Supporting Information

Rh-catalyzed tandem C-C/C-N bond formation of quinoxalines with alkynes leading to heterocyclic ammonium salts

Kangkan Talukdar, Subhasish Roy, Raghunath Bag and Tharmalingam Punniyamurthy*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.

1	General Information	S2
2	Procedure for the Synthesis of Rhodacycle 11'	S2
3	Procedure for the Reaction of 1I' with 2a	S2
4	Procedure for the Synthesis of $1a-d_2$	S2-S3
5	Mechanistic Investigation	S3-S7
6	Crystal Structure and Data of 3aa	S8-S9
7	Characterization Data of 3aa-al , 3ba-3la and 1I'	S9-S21
8	References	S22
9	NMR Spectra of 3aa-3al , 3ba-3la , 1I' and $1\mathbf{a}$ - d_2	S23-S69

Table of Contents

General Information. [Cp*RhCl₂]₂, AgBF₄ (98%) and Cu(OAc)₂·H₂O (\geq 98%) were purchased from Aldrich and used as received. 2-Arylqunoxalines **1a-1** and alkynes **2a-1** were prepared according to literature.^{1,2} Merck silica gel G/GF 254 plates were used for analytical TLC and Rankem silica gel (60-120 mesh) was used for column chromatography. NMR (¹H and ¹³C) spectra were recorded in Bruker 300, Bruker Avance III 400 and 600 spectrometers using CDCl₃/DMSOd₆ as a solvent and TMS as an internal standard. Chemical shifts (δ) and spin-spin coupling constant (*J*) are reported in ppm and in Hz, respectively and other data are reported as follows: s = singlet, d = doublet, dd= doublet of doublet, t = triplet, m = multiplet, q = quartet. PerkinElmer IR instrument was used for recording FT-IR spectra. Using Q-Tof ESI-MS instrument (model HAB 273), mass spectra were recorded. Single crystal X-ray data were collected using Bruker SMART APEX-II CCD diffractometer, which is equipped with 1.75 kW sealed-tube Mo-K α irradiation (λ = 0.71073 Å) at 296(2) K. The crystal structure was solved by direct method using *SHELLX-97*. (Göttingen, Germany) and refined with full-matrix least squares on F² using *SHELXL*-97.

Procedure for the Synthesis of Rhodacycle 1I'. To a 10 mL round bottom flask, 2-phenylquinoxaline **1a** (0.25 mmol, 52 mg), $[Cp*RhCl_2]_2$ (0.10 mmol, 62 mg) and AgBF₄ (0.25 mmol, 48.6 mg) were added. The flask was purged with nitrogen three times followed by the addition of 3 mL of $(CH_2Cl)_2$. The mixture was stirred at room temperature for 10 h and was then passed through a short pad of celite using MeOH. The filtrate was concentrated in vacuo and the residue washed with EtOAc (1 x 5 mL). The resultant yellow solid was dried and isolated in 55% yield. The formation of the rhodacycle **11'** was confirmed by ¹H NMR and HRMS analysis.

Procedure for the Reaction of 1I' with 1,2-diphenylethyne 2a. To a 10 mL round bottom flask, 1,2-diphenylethyne **2a** (0.05 mmol, 9 mg), **1I'** (0.05 mmol, 26 mg), AgBF₄ (0.05 mmol, 9.7 mg) and Cu(OAc)₂·H₂O (0.05 mmol, 10 mg) were added in 1.5 mL of $(CH_2Cl)_2$ and stirred at room temperature for 5 h. The reaction mixture was then diluted with CH_2Cl_2 (5 mL) and passed through a short pad of celite using CH_2Cl_2 (3 x 5 mL). The combined filtrate was concentrated in vacuo and the residue was purified on silica gel column chromatography employing $CH_2Cl_2/MeOH$ (96:4) as an eluent to afford **3aa** in 91% yield.

Procedure for the Synthesis of 1a-d_2³ In an oven-dried 10 mL round bottom flask, 2-phenylqunoxaline **1a** (0.25 mmol, 52 mg), [Cp*RhCl₂]₂ (5 mol %, 7.6 mg), AgOTf (0.05 mmol, 12.8 mg), Ag₂CO₃ (0.25 mmol, 68.8 mg), toluene (1.5 mL) and D₂O (0.5 mL) were stirred at 130

°C for 14 h under air. The solvent was then removed on a rotary evaporator and the residue was dissolved with EtOAc and passed through a short pad of celite. The filtrate was concentrated and the residue was purified on silica gel column chromatography using EtOAc/hexane (1:10) as an eluent to afford **1a**- d_2 as a pale yellow solid. The deuterium incorporation was determined using 400 MHz ¹H NMR as 96.5%.

Mechanistic investigation

H/D Exchange Experiment with D₂O. 2-Phenylquinoxaline 1a (0.25 mmol, 52 mg), $[Cp*RhCl_2]_2$ (2.5 mol %, 3.8 mg), AgBF₄ (0.25 mmol, 48.6 mg), Cu(OAc)₂·H₂O (0.25 mmol, 49.9 mg) and D₂O (1 mmol) were stirred at room temperature for 10 h in $(CH_2Cl)_2$ (3 mL) under air. The reaction mixture was then diluted with CH₂Cl₂ (5 mL), and passed through a short pad of celite using CH₂Cl₂ (3 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent on vacuo produced a residue, which was purified on silica gel column chromatography using EtOAc/hexane (1:10) as eluent. No deutration incorporation was observed from 400 MHz ¹H NMR.

