture was stirred at 26 °C for 4 h. Solvent was then concentrated under reduced

pressure and the residue was dissolved in ethyl acetate (25 mL). It was then washed with aqueous sodium bicarbonate solution (2 x 20 mL), dried over anhydrous sodium sulphate and filtered. Evaporation of the solvent under vacuum gave a residue, which was passed through column chromatography over silica gel using a mixture of hexane and ethyl acetate (2:1) as an eluent to get **6** as pale yellow oil (430 mg, 77%) and proceeded without any further purification.

(6*S*,7*R*,8*R*,8a*R*)-Ethyl-7,8-bis(benzyloxy)-6-((benzyloxy)methyl)-4-oxo-4,6,7,8,8a,9hexahydropyrrolo[1,2-*a*] [1',2',3']triazolo[1',5'-*d*]pyrazine-3-carboxylate 24.

Compound 6 (320 mg, 0.509 mmol) was dissolved in dry toluene (4 mL) and camphorsulfonic acid monohydrate (26 mg, 0.104 mmol) was added. The reaction mixture was heated at 110 °C for 9 h, after which the solvent was evaporated under reduced pressure and the residue was purified column chromatography over silica gel using a mixture of hexane and ethyl acetate (2:1) as an eluent to get 24 (240 mg, 81%) as a light brown oil. R_f : 0.6 (hexane/ethyl acetate, 1:1); Specific rotation: $[\alpha]_D^{23}$ –127.3 (*c* 0.15, CHCl₃); IR (KBr): $\overline{\upsilon}$ =3060, 3030, 2924, 2859, 1735, 1679, 1564, 1446, 1410, 1364, 1213, 1179, 1080, 1023, 744, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.26 (m, 13H),7.15–7.12 (m, 2H), 4.72 (dd, J = 13.2, 4.0 Hz, 1H), 4.67–4.62 (m, 2H), 4.60– 4.54 (m, 1H), 4.51–4.39 (m, 7H), 4.35 (s, 1H) 4.24 (d, J = 11.6 Hz, 1H), 4.13 (dd, J = 9.2, 4.8 Hz, 1H), 4.05 (d, J = 4.0 Hz, 1H), 3.45 (dd, J = 10.4, 8.8 Hz, 1H), 1.43 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7 (s), 153.6 (s), 139.4 (s), 137.9 (s), 136.9 (s), 136.2 (s), 129.9 (s), 128.7 (d), 128.5 (d), 128.46 (d), 128.40 (d), 128.1 (d), 127.9 (d), 127.88 (d), 127.81 (d), 127.7 (d), 79.9 (d), 78.9 (d), 73.2 (t), 71.5 (t), 71.1 (t), 66.9 (t), 61.9 (t), 61.5 (d), 59.4 (d), 46.4 (t), 14.1 (q); HRMS (ESI): *m/z* calcd for C₃₃H₃₄N₄NaO₆ [M+Na]⁺ 605.2371 found 605.2348.

(6*S*,7*R*,8*R*,8a*R*)-7,8-Bis(benzyloxy)-6-((benzyloxy)methyl)-7,8,8a,9-tetrahydropyrrolo [1,2-*a*][1',2',3']triazolo[1',5'-*d*]pyrazin-4(6*H*)-one 30.

Compound 24 (220 mg, 0.378 mmol) was dissolved in dry methanol (3 mL) and potassium carbonate (157 mg, 1.13 mmol) was added. The reaction mixture was stirred at 26 °C for 6 h, after which the solvent was evaporated under reduced pressure. To the resulting milky white residue, a mixture of ethyl acetate and water (20 mL, 1:1) was added. Conc. HCl was then added to the mixture until a clear solution was obtained. The organic layer was then separated, dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue contains 28 was dissolved in glacial acetic acid (3 mL) and heated at 120 °C for 24 h. The reaction mixture was then quenched with aqueous sodium bicarbonate solution (20 mL) and extracted with ethyl acetate (2 x 10 mL). The organic layer was then dried over anhydrous sodium sulphate and concentrated under reduced pressure. The residue was purified column chromatography over silica gel using a mixture of hexane and ethyl acetate (2:1) as an eluent to get **30** (156 mg, 80% over two steps) as a pale yellow oil. R_f : 0.6 (hexane/ethyl acetate, 1:1); Specific rotation: $[\alpha]_D^{23}$ –60.4 (c 0.22, CHCl₃); IR (KBr): $\bar{\upsilon}$ =3062, 3030, 2925, 2868, 1667, 1553, 1495, 1453, 1416, 1363, 1256, 1204, 1110, 1091, 1027, 983, 742, 698, 606 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.14 (s, 1H), 7.34-7.25 (m, 13H), 7.14-7.04 (m, 2H), 4.73-4.67 (m, 2H), 4.64-4.63 (m, 1H), 4.59-4.33 (m, 7H), 4.23 (d, J = 12.0 Hz, 1H), 4.10–4.03 (m, 2H), 3.45–3.39 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 155.5 (s), 137.8 (s), 136.9 (s), 136.3 (s), 134.2 (d), 129.9 (s), 128.6 (d), 128.5 (d), 128.3 (d), 128.0 (d), 127.9 (d), 127.8 (d), 127.7 (d), 79.8 (d), 79.0 (d), 73.1 (t), 71.4 (t), 71.0 (t), 67.0 (t), 61.1 (d), 59.7 (d), 45.7 (t); HRMS (ESI): m/z calcd for C₃₀H₃₁N₄O₄ [M+H]⁺ 511.2340 found 511.2338.

