Supplementary Information

Abinukitrine A, a unique 17,18-cyclolanostane triterpenoid from *Abies nukiangensis*

Yong-Li Li^{*a}, Li-Jun Xue^c, Jie Li^a, Li-Ming Chen^a, Jian-JunWu^a, Zhuo-Ni Xu^a, YingChen^a, Yu-Ping Tian^a, Xian-Wen Yang^{*b}

^aPhysical and Chemical Analysis laboratory, Division of Material Science & Quality Test, Shanghai Institute of Measurement and Testing Technology, 1500 Zhangheng Road, Shanghai 201203, China

^bKey Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China

^cDepartment of Medical Oncology, Jinling Hospital, Nanjing University Clinical School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, China

*Corresponding authors. Tel.: +86-592-2195319; e-mail: yangxianwen@tio.org.cn; Tel.:+86-021-38839880-35150; e-mail: jinchi333@126.com

Content

Experimental procedures

- Table 1. X-ray crystal data for abinukitrine A (1).
- Figure S1. ¹H NMR spectrum of compound 1 in CDCl₃.
- Figure S2. ¹³C NMR spectrum of compound 1 in CDCl₃.
- Figure S3. DEPT NMR spectrum of compound 1 in CDCl₃.
- Figure S4. HSQC spectrum of compound 1 in CDCl₃.
- Figure S5. HSQC expansion spectrum of compound 1 in CDCl₃.
- Figure S6. HMBC spectrum of compound 1 in CDCl₃.
- Figure S7. HMBC expansion spectrum of compound 1 in CDCl₃.
- Figure S8. ¹H–¹H COSY spectrum of compound 1 in CDCl₃.
- Figure S9 ¹H–¹H COSY expansion spectrum of compound 1 in CDCl₃.
- Figure S10.NOESY NMR spectrum of compound 1 in CDCl₃.
- Figure S11.NOESY NMR expansion spectrum of compound 1 in CDCl₃.

Experimental procedures

General Experimental Procedures. Infrared spectra were recorded on a Bruker IFS-66/S FT-IR spectrometer. NMR spectra were recorded on a Varian UNITY INOVA 500 NMR spectrometer. Optical rotations were measured on a Hanon P850 polarimeter. HRESIMS spectra were obtained on a Q-Tof mass spectrometer. Semi-preparative HPLC was performed using a Waters 600 pump with a waters 2489 uv/visible detector and a YMC C18 5 µm column (10 mm ×250 mm). Column chromatography was performed on ODS, silica gel, and Sephadex LH-20. TLC analysis was using the precoated silica gel plates.

Plant Material. The aerial parts of *Abies nukiangensis* were collected in Lushui, Yunnan Province, China in September 2015. The plant was identified by Yuan-Chun Zhou. A voucher specimen (SMMC-AB 1501) was deposited in the herbarium of physical and chemical analysis laboratory, Shanghai Institute of Measurement and Testing Technology, Shanghai, China.

Extraction and Isolation. The twigs and leaves of *A. nukiangensis* (5.0 kg) was extracted with EtOH under reflux and filtered. The filtrate was evaporated under reduced pressure to provide an EtOH extract (320 g), which was suspended in distilled H₂O and successively partitioned with CH₂Cl₂, EtOAc, and *n*-BuOH, yielding 110 g, 75 g, and 102 g of residues, respectively. The CH₂Cl₂-soluble fraction (110 g) was subjected to CC on silica gel and eluted with CHCl₃-MeOH (50:1 to 20:1) to yield five fractions (C1-C5). Fraction C4 (8.0 g) was separated over a RP-C₁₈ silica gel column with 80% MeOH to yield four subfractions (C4A-C4D). Subfraction C4D (1.2 g) was

separated on a silica gel column (CHCl₃-MeOH, 14:1), followed by CC on Sephadex LH-20 (CHCl₃-MeOH, 1:1) to give **1** (20.8 mg).

Crystal preparation. Compound **1** (2.0 mg) was dissolved in 0.5 mL pyridine-MeOH (1:1) solution, slow evaporation over days afforded crystals.

Anti-HCV assay on GT1b cells. Compound 1 was serially diluted in DMSO (0.016, 0.08, 0.4, 2, 10, 20 μ M) and then added to 96-well plates, in duplicate. Subsequently, GT1b cells were seeded and cultured in a humidified incubator containing 5% CO₂ at 37°C for 3 days. The cell viability was determined with the CellTiter-Fluor kit in accordance with the protocol provided by the supplier. While the antiviral activity was determined by monitoring replicon reporter firefly luciferase using Bright-Glo.