H/D Exchange Experiment with D_2O in Presence of Alkyne. 2-Phenylquinoxaline 1a (0.25 mmol, 52 mg), 1,2-diphenylethyne 2a (0.25 mmol, 44.5 mg), [Cp*RhCl₂]₂ (2.5 mol %, 3.8 mg), AgBF₄ (0.25 mmol, 48.6 mg), Cu(OAc)₂·H₂O (0.25 mmol, 49.9 mg) and D₂O (1 mmol) were stirred at room temperature for 10 h in (CH₂Cl)₂ (3 mL) under air. The reaction mixture was diluted with CH₂Cl₂ (5 mL), and passed through a short pad of celite using CH₂Cl₂ (3 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent on vacuo produced a residue, which was purified on silica gel column chromatography using CH₂Cl₂/MeOH (96:4) as an eluent. No deutration incorporation was observed from 400 MHz ¹H NMR.

Competition Isotope Experiment. Compound **1a** (0.25 mmol, 52 mg) and **1a**- d_2 (0.25 mmol, 52 mg) were subjected to the standard reaction conditions for 4 h. The reaction mixture was diluted with CH₂Cl₂ (5 mL) and passed through a short pad of celite using CH₂Cl₂ (3 x 5 mL). The filtrate was concentrated on vacuo and the residue was purified on silica gel column chromatography using CH₂Cl₂/MeOH (96:4) as an eluent. The $k_{\rm H}/k_{\rm D}$ was determined using 300 MHz ¹H NMR as 3.42.

Parallel Kinetic Isotope Experiment. Compound **1a** (0.25 mmol, 52 mg) and **1a**- d_2 (0.25 mmol, 52 mg) were separately subjected to the standard reaction conditions for 4 h. The reaction mixtures were diluted with CH₂Cl₂ (5 mL). Both the reaction mixtures were combined together and the resultant solution was passed through a short pad of celite using CH₂Cl₂ (3 x 5 mL). The filtrate was concentrated on vacuo and the residue was purified on silica gel column chromatography using CH₂Cl₂/MeOH (96:4) as an eluent. The $k_{\rm H}/k_{\rm D}$ was determined using 400 MHz ¹H NMR as 3.63.

S7

Crystal Structure and Data of 3aa

Figure S1. ORTEP diagram of 6,7-Diphenylisoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate **3aa** with 50% thermal ellipsoids (CCDC 1867227).

Identification code	3aa
Empirical formula	$C_{28}H_{19}N_2BF_4$
Formula weight	470.26
Crystal habit, colour	block/yellow
Crystal size, mm ³	0.32 x 0.25 x 0.16
Temperature, T/K	296(2)
Wavelength, $\lambda/Å$	0.71073
Crystal system	monoclinic
Space group	'C 2/c'
Unit cell dimensions	a = 31.900(4) Å
	b = 9.7621(10) Å
	c = 15.5417(16) Å
	$\alpha = \gamma = 90.00^{\circ}$
	$\beta = 107.394(14)$
Volume, V/Å ³	4618.5(9)
Ζ	8
Calculated density, Mg·m ⁻³	1.353
Absorption coefficient, μ/mm^{-1}	0.101
F(000)	1936
θ range for data collection	1.338 to 25.048 °

Limiting indices	$-37 \le h \le 37, -11 \le k \le 11, -18 \le l \le 18$
Reflection collected / unique	4093/1585 [R(int) = 0.0742]
Completeness to θ	1.000 (θ = 25.048 °)
Refinement method	SHELXL-97 (Sheldrick, 1997)
Data / restraints / parameters	4093 / 0 / 316
Goodness-of-fit on F ²	1.349
Final R indices [I>2sigma(I)]	R1 = 0.1092, WR2 = 0.2628
R indices (all data)	R1 = 0.2352, WR2 = 0.3187

Characterization data

6,7-Diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3aa**. Yellow solid; yield 98% (115 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 11.04 (s, 1H), 9.75 (d, *J* = 8.4 Hz, 1H), 8.44 (d, *J* = 8.0 Hz, 1H), 8.34-8.29 (m, 2H), 7.91 (t, *J* = 8.0 Hz, 1H), 7.79-7.72 (m, 2H), 7.52-7.44 (m, 4H), 7.33-7.21 (m, 7H); ¹³C NMR (150 MHz, DMSO-d₆/CDCl₃, 1:10) δ 144.95, 144.93, 142.0, 141.6, 140.2, 136.1, 136.0, 135.7, 134.3, 132.6, 132.1, 130.8, 130.4, 129.7, 129.44, 129.42, 128.5, 128.4, 128.0, 127.4, 127.1, 125.8, 124.4, 123.4; FT-IR (KBr) 2924, 2853, 1612, 1572, 1520, 1495, 1464, 1345, 1261, 1061, 766, 698 cm⁻¹; HRMS (ESI) *m*/*z* [M-BF₄]⁺ calcd for C₂₈H₁₉N₂⁺: 383.1543, found: 383.1548.