(6*S*,7*R*,8*R*,8a*R*)-7,8-Dihydroxy-6-(hydroxymethyl)-7,8,8a,9-tetrahydropyrrolo[1,2-*a*] [1,2,3]triazolo[1,5-*d*]pyrazin-4 (6*H*)-one 3.

Compound **30** (140 mg, 0.27 mmol) was dissolved in dry methanol (5 mL). 10% Pd/C (140 mg, 100% w/w) was added. Hydrogen gas was bubbled into the reaction mixture continuously while stirring at 26 °C for 24 h. The reaction mixture was then filtered through a celite pad and solvent was concentrated under reduced pressure and the crude residue was purified by column chromatography over silica gel using a mixture of acetonitrile and ammonium hydroxide solution (10:1) as an eluent to get **3** as colourless oil (53 mg, 80%). *R*_f: 0.3 (acetonitrile/NH₄OH, 9:1); Specific rotation: $[\alpha]_D^{23}$ -67.2 (*c* 0.19, CH₃OH); IR (KBr): \bar{v} =3390, 2927, 2849, 1655, 1558, 1425, 1370, 1200, 1109, 1079, 1052, 1031, 758, 611 cm⁻¹; ¹H NMR (400 MHz, D₂O): δ 8.21 (s, 1H), 5.04 (dd, *J* = 11.2, 2.4 Hz, 1H), 4.66–4.55 (m, 2H), 4.42 (m, 1H), 4.34 (d, *J* = 3.2 Hz, 1H), 4.13–4.10 (m, 1H), 3.98–3.91 (m, 2H); ¹³C NMR (100 MHz, D₂O): δ 157.3 (s), 133.7 (d), 129.9 (s), 77.2 (d), 74.1 (d), 66.0 (d), 60.6 (d), 58.9 (t), 45.6 (t); HRMS (ESI): *m/z* calcd for C₉H₁₂N₄NaO₄ [M+Na]⁺ 263.0751 found 263.0750.

(6*S*,7*R*,8*R*,8a*R*)-7,8-Bis(benzyloxy)-6-((benzyloxy)methyl)-3-(hydroxymethyl)-7,8, 8a,9-tetrahydropyrrolo[1,2-*a*][1,2,3]triazolo[1,5-*d*]pyrazin-4(6*H*)-one 26.

Compound **24** (120 mg, 0.21 mmol) was dissolved in dry THF (2 mL) and lithium borohydride (4.5 mg, 0.21 mmol) was added. The reaction mixture was stirred at 26 °C for 2 h, after which the solvent was evaporated under reduced pressure and the residue was passed through column chromatography over silica gel using a mixture of hexane and ethyl acetate (1:1) as an eluent to get **26** (82 mg, 74%) as a pale yellow oil and the product was proceeded without further purification.

(6*S*,7*R*,8*R*,8a*R*)-7,8-Dihydroxy-3,6-bis(hydroxymethyl)-7,8,8a,9-tetrahydropyrrolo [1,2-*a*][1,2,3]triazolo[1,5-*d*]pyrazin-4(6*H*)-one 4.

