ELECTRONIC SUPPLEMENTARY INFORMATION

Synthesis of a non-natural glucose-2-phosphate ester able to dupe the *acc* system of *Agrobacterium fabrum*

Si-Zhe Li, ^{a,#} Armelle Vigouroux, ^{b,#} Mohammed Ahmar, ^a Abbas El Sahili, ^b Laurent Soulère, ^a Laïla Sago, ^b David Cornu, ^b Solange Moréra, ^b * Yves Queneau ^a*

Equal contribution

^a Univ Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS,
Université Lyon 1, INSA Lyon, CPE Lyon, ICBMS, UMR 5246 ; Université Claude Bernard,
Bâtiment Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France,
Yves.queneau@insa-lyon.fr

^b Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay. Avenue de la Terrasse, Gif-sur-Yvette 91198, France, Solange.morera@i2bc.paris-saclay.fr

Data collection and processing statistics for the structure of AccA in complex with G2LP

Page 2

2D NMR Characterization of Glucose-2-lactate phosphate ammonium

page 3-6

¹H and ¹³C NMR for compounds 2 to 6 and G2LP

page 7-19

 Table 1. Crystallographic data and refinement parameters

	AccA-G2LP		
Space group Cell parameters (Å,°)	1222 a = 78.3 b = 108.3 c = 108.2 $\beta = 113.6$		
Resolution (A)	42-1.8 (1.91-1.8)		
No. of observed reflections	274443 (42603)		
No. of unique reflections	45083 (7249)		
R _{sym} (%)	9 (121.5)		
Completeness (%)	99.5 (98.2)		
l/σ	12.9 (1.6)		
CC _{1/2}	99.8 (58.6)		
R _{cryst} (%)	17.1		
R _{free} (%)	19.5		
rms bond deviation (Å)	0.01		
rms angle deviation (°)	1.0		
Average B (Ų) protein ligand solvent	38.8 28.3 40		

Values for the highest resolution shell are in parentheses

2D NMR Characterization of Glucose-2-lactate phosphate ammonium

Glucose-2-lactate phosphate ammonium salt was characterized by 2D-NMR. A mixture of α/β with 5/3 ratio was calculated from the integration of H-1 signals. H-1 α at 5.36 ppm with $J_{1,2} = 3.6$ Hz, and H-1 β at 4.68 ppm with $J_{1,2} = 7.9$ Hz, partially hidden by deuterium oxide. With the help of ¹H-¹H COSY, we found H-2 α as a multiplet at 3.95 ppm and H-2 β at 3.77 ppm, impaired by H-3 α , H-5 α . In addition, the α and β CH- group of lactic acid as multiplets were found at 4.5 ppm, and the corresponding α and β CH₃- are doublet at 1.40 ppm. Decomposition of G2P lactate can be easily traced signals at 4.5 ppm and 1.4 ppm for free lactic acid (**Fig 1**).

Like G2P (ref 12), HSQC shows coupling with phosphorus for ¹³C-NMR signals. The carbon of α and β CH- group appears as doublet (δ =73.1 ppm, $J_{C-P} = 5.7$ Hz), and the same splitting is also overserved for C-1, C-2 and C-3 (**Fig 2**). The differences are shown in the **Table 2**.

In comparison with glucose-2-phosphate (ref 12), the carbon shift of C-1, C-2 and C-3 of G2P lactate move to high fields slightly, and the α -anomer locates in a higher field than β -anomer in both cases. The coupling constant is almost the same except J_{C2-P} of glucose-2-lactate phosphate which is stronger than that of glucose-2-phosphate due to the introduction of lactic acid. This could be explained by the conformation adjustment. Among those three carbons, the *J*-coupling of C-2 is the strongest one since the coupling of C-2 and phosphorus is the second-order coupling whereas others are third-order coupling. More interestingly, for α and β glucose phosphate, in both case, the *J*-coupling of C-1 and C-3 exhibit distinct differences.

2D NMR of the ³¹P-¹H correlation shows the ³¹P-NMR of H-2 α and CH α appears at -1.16 ppm, and H-2 β and CH β at -0.86 ppm. Theoretically, four phosphorus signals (C2 α , C2 β , CH α , CH β) should be observed. The proximity of ³¹P-NMR chemical signals of CH and H-2 resulted in only two peaks, and the high resolution NMR spectroscopy could give more details (**Fig 3**).

Table 2. Partial ¹H-NMR and ¹³C-NMR of G2P lactate

α-anomer				β-anomer			
H-1	5.36 (<i>J</i> =3.6 Hz)	C-1	90.9 (<i>J</i> =2.0 Hz)	H-1	4.68 (<i>J</i> =7.9 Hz)	C-1	95.0 (<i>J</i> = 5.1 Hz)
H-2	3.95	C-2	75.7 (<i>J</i> = 6.8 Hz)	Н-2	3.79	C-2	78.9 (<i>J</i> = 6.6 Hz)
Н-3	3.75 - 3.81	C-3	71.5 (<i>J</i> = 5.6 Hz)	H-3	3.63 - 3.56	C-3	75.0 (<i>J</i> =2.7 Hz)
\mathbf{H}_{CH}	4.56	C _{CH}	73.1 (<i>J</i> = 5.7 Hz)	H _{CH}	4.49	C _{CH}	73.1 (<i>J</i> = 5.7 Hz)

Fig 1. ¹H-¹H COSY of G2P lactate (400 MHz, D₂O)

Fig 2. HSQC of G2P lactate (400 MHz, D₂O)

Fig 3. ³¹P-¹H correlation of G2P lactate (400 MHz, D₂O)

Benzyl (S)-2-((bis(diisopropylamino)phosphanyl)oxy)propanoate (2)

¹H-NMR (300 MHz, Chloroform-*d*)

³¹P-NMR (122 MHz, Chloroform-*d*)

¹³C-NMR (75 MHz, Chloroform-*d*)

Benzyl (2S)-2-(((benzyloxy)(diisopropylamino)phosphanyl)oxy)propanoate (3)

¹H-NMR (300 MHz, Chloroform-*d*)

³¹P-NMR (122 MHz, Chloroform-*d*)

¹³C-NMR (75 MHz, Chloroform-d)

Benzyl (2S)-2-(((benzyloxy)(((2S,3R,4S,5R,6R)-2,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-3-yl)oxy)phosphanyl)oxy)propanoate

(5)

¹H-NMR (400 MHz, Chloroform-*d*)

³¹P-NMR (122 MHz, Chloroform-*d*)

¹³C-NMR (101 MHz, Chloroform-*d*)

DEPT 135 ¹³C-NMR (101 MHz, Chloroform-d)

Benzyl (2S)-2-(((benzyloxy)(((2S,3R,4S,5R,6R)-2,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-3-yl)oxy)phosphoryl)oxy)propanoate

(6)

¹H-NMR (400 MHz, Chloroform-*d*)

³¹P-NMR (122 MHz, Chloroform-*d*)

¹³C-NMR (101 MHz, Chloroform-*d*)

DEPT 135¹³C-NMR (101 MHz, Chloroform-d)