6,7-Bis(4-bromophenyl)isoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate 3ab. Yellow solid; yield 95% (149 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 11.05 (s, 1H), 9.75 (d, *J* = 8.0 Hz, 1H), 8.47-8.44 (m, 1H), 8.38-8.28 (m, 2H), 7.97-7.93 (m, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.75-7.70 (m, 3H), 7.64-7.59 (m, 1H), 7.56-7.53 (m, 2H), 7.31-7.28 (m, 2H), 7.21-7.18 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 147.1, 141.7, 139.7, 139.3, 137.8, 137.1, 135.4, 134.3, 132.8, 132.5, 132.4, 132.1, 131.8, 131.7, 131.5, 130.1, 127.38, 127.31, 127.0, 124.8, 124.2, 123.4, 122.4; FT-IR (KBr) 2924, 2853, 1590, 1490, 1437, 1396, 1346, 1250, 1081, 1058, 1013, 820, 775, 735 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₈H₁₇Br₂N₂⁺: 540.9733, found: 540.9753.

6,7-Bis(4-chlorophenyl)isoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate 3ac. Yellow solid; yield 92% (124 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 11.06 (s, 1H), 9.75 (d, *J* = 8.4 Hz, 1H), 8.46 (d, *J* = 7.8 Hz, 1H), 8.36 (t, *J* = 8.4 Hz, 1H), 8.31 (t, *J* = 7.8 Hz, 1H), 7.96-7.94 (m, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 7.59-7.57 (m, 2H), 7.41-7.36 (m, 4H), 7.27 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (150 MHz, DMSO-d₆) δ 147.1, 141.7, 139.7, 139.4, 137.8, 137.1, 135.4, 134.5, 134.0, 133.7, 132.46, 132.42, 131.8, 131.4, 130.1, 128.9, 128.8, 127.37, 127.31, 127.0, 124.8, 124.2; FT-IR (KBr) 2924, 2853, 1598, 1519, 1493, 1439, 1347, 1212, 1083, 1061, 968, 823, 769, 755, 669 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₈H₁₇Cl₂N₂⁺: 451.0763, found: 451.0769.

6,7-Bis(4-fluorophenyl)isoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate 3ad. Yellow solid; yield 91% (115 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 11.04 (s, 1H), 9.74 (d, *J* = 8.4 Hz, 1H), 8.45 (d, *J* = 8.4 Hz, 1H), 8.36-8.29 (m, 2H), 7.93 (t, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 2H), 7.58 (t, *J* = 8.4 Hz, 1H), 7.39 (s, 2H), 7.33 (t, *J* = 8.4 Hz, 2H), 7.27 (s, 1H), 7.16 (t, *J* = 8.4 Hz, 2H), 6.56 (s, 1H); ¹³C NMR (150 MHz, DMSO-d₆) δ 162.9 (*J*_{C-F} = 247.6 Hz), 162.7 (*J*_{C-F} = 245.1 Hz), 147.2, 147.0, 141.6, 140.0, 139.8, 137.6, 136.9, 135.6, 133.0, 132.28, 132.20, 131.7, 131.3, 130.0, 129.9, 127.4, 127.2 (*J*_{C-F} = 6.7 Hz), 127.0 (*J*_{C-F} = 5.4 Hz), 124.7, 124.1, 115.9 (*J*_{C-F} = 22.2 Hz), 115.8 (*J*_{C-F} = 24.1 Hz); FT-IR (KBr) 2924, 2854, 1604, 1509, 1437, 1375, 1336, 1230, 1162, 1059, 969, 832, 776, 698 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₈H₁₇F₂N₂⁺: 419.1354, found: 419.1356.

6,7-Bis(4-methoxyphenyl)isoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate 3ae. Yellow solid; yield 79% (105 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 10.97 (s, 1H), 9.68 (d, *J* = 8.4 Hz, 1H), 8.41 (d, *J* = 8.4 Hz, 1H), 8.30-8.25 (m, 2H), 7.90 (t, *J* = 7.8 Hz, 1H), 7.80 (d, *J* = 9.0 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 8.4 Hz, 1H), 7.24 (d, *J* = 9.0 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 9.0 Hz, 2H), 6.84 (d, *J* = 9.0 Hz, 2H), 3.80 (s, 3H), 3.71 (s, 3H); ¹³C NMR (150

MHz, DMSO-d₆) δ 159.7, 159.2, 147.1, 141.6, 141.1, 140.9, 137.5, 136.7, 136.4, 132.1, 132.0, 131.4, 131.2, 130.1, 129.7, 127.99, 127.92, 127.1, 127.0, 125.8, 124.8, 124.0, 114.18, 114.13, 55.38, 55.31; FT-IR (KBr) 2960, 2925, 2839, 1611, 1573, 1512, 1439, 1335, 1246, 1179, 1061, 1029, 964, 826, 797 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₃₀H₂₃O₂N₂⁺: 443.1754, found: 443.1764.

