Supporting Information

A protecting group-free divergent synthesis of natural benzofurans via one-pot

synthesis of 2-bromo-6-hydroxybenzofurans

Aneesh Sivaraman,^a Dipesh S. Harmalkar,^a Jiyoon Kang,^a Yongseok Choi,^b and Kyeong Lee^{*a}

^aCollege of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea

E-mail: kaylee@dongguk.edu

^bDepartment of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.

Table of Content:

Sr. No.	Content	Page No.
1	Synthesis of aldehydes 1d-f, 1h, 1i, 1k, and 1l from 1a	1
2	Synthesis of aldehydes 1b, 1c, 1g, and 1j	2
3	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 3a	4
4	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 3a	6
5	¹ H NMR (400 MHz, DMSO- d_6) spectrum of compound 3b	7
6	¹³ C NMR (100 MHz, DMSO- d_6) spectrum of compound 3b	8
7	¹ H NMR (400 MHz, DMSO- d_6) spectrum of compound 3c	9
8	¹³ C NMR (100 MHz, DMSO- d_6) spectrum of compound 3c	10
9	¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 3d	11
10	¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 3d	13
11	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 3e	14
12	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 3e	16
13	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 3f	17
14	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 3f	19
15	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 3g	20
16	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 3g	22
17	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 3h	23
18	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 3h	24
19	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 3i	25
20	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 3i	26
21	¹ H NMR (400 MHz, DMSO- d_6) spectrum of compound 3 j	27
22	¹³ C NMR (100 MHz, DMSO- d_6) spectrum of compound 3 j	28

23	1H NMR (400 MHz, CDCl ₃) spectrum of compound 3k	29
24	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 3k	30
25	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 3 l	31
26	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 3 l	32
27	¹ H NMR (400 MHz, DMSO- d_6) spectrum of compound 3m	33
28	¹³ C NMR (100 MHz, DMSO- d_6) spectrum of compound 3m	35
29	¹ H NMR (400 MHz, DMSO- d_6) spectrum of compound 13	36
30	¹³ C NMR (100 MHz, DMSO- d_6) spectrum of compound 13	37
31	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 14	38
32	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 14	40
33	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 15	41
34	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 15	43
35	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 16	44
36	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 16	45
37	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 17	46
38	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 17	47
39	¹ H NMR (400 MHz, DMSO- d_6) spectrum of moracin M (4)	48
40	¹³ CNMR (100 MHz, DMSO- d_6) spectrum of moracin M (4)	50
41	¹ H NMR (600 MHz, methanol- d_4) spectrum of moracin N (5)	51
42	¹³ CNMR (150 MHz, methanol- d_4) spectrum of moracin N (5)	53
43	¹ H NMR (400 MHz, methanol- d_4) spectrum of moracin O (6)	54
44	¹³ C NMR (100 MHz, methanol- d_4) spectrum of moracin O (6)	56
45	¹ H NMR (400 MHz, methanol- d_4) spectrum of moracin P (7)	56
46	¹³ C NMR (100 MHz, methanol- d_4) spectrum of moracin P (7)	59

47	¹ H NMR (400 MHz, methanol- d_4) spectrum of gramniphenol F (8)	60
48	¹³ C NMR (100 MHz, methanol- d_4) spectrum of gramniphenol F (8)	62
49	¹ H NMR (400 MHz, CDCl ₃) spectrum of gramniphenol G (9)	63
50	¹³ C NMR (100 MHz, CDCl ₃) spectrum of gramniphenol G (9)	64
51	¹ H NMR (600 MHz, methanol- d_4) spectrum of morunigrol C (10)	66
52	¹³ C NMR (150 MHz, methanol- d_4) spectrum of morunigrol C (10)	68
53	¹ H NMR (400 MHz, CDCl ₃) spectrum of 3',5'-di-O-methyl morunigrol	69
	C (11)	
54	¹³ C NMR (100 MHz, CDCl ₃) spectrum of 3',5'-di- <i>O</i> -methyl morunigrol	71
	C (11)	
55	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 1g	72
56	¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 1g	73
57	¹ H NMR (400 MHz, DMSO- d_6) spectrum of compound 1 l	73
58	¹³ C NMR (100 MHz, DMSO- d_6) spectrum of compound 1 l	75
59	References	76

Scheme 1. The synthesis of aldehydes 1d-f, 1h, 1i, 1k, and 1l from 1a

Synthesis of 3,5-dichloro-2,4-dihydroxybenzaldehyde (11). To a solution of 1a (1.00 g,7.24 mmol) in AcOH was added NCS (2.40 g, 18.1 mmol) and reaction mixture was heated to 100 °C for 16 h. Reaction mass was cooled to rt and poured into crushed ice. The precipitated solid was filtered and dried under vacuum to give 1l as light brown solid. ¹H NMR (400 MHz, DMSO– d_6) δ 11.48 (brs, 1H), 9.88 (s, 1H), 7.78 (s, 1H); ¹³C NMR (100 MHz, DMSO– d_6) δ 193.03, 157.34, 156.51, 131.24, 115.97, 113.70, 110.00; HRMS (ESI) *m/z* calcd for C₇H₅Cl₂O₃ [M + H]⁺ 206.9616; found 206.9606.