Compound **26** (82 mg, 0.152 mmol) was dissolved in dry methanol (5 mL). 10% Pd/C (80 mg, 100% w/w) was added. Hydrogen gas was bubbled into the reaction mixture continuously while stirring at 29 °C for 24 h. The reaction mixture was then filtered through a celite pad and solvent was concentrated under reduced pressure and the crude residue was purified by column chromatography over silica gel using a mixture of acetonitrile and ammonium hydroxide solution (6:1) as an eluent to get **4** as colourless oil (35 mg, 85%). *R*_f: 0.3 (acetonitrile/NH₄OH, 4:1); Specific rotation: $[\alpha]_D^{23}$ -21.1 (*c* 0.09, CH₃OH); IR (KBr): \bar{v} =3433, 2951, 2843, 1649, 1560, 1453, 1427, 1402, 1111, 1018, 613 cm⁻¹; ¹H NMR (400 MHz, D₂O): δ 5.03 (dd, *J* = 10.8, 2.0 Hz, 1H), 4.92 (d, *J* = 13.6 Hz, 1H), 4.88 (d, *J* = 13.2 Hz, 1H), 4.64–4.59 (m, 2H), 4.44 (m, 1H), 4.36 (d, *J* = 2.8 Hz, 1H), 4.15–4.13 (m, 1H), 3.98–3.96 (m, 2H); ¹³C NMR (100 MHz, D₂O): δ 157.4 (s), 147.0 (s), 126.3 (s), 77.3 (d), 74.1 (d), 65.9 (d), 60.6 (d), 59.0 (t), 54.0 (t), 45.6 (t); HRMS (ESI): *m/z* calcd for C₁₀H₁₄N₄NaO₅ [M+Na]⁺ 293.0856 found 293.0854.

¹H–NMR spectrum of compound **19**

¹³C–NMR spectrum of compound **19**

¹³C-NMR spectrum of compound **19** (expanded)

*indicates signals due to rotamers

DEPT-135 spectrum of compound 19

¹H–NMR spectrum of compound **9**

¹³C–NMR spectrum of compound **9**

¹³C-NMR spectrum of compound **9** (expanded)

*indicates signals due to rotamers

¹H–NMR spectrum of compound **7**

¹³C–NMR spectrum of compound **7**

¹³C-NMR spectrum of compound **7** (expanded)

*indicates signals due to rotamers

0

1.40

¹³C–NMR spectrum of compound **21**

¹³C-NMR spectrum of compound **21** (expanded)

¹H–NMR spectrum of compound **5**

 ^{13}C –NMR spectrum of compound **5**

¹H–NMR spectrum of compound **23**

¹³C–NMR spectrum of compound **23**

DEPT-135 spectrum of compound 23

¹H–NMR spectrum of compound **29**

7 2 6172.839 Hz 0.094190 Hz 5.3084159 sec 90.5 81.000 usec 6.00 usec 300.0 K 1.0000000 sec 1 AQ RG DW DE TE D1 TD0 ÓВп ò Ň
 CHANNEL fl
 fl

 NUC1
 1H

 P1
 11.00 usec

 PL1
 -1.00 dB

 SFO1
 300.1318534 MHz
(300 MHz, CDCl₃) P1 PL1 SF01 F2 - Processing parameters SI 32768 SF 300.1300097 MHz WDW EM SF WDW SSB LB GB FC 0 0.30 Hz 0 1.00 10 9 8 7 6 5 4 3 2 1 0 ppm 2.08 7.44 0.93 0.91 0.89 八080 16.00

¹³C–NMR spectrum of compound **29**

¹H–NMR spectrum of compound **1**

¹³C–NMR spectrum of compound **1**

¹H–NMR spectrum of compound **25**

¹³C–NMR spectrum of compound **25**

¹H–NMR spectrum of compound **2**

¹³C–NMR spectrum of compound 2

DEPT-135 spectrum of compound 2

¹³C–NMR spectrum of compound **15**

¹³C-NMR spectrum of compound **15** (expanded)

*indicates signals due to diastereomers

¹³C–NMR spectrum of compound **16**

DEPT-135 spectrum of compound 16

¹H–NMR spectrum of compound **12**

¹³C–NMR spectrum of compound **12**

¹³C–NMR spectrum of compound **18**

¹³C–NMR spectrum of compound **20**

¹³C-NMR spectrum of compound **20** (expanded)

*indicates signals due to rotamers

DEPT-135 spectrum of compound 20

¹H–NMR spectrum of compound **10**

¹³C–NMR spectrum of compound **10**

¹³C-NMR spectrum of compound **10** (expanded)

*indicates signals due to rotamers

¹H–NMR spectrum of compound **8**

¹³C–NMR spectrum of compound 8

¹³C-NMR spectrum of compound **8** (expanded)

*indicates signals due to rotamers

DEPT-135 spectrum of compound 8

¹H–NMR spectrum of compound **22**

¹³C–NMR spectrum of compound 22

¹³C-NMR spectrum of compound **22** (expanded)

¹³C–NMR spectrum of compound 24

¹H–NMR spectrum of compound **30**

¹³C–NMR spectrum of compound **30**

¹³C–NMR spectrum of compound **3**

DEPT-135 spectrum of compound 3

¹H–NMR spectrum of compound **4**

¹³C–NMR spectrum of compound 4

DEPT-135 spectrum of compound 4