6,7-Di-*p*-tolylisoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate 3af. Yellow solid; yield 83% (103 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 11.01 (s, 1H), 9.72 (d, *J* = 8.4 Hz, 1H), 8.42 (d, *J* = 8.0 Hz, 1H), 8.33-8.25 (m, 2H), 7.90 (t, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 8.8 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.53-7.48 (m, 1H), 7.29 (d, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.10 (q, *J* = 6.8 Hz, 4H), 2.37 (s, 3H), 2.25 (s, 3H); ¹³C NMR (150 MHz, DMSO-d₆/CDCl₃,1:10) δ 144.8, 142.2, 141.6, 140.5, 139.7, 138.3, 136.3, 135.9, 135.6, 131.9, 131.5, 130.6, 130.3, 129.6, 129.2, 129.0, 128.7, 127.4, 127.3, 125.7, 124.3, 123.4, 20.85, 20.80; FT-IR (KBr) 2927, 2838, 1611, 1573, 1512, 1465, 1439, 1335, 1288, 1185, 1060, 1028, 964, 826, 772, 755 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₃₀H₂₃N₂⁺: 411.1856, found: 411.1860.

6,7-Bis(3-methoxyphenyl)isoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3ag.** (Rotational isomers 1:1) Yellow solid; yield 82% (109 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 11.04 (s, 2H), 9.74 (d, *J* = 8.4 Hz, 2H), 8.45 (d, *J* = 8.4 Hz, 2H), 8.35-8.29 (m, 5H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.92-7.89 (m, 2H), 7.81 (d, *J* = 7.8 Hz, 2H), 7.56 (t, *J* = 8.4 Hz, 2H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 7.08 (s, 1H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 6.6 Hz, 2H), 6.92-6.88 (m, 4H), 6.84 (d, *J* = 7.2 Hz, 1H), 6.70 (s, 1H), 6.68 (d, *J* = 7.2 Hz, 1H), 3.73 (s, 3H), 3.66 (s, 3H), 3.54 (s, 3H), 3.52 (s, 3H); ¹³C NMR (150 MHz, DMSO-d₆) δ 159.09, 159.06, 159.03, 158.9, 147.1, 141.6, 140.48, 140.45, 140.1, 137.6, 136.9, 136.42, 136.40, 135.6, 135.07, 135.05, 132.3, 131.3, 130.1, 130.0, 129.9, 129.89, 129.82, 127.7, 127.1, 124.8, 123.9, 122.6, 122.5, 122.4, 122.0, 115.98, 115.92, 115.87, 115.84, 115.7, 115.6, 114.2, 55.3, 55.2; FT-IR (KBr) 2924, 2853, 1601, 1589, 1519, 1458, 1425, 1322, 1264, 1157, 1059, 940, 769, 695 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₃₀H₂₃O₂N₂⁺: 443.1754, found: 443.1752.

6,7-Diethylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3ah.** Yellow solid; yield 74% (69 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 10.79 (s, 1H), 9.53 (d, *J* = 8.8 Hz, 1H), 8.61 (t, *J* = 8.0 Hz, 2H), 8.48 (d, *J* = 8.0 Hz, 1H), 8.36 (t, *J* = 8.0 Hz, 1H), 8.22 (t, *J* = 7.6 Hz, 1H), 8.12 (t, *J* = 8.0 Hz, 1H), 8.05 (t, *J* = 8.0 Hz, 1H), 3.68 (q, *J* = 7.2 Hz, 2H), 3.50 (q, *J* = 7.2 Hz, 2H), 1.41 (t, *J* = 7.2 Hz, 3H), 1.12 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 146.9, 143.8, 142.0, 141.1, 136.9, 136.6, 134.7, 131.7, 131.3, 130.6, 129.7, 127.5, 127.1, 125.0, 124.3, 124.0, 26.9, 22.5, 14.9, 13.8; FT-IR (KBr) 2924, 2853, 1610, 1589, 1517, 1435, 1384, 1335, 1212, 1129, 1092, 1050, 898, 781, 761, 699 cm⁻¹; HRMS (ESI) *m*/*z* [M-BF₄]⁺ calcd for C₂₀H₁₉N₂⁺: 287.1543, found: 287.1546.

6,7-Dipropylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3ai.** Yellow solid; yield 72% (72 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 10.81 (s, 1H), 9.54 (d, *J* = 8.4 Hz, 1H), 8.62 (q, *J* = 6.0 Hz, 2H), 8.48 (q, *J* = 6.8 Hz, 1H), 8.36 (t, *J* = 7.6 Hz, 1H), 8.22 (t, *J* = 8.0 Hz, 1H), 8.13 (t, *J* = 7.6 Hz, 1H), 8.06 (t, *J* = 8.8 Hz, 1H), 3.67 (t, *J* = 8.0 Hz, 2H), 3.43 (t, *J* = 8.0 Hz, 2H), 1.83 (q, *J* = 8.0 Hz, 2H), 1.37 (q, *J* = 7.6 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 3H), 0.70 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 147.0, 142.9, 141.26, 141.21, 136.9, 136.8, 135.2, 132.0, 131.6, 130.9, 129.9, 127.7, 127.2, 125.4, 124.3, 124.2, 35.6, 31.3, 24.2, 22.7, 14.3, 13.8; FT-IR (KBr) 2924, 1610, 1588, 1516, 1459, 1435, 1384, 1335, 1262, 1084, 1050, 898, 781, 760 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₂H₂₃N₂⁺: 315.1856, found: 315.1857.