Inhibition rate (%) = $(ZPE-CPD)/(ZPE-HPE) \times 100$ %, where

CPD: Signals of tested compounds.

ZPE: Signals of DMSO control.

HPE: Signals of medium control.

50% effective concentrations (EC₅₀) value will be calculated with the GraphPad Prism software.

Identification code	mj118542						
Empirical formula	C35 H49 N O4						
Formula weight	547.75						
Temperature	169.96 K						
Wavelength	1.34139 Å						
Crystal system	Monoclinic						
Space group	C 1 2 1						
Unit cell dimensions	$a = 36.5813(18) \text{ Å} \alpha = 90^{\circ}$						
	$b = 6.2452(3) \text{ Å} \qquad \beta = 91.068(4)^{\circ}$						
	$c = 13.6063(7) \text{ Å} \qquad \gamma = 90^{\circ}$						
Volume	3107.9(3) Å ³						
Z	4						
Density (calculated)	1.171 mg/m ³						
Absorption coefficient	0.378 mm^{-1}						
F(000)	1192						
Crystal size	0.12 x 0.08 x 0.03 mm ³						
Theta range for data collection	3.491 to 55.114°.						
Index ranges	$-44 \le h \le 44, -7 \le k \le 7, -16 \le l \le 16$						
Reflections collected	43183						
Independent reflections	5924 [R(int) = 0.0559]						
Completeness to theta = 53.594°	99.60%						
Absorption correction	Semi-empirical from equivalents						
Max. and min. transmission	0.7508 and 0.5776						
Refinement method	Full-matrix least-squares on F2						
Data / restraints / parameters	5924 / 1 / 372						
Goodness-of-fit on F2	1.052						
Final R indices [I>2sigma(I)]	$R_1 = 0.0355, wR_2 = 0.0892$						
R indices (all data)	$R_1 = 0.0373, wR_2 = 0.0908$						
Absolute structure parameter	0.07(10)						
Extinction coefficient	n/a						
Largest diff. peak and hole	$0.174 \text{ and } -0.177 \text{ e.}\text{\AA}^{-3}$						

Table S1. X-ray crystal data for abinukitrine A (1)

Figure S1. ¹H NMR spectrum of compound 1 in CDCl₃.

0100101001001001	v o − v o o − o v	000400000400	040000000-000	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000
NO000000−00000	NO 0 00 / 00 / 00	000000400000	000000000000000000000000000000000000	- 0 0 0 N 0 N 0 0 N 4 -	-0810400001-0
040000040000	N-00000000	တတထထထထထထထ	0 – – – – – – – – – – – – – – – – – – –	0 0 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$ $)$
\circ	N(N(N(N(N(N)C+C+C)C))))				-000000000000000

Figure S	52. ¹³ C I	NMR sp	ectrum	of com	າpound	1 in CE	DCI₃.									
					—172.317		148.433 147.926		131.431 130.113 129.830	—120.037	106 201			76.834		58.531 53.567 53.567 48.844 46.824 35.101 35.101 35.101 35.101 32.320 29.806 29.352 29.352 29.352 101 25.403 21.3251 21.3251 11.25.403 11.25.403 11.25.403 11.25.30555 11.25.30555 11.25.30555 11.25.30555 11.25.
					ł		λ		12			ł				
				aran/auguna, Janaga, Annan		1000/07/02.000/77/12.000/000.	www.weeklanow	787264-76490-002-764784-764		Manne lannan			***************************************	nannanand han		๛๛๛๚๛๛๛๚๛๛๛๚๚๛๛๚๚๛๚๚๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚
220	210	200	190	180	170	160	150	140	130	120	110 f1	100 (ppm)	90	80	70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure S3. DEPT NM	IR spectrum of co	mpound 1 in CDCI3.					
	—147.917	— 120.029			—76.831		$\begin{array}{c} 32.315\\ 22.266\\ 22.351\\ 22.351\\ 22.399\\ 23.344\\ 23.344\\ 12.3.247\\ 10.567\\ 10.567\end{array}$
	ł	l					
		annan ann an an ann ann ann ann ann ann				aan kaan maana kaan maana kaan ka	
180 170	160 150	140 130 120) 110 100) 90 8 f1 (ppm)	0 70 6	60 50	40 30 20 10 0

Figure S4. HSQC spectrum of compound 1 in CDCl_{3.}

Figure S5. HSQC expansion spectrum of compound 1 in CDCI₃.

Figure S6. HMBC spectrum of compound 1 in CDCl₃.

Figure S8. ¹H-¹H COSY spectrum of compound 1 in CDCl₃.

Figure S9. ¹H-¹H COSY expansion spectrum of compound 1 in CDCl₃.