Scheme 2. The synthesis of aldehydes 1b, 1c, 1g, and 1j.

Synthesis of 5-allyl-2,4-dihydroxybenzaldehyde (1g). To a solution of 25 (3.00 g, 19.9 mmol) in ACN at 0 °C was added DMF (3.1 mL, 39.9 mmol) and POCl₃ (2.29 mL, 23.9 mmol). The reaction mass was stirred for 1 h slowly raising to rt. Reaction mass was basified with saturated NaHCO₃ solution, extracted with EtOAc. Organic layers washed with brine, dried over sodium sulfate and concentrated in *vacuo*. Purification by silica gel column chromatography (0 to 13% EtOAc in hexane) afforded 1g (2.00 g, 56%) as off white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.27 (s, 1H), 9.67 (s, 1H), 7.27 (s, 1H), 6.46 (s, 1H), 6.38 (s, 1H), 6.03–5.96 (m, 1H), 5.19 (dd, *J* = 16.0, 2.8 Hz, 1H), 5.18 (dd, *J* = 10.0, 2.8 Hz, 1H), 3.37 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.59, 163.00, 162.27, 135.76, 119.01, 117.02, 115.29, 103.32, 103.28, 33.70.HRMS (ESI) *m*/z calcd for C₁₀H₁₁O₃ [M +H]⁺ 179.0708; found 179.0700

Entry	Base (2.5 equiv)	Catalyst (5 mol%)	Solvent	Temp (°C)	Time (h)	Yield (%)
1	K ₃ PO ₄	Pd(dppf)Cl ₂ .DCM	dioxane:H ₂ O (4:1)	80	1	30
2	K ₂ CO ₃	Pd(PPh ₃) ₄	THF:EtOH:H ₂ O (2:2:1),	80	1	70
3	K ₃ PO ₄	Pd(dppf)Cl ₂ .DCM	DMSO:H ₂ O (4:1)	80	1	80
4	K ₃ PO ₄	Pd(dppf)Cl ₂ .DCM	DMF:H ₂ O (4:1)	80	1	83

Table 1. The screened reaction conditions for the Suzuki coupling

¹H NMR (400 MHz, CDCl₃) spectrum of compound **3a**

4

new experiment

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3a**

¹H NMR (400 MHz, DMSO- d_6) spectrum of compound **3b**.

STANDARD 1H OBSERVE - profile

13 C NMR (100 MHz, DMSO- d_6) spectrum of compound **3b**

¹H NMR (600 MHz, CDCl₃) spectrum of compound **3d**

¹³C NMR (150 MHz, CDCl₃) spectrum of compound **3d**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **3e**

STANDARD 1H OBSERVE - profile

___0.071 5.031 .218 .778 .778 .638 .638 .054 .054 .051 .055 .237 3.683 Sample Name: 239 5.197 5.176 2 AS-IV-22-02 ം si, ŵ Data Collected on: DEU400.ac.kr-vnmrs400 Archive directory: Sample directory: FidFile: PROTON Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Jan 14 2019 Operator: klee Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.556 sec Width 6410.3 Hz 16 repetitions OBSERVE H1, 399.8039107 MHz DATA PROCESSING FT size 32768 Total time 0 min 57 sec HO ----. _ _ 12 10 <mark>و</mark> 2 8 0 4 ppm Ψ¥ ۲ ۲Y ۲ 88 1.42 5.5 1.2 2.18

¹H NMR (400 MHz, CDCl₃) spectrum of compound **3f**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3f**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **3g**

new experiment

¹H NMR (400 MHz, CDCl₃) spectrum of compound **3h**

STANDARD 1H OBSERVE - profile

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3h**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **3i**

STANDARD 1H OBSERVE - profile

Sample Name: NS-V-61-01 Data Collected on: DKU400.ac.kr-vnmrs400 Archive directory: /home/klee/vnmrsys/data Sample directory: RA-V-78_20150325_01 FidFile: AS-V-61-01a	7.592	6.603 5.550			000.0
Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Nov 7 2018					
Operator: klee					
Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.556 sec Width 6410.3 Hz 8 repetitions OBSERVE H1, 399.8039100 MHz DATA PROCESSING FT size 32768 Total time 0 min 28 sec Br + from From From From From From From From F					
12 10	••••••••••••••••••••••••••••••••••••••	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4	2	0 ppm

¹H NMR (400 MHz, DMSO- d_6) spectrum of compound **3**j

 13 C NMR (100 MHz, DMSO- d_6) spectrum of compound **3**j

¹H NMR (400 MHz, CDCl₃) spectrum of compound **3k**

STANDARD 1H OBSERVE - profile

Sample Name: AS-V-57-02 Data Collected on: DKU400.ac.kr-vnmrs400 Archive directory:

Sample directory:

FidFile: AS-V-57-02

Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Jan 14 2019

Operator: klee

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.556 sec Width 6410.3 Hz 16 repetitions OBSERVE HL, 399.8039100 MHz DATA PROCESSING FT size 32768 Total time 0 min 57 sec

0.000

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3k**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **3**l

STANDARD 1H OBSERVE - profile

¹H NMR (400 MHz, DMSO- d_6) spectrum of compound **3m** STANDARD iH CESERVE - profile Sample Name: 544 8 8 8 569 ĥ 13 8 5 128 8 ŝ 49 8 AS-V-63-01 ର୍ଚ୍ଚ ei. сá 10 24 Data Collected on; DRJ400.ac.kr-vnmrs400 Archive directory: /home/klee/vnmrsys/data Sample directory: RA-V-78_20150325_01 FidFile: AS-V-63-01 Pulse Sequence: PROTON (s2pul) Solvent: dmso Data collected on: Nov 9 2018 Operator: klee Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.556 sec Width 6410.3 Hz 8 repetitions CESERVE H1, 399.8058012 MHz DATA PROCESSING FT size 32768 Total time 0 min 28 sec HC ____ 12 10 2 98 8 8 6 4 0 ppm 0..96 -[98-0 1-04 4-00-T

¹H NMR (400 MHz, DMSO- d_6) spectrum of compound 13

STANDARD 1H OBSERVE - profile

13 C NMR (100 MHz, DMSO- d_6) spectrum of compound 13

STANDARD 1H OBSERVE - profile

778 Sample Name: 693 462 386 348 530 328 095 575 5 33 AS-IV-04 9 ŝ 3.9.9.9 25. 112 105 Data Collected on: DKU400.ac.kr-vnmrs400 Archive directory: /home/klee/vnmrsys/data Sample directory: AC-1405 20181119 01 FidFile: CARBON Pulse Sequence: CARBON (s2pul) Solvent: dmso Data collected on; Nov 19 2018 Temp. 25.5 C / 298.6 K Operator: klee Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.285 sec Width 25510.2 Hz 1664 repetitions OBSERVE C13, 100.5312520 MHz DECOUPLE H1, 399.8078135 MHz Power 41 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 3 hr, 10 min HO OН ----.......... 40 180 160 140 120 100 80 60 20 0 ppm

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **14**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **15**

¹H NMR (400 MHz, CDCl₃) spectrum of compound **16**

¹³C NMR (100 MHz, CDCl₃) spectrum of compound **16**

new experiment

13 C NMR (150 MHz, methanol- d_4) spectrum of moracin N (5)

¹H NMR (400 MHz, methanol-*d*₄) spectrum of moracin P (7).

STANDARD 1H OBSERVE - profile

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of moracin P (7).

¹H NMR (400 MHz, methanol-*d*₄) spectrum of gramniphenol F (8).

STANDARD IH GESERVE - profile

¹H NMR (400 MHz, CDCl₃) spectrum of gramniphenol G (9).

¹³C NMR (100 MHz, CDCl₃) spectrum of gramniphenol G (9).

STANDARD PROTON PARAMETERS

¹³C NMR (150 MHz, methanol-*d*₄) spectrum of morunigrol C (10).
¹H NMR (400 MHz, CDCl₃) spectrum of 3',5'-di-O-methyl morunigrol C (11)

STANDARD iH GESERVE - profile

¹³C NMR (100 MHz, CDCl₃) spectrum of 3',5'-di-*O*-methyl morunigrol C (11)

¹H NMR (400 MHz, CDCl₃) spectrum of Compound **1g**

new experiment

¹³C NMR (100 MHz, CDCl₃) spectrum of Compound **1g**

new experiment

¹HNMR (400 MHz, DMSO- d_6) spectrum of Compound **1**

STANDARD 1H OBSERVE - profile

 13 C NMR (100 MHz, DMSO- d_6) spectrum of Compound 11

STANDARD 1H OBSERVE - profile

References

- Z. Wang; Y. Cao; S. Paudel; G. Yoon and S. H. Cheon, Arch. Pharm. Res. 2013, 36, 1432–1436.
- 2. M. Sairam, G. Saidachary and B. C. Raju, Tetrahedron Lett. 2015, 56, 1338–1343.
- N. Madala, V. R. Ghanta, S. Vinnakota, N. Mendu, A. B. Ingle, K. Ethiraj and V. Sharma, *Tetrahedron Lett.* 2018, 59, 2708–2710.
- Z. Wang, Z. Liu, W. Lee, S. N. Kim, G. Yoon and S. H. Cheon, *Bioorganic Med. Chem. Lett.* 2014, 24, 3337–3340
- K. Kita, K. D. Inaoka, H. Saimotoa and M. Yamamoto, US 2015/0166498A1, June 18, 2015.
- 6. Y. Kang, Y. Mei, Y. Du and Z. Jin, Org. Lett., 2003, 5, 4481-4484.
- WO 2014/149793 Al AKAMA, Tsutomu; EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, c/o Anacor Pharmaceutic
- WO 2011/017125 Al 10 February 2011 (10.02.2011) Inventors/Applicants (for US only): XIA, Yi [US/US];