6,7-Di(thiophen-2-yl)isoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate 3aj. Yellow solid; yield 67% (81 mg); ¹H NMR (400 MHz, DMSO- d₆) δ 10.97 (s, 1H), 9.69-9.66 (m, 1H), 8.44 (q, *J* = 7.2 Hz, 1H), 8.35-8.32 (m, 2H), 7.96-7.93 (m, 3H), 7.87 (d, *J* = 6.0 Hz, 1H), 7.81 (d, *J* = 6.0 Hz, 1H), 7.63-7.59 (m, 1H), 7.47-7.46 (m, 1H), 7.32-7.29 (m, 1H), 7.20-7.19 (m, 1H), 7.02-7.00 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 147.0, 141.5, 138.2, 137.2, 136.5, 136.2, 135.6, 135.5, 133.4, 132.68, 132.60, 132.2, 132.1, 131.4, 130.16, 130.13, 129.9, 128.0, 127.5, 127.3, 127.2, 127.0, 124.8, 122.6; FT-IR (KBr) 2927, 2845, 1578, 1509, 1481, 1443, 1321, 1201,

1067, 964, 812, 783, 721, 651 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₄H₁₅S₂N₂⁺: 395.0671, found: 395.0683.

6-(4-Methoxyphenyl)-7-phenylisoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate and 7-(4-Methoxyphenyl)-6-phenylisoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate.(3:2) **3al.** Yellow solid; yield 84% (105 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 11.03 (s, 0.9H), 11.01 (s, 0.6H), 9.72 (t, *J* = 7.8 Hz, 1.6H), 8.43 (t, *J* = 7.8 Hz, 1.6H), 8.34-8.27 (m, 3.4 H), 7.91 (t, *J* = 7.8 Hz, 1.7H), 7.83 (d, *J* = 9.0 Hz, 0.7H), 7.79 (d, *J* = 9.0 Hz, 2H), 7.72 (d, *J* = 9.0 Hz, 0.7H), 7.54 (t, *J* = 9.0 Hz, 0.8H), 7.51-7.48 (m, 3.2H), 7.34 (t, *J* = 7.2 Hz, 3.3H), 7.28 (t, *J* = 7.8 Hz, 2.2H), 7.25 (d, *J* = 9.0 Hz, 2.9H), 7.16 (d, *J* = 8.4 Hz, 2.1H), 7.03 (d, *J* = 8.4 Hz, 2.1H), 6.82 (d, *J* = 9.0 Hz, 1.4H), 3.79 (s, 3H), 3.70 (s, 1.9H); ¹³C NMR (150 MHz, DMSO-d₆) δ 159.7, 159.2, 147.2, 141.7, 140.96, 140.91, 140.88, 140.86, 137.69, 137.60, 136.8, 136.3, 135.8, 135.5, 133.9, 132.2, 132.15, 132.10, 131.4, 131.3, 131.2, 130.6, 130.15, 130.13, 130.0, 129.8, 129.7, 129.6, 128.7, 128.6, 127.9, 127.7, 127.2, 127.19, 127.17, 127.0, 125.6, 124.9, 124.8, 124.2, 124.0, 114.1, 114.0, 55.36, 55.31; FT-IR (KBr) 2955, 2924, 2853, 1609, 1586, 1512, 1439, 1397, 1337, 1292, 1249, 1177, 1059, 1028, 771, 698 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₉H₂₁ON₂⁺: 413.1648, found: 413.1654.

9-Bromo-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3ba.** Yellow solid; yield 97% (133 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 11.02 (s, 1H), 9.67 (d, *J* = 9.0 Hz, 1H), 8.55 (d, *J* = 10.2 Hz, 1H), 8.45 (d, *J* = 8.4 Hz, 1H), 7.93 (t, *J* = 7.8 Hz, 1H), 7.77-7.75 (m, 2H), 7.52-7.46 (m, 4H), 7.32 (t, *J* = 9.0 Hz, 3H), 7.26-7.23 (m, 4H); ¹³C NMR (150 MHz, DMSO-d₆) δ 147.1, 141.8, 141.7, 139.4, 137.7, 136.6, 135.2, 135.1, 133.1, 131.8, 131.5, 131.1, 130.4, 130.1, 130.0, 129.8, 129.3, 129.2, 129.0, 128.8, 128.7, 127.6, 124.0, 123.8; FT-IR (KBr) 2923, 2853, 1596, 1519, 1462, 1445, 1396, 1328, 1261, 1083, 1030, 785, 759 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₈H₁₈BrN₂⁺: 461.0648, found: 461.0639.

9-Chloro-6,7-diphenylisoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate 3ca. Yellow solid; yield 91% (114 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 11.01 (s, 1H), 9.76 (d, *J* = 9.2 Hz, 1H), 8.45-8.40 (m, 2H), 7.92 (t, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 9.2 Hz, 1H), 7.59 (s, 1H), 7.47-7.46 (m, 3H), 7.32-7.23 (m, 8H); ¹³C NMR (150 MHz, DMSO-d₆) δ 147.1, 142.2, 141.86, 141.80, 139.6, 137.6, 136.8, 135.1, 133.2, 132.6, 131.5, 131.2, 130.5, 130.2, 130.07, 130.06, 129.8, 129.7, 129.0, 128.7, 127.6, 125.7, 124.1, 123.6; FT-IR (KBr) 2924, 2854, 1607, 1519, 1462, 1377, 1083, 824, 759, 700 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₈H₁₈ClN₂⁺: 417.1153, found: 417.1160.

9-Cyano-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3da.** Yellow solid; yield 75% (93 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 11.11 (s, 1H), 9.89 (d, *J* = 8.4 Hz, 1H), 8.70 (d, *J* = 10.2 Hz, 1H), 8.49 (d, *J* = 7.8 Hz, 1H), 8.10 (s, 1H), 7.97 (t, *J* = 7.8 Hz, 1H), 7.83 (d, *J* = 9.0 Hz, 1H), 7.55 (t, *J* = 8.4 Hz, 1H), 7.48-7.47 (m, 3H), 7.34-7.31 (m, 3H), 7.26-7.23 (m, 4H); ¹³C NMR (150 MHz, DMSO-d₆) δ 147.2, 142.4, 142.0, 140.4, 137.4, 135.1, 134.8, 132.9, 132.7, 132.09, 132.06, 130.4, 130.3, 130.2, 130.1, 129.9, 129.1, 128.7, 128.6, 128.5, 127.6, 126.7, 124.2, 118.1, 117.3; FT-IR (KBr) 2923, 2853, 1618, 1588, 1517, 1462, 1439, 1372, 1330, 1131, 1084, 1028, 970, 831, 762, 699 cm⁻¹; HRMS (ESI) *m*/*z* [M-BF₄]⁺ calcd for C₂₉H₁₈N₃⁺: 408.1495, found: 408.1500.

9-Ethyl-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3ea.** Yellow solid; yield 88% (110 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 10.98 (s, 1H), 9.66 (d, *J* = 9.0 Hz, 1H), 8.41 (d, *J* = 9.0 Hz, 1H), 8.25 (d, *J* = 9.0 Hz, 1H), 7.88 (t, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 9.0 Hz, 1H), 7.48-7.44 (m, 5H), 7.31 (t, *J* = 8.4 Hz, 3H), 7.25-7.21 (m, 4H), 2.89 (q, *J* = 7.2 Hz, 2H), 1.19 (t, *J* = 7.8 Hz, 3H); ¹³C NMR (150 MHz, DMSO-d₆) δ 154.3, 147.3, 141.5, 140.7, 140.4, 137.4, 136.3, 135.4, 133.8, 133.2, 131.1, 130.6, 130.1, 130.0, 129.7, 129.6, 128.79, 128.72, 128.6, 127.7, 127.3, 124.7, 124.1, 123.4, 29.0, 14.9; FT-IR (KBr) 2963, 2924, 2854, 1614, 1571, 1523, 1462, 1436, 1331, 1213, 1144, 1056, 928, 832, 769, 700 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₃₀H₂₃N₂⁺: 411.1856, found: 411.1861.

9-Fluoro-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3fa.** Yellow solid; yield 93% (113 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 11.01 (s, 1H), 9.87 (d, *J* = 9.6 Hz, 1H), 8.44 (d, *J* = 8.0 Hz, 1H), 8.34-8.29 (m, 1H), 7.91 (t, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.52-7.45 (m, 4H), 7.34-7.31 (m, 4H), 7.27-7.21 (m, 4H); ¹³C NMR (150 MHz, DMSO-d₆) δ 167.0 (*J*_{C-F} = 258.9 Hz), 147.2, 141.5, 141.4, 140.0 (*J*_{C-F} = 4.9 Hz), 138.5, 138.4, 137.5, 135.1, 133.3, 131.8, 131.7, 131.3, 130.5, 130.1, 129.9, 129.8, 129.0, 128.7, 127.5, 124.1, 122.3, 122.2, 111.6 (*J*_{C-F} = 23.2 Hz); FT-IR (KBr) 2924, 2853, 1619, 1524, 1463, 1428, 1404, 1376, 1330, 1209, 1179, 1083, 1035, 765, 701 cm⁻¹; HRMS (ESI) *m*/*z* [M-BF₄]⁺ calcd for C₂₈H₁₈FN₂⁺: 401.1449, found: 401.1433

2-Chloro-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3ga.** Yellow solid; yield 92% (116 mg); ¹H NMR (600 MHz, DMSO-d₆) δ 11.06 (s, 1H), 9.76 (d, *J* = 8.4 Hz, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.37-8.31 (m, 2H), 8.01 (q, *J* = 6.6 Hz, 1H), 7.75-7.73 (m, 2H), 7.47-7.45 (m, 3H), 7.39-7.37 (m, 3H), 7.31 (t, *J* = 8.4 Hz, 2H), 7.24-7.23 (m, 2H); ¹³C NMR (150 MHz, DMSO-d₆) δ 147.7, 140.9, 140.6, 140.4, 137.9, 137.3, 136.0, 134.8, 134.2, 133.6, 132.4, 131.7, 131.6, 130.6, 130.03, 130.00, 128.9, 128.8, 128.6, 128.1, 127.4, 127.1, 124.8, 124.0; FT-IR (KBr) 2924, 2853, 1602, 1584, 1508, 1444, 1397, 1335, 1164, 1081, 1032, 918, 751, 698 cm⁻¹; HRMS (ESI) *m*/*z* [M-BF₄]⁺ calcd for C₂₈H₁₈ClN₂⁺: 417.1153, found: 417.1155.

2,3-Dimethyl-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium** tetrafluoroborate 3ha. Yellow solid; yield 85% (106 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 10.98 (s, 1H), 9.73 (d, *J* = 9.2 Hz, 1H), 8.33-8.23 (m, 3H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.48-7.44 (m, 4H), 7.37-7.33 (m, 3H), 7.30-7.26 (m, 2H), 7.24-7.22 (m, 2H), 2.44 (s, 3H), 2.02 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 145.7, 141.6, 140.7, 140.6, 140.4, 140.0, 136.6, 136.3, 135.3, 135.1, 133.8, 132.0, 130.5, 129.9, 129.4, 129.3, 128.6, 128.5, 128.4, 126.9, 126.8, 125.6, 124.9, 123.8, 20.0, 19.0; FT-IR (KBr) 2924, 2853, 1609, 1583, 1507, 1443, 1398, 1375, 1337, 1229, 1149, 1082, 1030, 869, 766, 696 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₃₀H₂₃N₂⁺: 411.1856, found: 411.1866.

3-Methyl-6,7-diphenylisoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate and 2-Methyl-6,7-diphenylisoquinolino[2,1-a]quinoxalin-5-ium tetrafluoroborate (2.5:1) 3ia. Yellow solid; yield 82% (99 mg); ¹H NMR (400 MHz, DMSO-d₆) 11.02 (s, 0.4H), 10.99 (s, 1H), 9.72 (t, *J* = 8.0 Hz, 1.6H), 8.34-8.25 (m, 5.1 H), 7.79 (d, *J* = 8.0 Hz, 1.2H), 7.71 (t, *J* = 8.0 Hz, 1.6H), 7.66 (d, *J* = 9.2 Hz, 0.5H), 7.51 (s, 1.1H), 7.46-7.44 (m, 4.9H), 7.35-7.22 (m, 12.3H), 2.12 (s, 3.3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 146.9, 145.8, 142.0, 141.8, 140.8, 140.7, 140.5, 140.2, 137.3, 136.9, 136.6, 136.5, 135.4, 135.3, 135.2, 133.7, 132.6, 132.0, 131.2, 130.5, 130.4, 129.97, 129.90, 129.7, 129.4, 129.2, 128.64, 128.61, 128.5, 128.4, 127.3, 127.0, 126.9, 125.6, 124.88, 124.82, 123.9, 123.5, 21.4, 20.4; FT-IR (KBr) 2924, 2854, 1608, 1519, 1444, 1375, 1339, 1209, 1161, 1083,

1061, 839, 777, 696 cm⁻¹; HRMS (ESI) m/z [M-BF₄]⁺ calcd for C₂₉H₂₁N₂⁺: 397.1699, found: 397.1699.

2,9-Dichloro-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3ja.** Yellow solid; yield 85% (114 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 11.04 (s, 1H), 9.79 (d, *J* = 9.2 Hz, 1H), 8.48-8.45 (m, 2H), 8.03 (dd, *J* = 9.2, 6.4 Hz, 1H), 7.73-7.72 (m, 1H), 7.62-7.61 (m, 1H), 7.48-7.47 (m, 3H), 7.39-7.36 (m, 3H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.26-7.24 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 147.5, 142.5, 141.7, 140.4, 139.6, 137.7, 136.8, 134.5, 134.3, 132.8, 132.7, 131.7, 131.6, 130.4, 130.0, 129.9, 129.7, 129.0, 128.8, 128.6, 127.9, 125.6, 123.9, 123.4; FT-IR (KBr) 2924, 2853, 1597, 1510, 1434, 1393, 1331, 1205, 1187, 1096, 1056, 1033, 973, 851, 729, 698 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₈H₁₇Cl₂N₂⁺: 451.0763, found: 451.0763.

2-Chloro-9-fluoro-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium tetrafluoroborate 3ka.** Yellow solid; yield 88% (115 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 11.03 (s, 1H), 9.89 (q, *J* = 4.4 Hz, 1H), 8.47 (d, *J* = 8.8 Hz, 1H), 8.37-8.32 (m, 1H), 8.01 (dd, *J* = 8.8, 6.8 Hz, 1H), 7.71 (s, 1H), 7.48-7.46 (m, 3H), 7.39-7.31 (m, 6H), 7.25-7.22 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 167.6 (*J*_{C-F} = 260.6 Hz), 147.6, 141.4, 140.2, 138.7, 137.5, 134.4, 134.2, 133.0, 131.9, 131.8, 131.6 $(J_{C-F} = 4.5 \text{ Hz})$, 130.5, 130.0, 129.8, 128.9, 128.8, 128.6, 127.9, 123.9, 122.5, 122.3, 122.0, 111.6 $(J_{C-F} = 23.1 \text{ Hz})$; FT-IR (KBr) 2924, 2853, 1617, 1519, 1463, 1377, 1329, 1288, 1199, 1062, 1031, 909, 831, 765, 697 cm⁻¹; HRMS (ESI) m/z [M-BF₄]⁺ calcd for C₂₈H₁₇ClFN₂⁺: 435.1059, found: 435.1071.

9-Chloro-2,3-dimethyl-6,7-diphenylisoquinolino[**2,1-a**]**quinoxalin-5-ium** tetrafluoroborate **3la.** Yellow solid; yield 90% (120 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 10.95 (s, 1H), 9.75 (d, *J* = 9.2 Hz, 1H), 8.41 (dd, *J* = 8.8, 6.8 Hz, 1H), 8.24 (s, 1H), 7.57-7.56 (m, 1H), 7.47-7.46 (m, 4H), 7.36-7.28 (m, 5H), 7.26-7.23 (m, 2H) 2.44 (s, 3H), 2.02 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 145.6, 141.9, 141.4, 141.2, 140.9, 140.8, 139.2, 136.5, 136.1, 135.1, 133.1, 132.3, 130.4, 129.9, 129.6, 129.33, 129.31, 128.8, 128.6, 125.59, 125.55, 123.69, 123.64, 20.1, 19.0; FT-IR (KBr) 2923, 1599, 1508, 1451, 1396, 1346, 1333, 1224, 1154, 1096, 1083, 1032, 968, 826, 751, 698 cm⁻¹; HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₃₀H₂₂ClN₂⁺: 445.1466, found: 445.1466.

Rhodacycle 11'. Yellow solid; yield 55 % (29 mg); ¹H NMR (400 MHz, DMSO-d₆) δ 9.59 (s, 1H), 8.35 (dd, *J* = 8.0, 6.4 Hz, 2H), 8.17-8.12 (m, 2H), 7.92-7.83 (m, 2H), 7.62-7.58 (m, 2H), 1.71 (s, 3H), 1.61 (s, 1H), 1.54 (s, 11H); HRMS (ESI) *m/z* [M-BF₄]⁺ calcd for C₂₄H₂₄RhN₂⁺: 443.0995, found: 443.0995.

References

- 1. D. Lu, Q. Xiang, L. Zhou and Q. Zeng, Asian J. Chem., 2015, 27, 2639.
- 2. M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth

and P. A. Grieco, Org. Lett., 2002, 4, 3199

3. W. Xie, B. Li and B. Wang, J. Org. Chem., 2016, 81, 396.

¹H and ¹³C NMR Spectra

529.92 688.92 701.77

L123.450
694.451-
Z78.221-
891.721-
-127.433
880.821 -
LEP.821-
585'871-
744.621-
£62.621
144.051-1
5+8.0ET-
751.751-
959.751
60C'+CT-
00/1001
010.001
910 921 7
136184
285.041-
288.141-
720.241-
259.441-
956.441 J

KT-62-A-13C

14.0

KT-69-RT2-1H

- 9

06[°].

KT-69-RT-13C

0.0

0.5

f1 (ppm)

0.0

14.0

114:135 114:135 114:135 115:121 115:121 116:121

KT-63-N-13C

=

14.0

KT-67-N2-1H

201:6E	and he have	30
		- 6
862'62 266'62	(and the signal of the	- 00
	undere linge i providere	-
	li - di Stringer	- 09
۲٫۲۲۶ ۲۲۲	-	- 02
#09'STI - E#Z'STI - 9#8'STI - 828'STI -	, se	- 08
626'511 - 886'511 - 820'221 - 5£5'221 - 725'221 -	ણેલ્લાને સંગ્રાપ્રે ક્લિને અંગ્રાવે અને બાંકળ	f1 (ppm)
233'962 - 153'963 - 154'843 - 152'763	Annal weigh	100
562 / 262 - 568 / 627 - 526 / 627 - 526 / 627 -	الجارط فماستهما والم	110
TET'02T - S6E'TET - T0E'ZET - 6S0'SET -	n verhänden verhänden v	120
	aper la la la serie de la s	130
140		140
1/11/261	net set and	150
1/6'8ST EE0'6ST E90'6ST 660'6ST	ulynasta alfanasta	160
	uni panto rispitad și ĉi	170
KT-71-C-13C	ne alemán de la compañía de la	180

- 0

- 9

- 8

ŧ

f1 (ppm)

KT-74-B-13C

KT-75-B2-13C

0

KT-85-1H

f1 (ppm)

KT-85-13C

0.5 0.0

14.0

KT-93-N-1H

10

S44

0.0

- 9

50 -

- 20

- 6

- 23

- 09

- 2

80

- 6

100

110

120

130

140

150

160

170

180

- 14.933 —

=

_

4

0

KT-81-1H

0.5

S59

		1	
			10
104.02~			20
ך 38'86 + ר 39'103			30
115.05			40
26.96 26.96 255 25			50
			60
			70
			80
+ 153'294 - 153'394 - 154'884 - 154'884 - 156'930 - 159'360			100 90 f1 (ppm)
- 152'020 - 222'323 - 228'282 - 228'21 - 2128'21			110
- 128،643 - 223،202 - 123،465 - 123،465	-		120
- 129-909 2120-922 - 130-922 - 130-294			130
2+7.551- 7+3.251- 880.251- 215.151-			140
- 132'528 - 132'528 - 132'4 04 - 139'225			150
672.0+1- -136.924 -136.621-			160
-140'23 -140'20 -140'20 -140'20 -141'23			170
426.341 - 258.241 -			180
KT-104-13C			190

0.5

KT-95-1H

- 9

20

- 8

- 4

- 23

- 09

- 2

- 08

90 f1 (ppm)

100

110

120

130

140

150

160

170

180

KT-95-13C

123'436 -123'530 -123'626 -123'626 -125'268 -138'831 -138'831 -138'831 -130'466 -130'466 -130'468 -130'468 -130'468 -130'468 -130'468 -135'88

-38'884 -38'103 -38'1103 -38'311

-39,729 -39,529 -40,146

KT-98-1H

