Supplementary Information

Abinukitrine A, a unique 17,18-cyclolanostane triterpenoid from Abies nukiangensis

Yong-Li Li* ${ }^{*}$, Li-Jun Xue ${ }^{c}$, Jie Li^{a}, Li-Ming Chen ${ }^{a}$, Jian-JunWu ${ }^{a}$, Zhuo-Ni Xu ${ }^{a}$, YingChen ${ }^{a}$, Yu-Ping Tian a, Xian-Wen Yang* ${ }^{*}$
${ }^{a}$ Physical and Chemical Analysis laboratory, Division of Material Science \& Quality Test, Shanghai Institute of Measurement and Testing Technology, 1500 Zhangheng Road, Shanghai 201203, China
${ }^{b}$ Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
${ }^{c}$ Department of Medical Oncology, Jinling Hospital, Nanjing University Clinical
School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, China
*Corresponding authors. Tel.: +86-592-2195319; e-mail: yangxianwen@ tio.org.cn;
Tel.:+86-021-38839880-35150; e-mail: jinchi333@126.com

Content

Experimental procedures

Table 1. X-ray crystal data for abinukitrine A (1).
Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Figure S3. DEPT NMR spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Figure S4. HSQC spectrum of compound $\mathbf{1}$ in CDCl_{3}.
Figure S5. HSQC expansion spectrum of compound $\mathbf{1}$ in CDCl_{3}.
Figure S6. HMBC spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Figure S7. HMBC expansion spectrum of compound $\mathbf{1}$ in CDCl_{3}.
Figure S8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}$ in CDCl_{3}.
Figure $\mathbf{S 9}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY expansion spectrum of compound $\mathbf{1}$ in CDCl_{3}.
Figure S10.NOESY NMR spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Figure S11.NOESY NMR expansion spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Experimental procedures

General Experimental Procedures. Infrared spectra were recorded on a Bruker IFS66/S FT-IR spectrometer. NMR spectra were recorded on a Varian UNITY INOVA 500 NMR spectrometer. Optical rotations were measured on a Hanon P850 polarimeter. HRESIMS spectra were obtained on a Q-Tof mass spectrometer. Semi-preparative HPLC was performed using a Waters 600 pump with a waters 2489 uv/visible detector and a YMC C18 $5 \mu \mathrm{~m}$ column ($10 \mathrm{~mm} \times 250 \mathrm{~mm}$). Column chromatography was performed on ODS, silica gel, and Sephadex LH-20. TLC analysis was using the precoated silica gel plates.

Plant Material. The aerial parts of Abies nukiangensis were collected in Lushui, Yunnan Province, China in September 2015. The plant was identified by Yuan-Chun Zhou. A voucher specimen (SMMC-AB 1501) was deposited in the herbarium of physical and chemical analysis laboratory, Shanghai Institute of Measurement and Testing Technology, Shanghai, China.

Extraction and Isolation. The twigs and leaves of A. nukiangensis (5.0 kg) was extracted with EtOH under reflux and filtered. The filtrate was evaporated under reduced pressure to provide an EtOH extract (320 g), which was suspended in distilled $\mathrm{H}_{2} \mathrm{O}$ and successively partitioned with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOAc}$, and n - BuOH , yielding 110 g , 75 g , and 102 g of residues, respectively. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-soluble fraction (110 g) was subjected to CC on silica gel and eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($50: 1$ to $20: 1$) to yield five fractions (C1-C5). Fraction C4 (8.0 g) was separated over a RP-C 18 silica gel column with $80 \% \mathrm{MeOH}$ to yield four subfractions (C4A-C4D). Subfraction C4D (1.2 g) was
separated on a silica gel column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 14: 1\right)$, followed by CC on Sephadex LH-20 $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 1: 1\right)$ to give $\mathbf{1}(20.8 \mathrm{mg})$.

Crystal preparation. Compound $\mathbf{1}(2.0 \mathrm{mg})$ was dissolved in 0.5 mL pyridine-MeOH (1:1) solution, slow evaporation over days afforded crystals.

Anti-HCV assay on GT1b cells. Compound 1 was serially diluted in DMSO (0.016, $0.08,0.4,2,10,20 \mu \mathrm{M})$ and then added to 96 -well plates, in duplicate. Subsequently, GT1b cells were seeded and cultured in a humidified incubator containing 5\% CO_{2} at $37^{\circ} \mathrm{C}$ for 3 days. The cell viability was determined with the CellTiter-Fluor kit in accordance with the protocol provided by the supplier. While the antiviral activity was determined by monitoring replicon reporter firefly luciferase using Bright-Glo.

Inhibition rate $(\%)=($ ZPE-CPD $) /($ ZPE-HPE $) \times 100 \%$, where

CPD: Signals of tested compounds.
ZPE: Signals of DMSO control.

HPE: Signals of medium control.
50% effective concentrations $\left(\mathrm{EC}_{50}\right)$ value will be calculated with the GraphPad Prism software.

Table S1. X-ray crystal data for abinukitrine A (1)

Identification code	mj118542
Empirical formula	C35 H49 N O4
Formula weight	547.75
Temperature	169.96 K
Wavelength	1.34139 Å
Crystal system	Monoclinic
Space group	C 121
Unit cell dimensions	$a=36.5813(18) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=6.2452(3) \AA \quad \beta=91.068(4)^{\circ}$
	$\mathrm{c}=13.6063(7) \AA \quad \gamma=90^{\circ}$
Volume	3107.9(3) \AA^{3}
Z	4
Density (calculated)	$1.171 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.378 \mathrm{~mm}^{-1}$
F(000)	1192
Crystal size	$0.12 \times 0.08 \times 0.03 \mathrm{~mm}^{3}$
Theta range for data collection	3.491 to 55.114°.
Index ranges	$-44 \leq \mathrm{h} \leq 44,-7 \leq \mathrm{k} \leq 7,-16 \leq 1 \leq 16$
Reflections collected	43183
Independent reflections	$5924[\mathrm{R}(\mathrm{int})=0.0559]$
Completeness to theta $=53.594^{\circ}$	99.60\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7508 and 0.5776
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	5924 / 1 / 372
Goodness-of-fit on F2	1.052
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R}_{1}=0.0355, \mathrm{wR}_{2}=0.0892$
R indices (all data)	$\mathrm{R}_{1}=0.0373, \mathrm{wR}_{2}=0.0908$
Absolute structure parameter	0.07(10)
Extinction coefficient	n / a
Largest diff. peak and hole	0.174 and -0.177 e. \AA^{-3}

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 in CDCI_{3}.

Figure $\mathrm{S}^{2} .{ }^{13} \mathrm{C}$ NMR spectrum of compound 1 in CDCI_{3}.

Figure S3. DEPT NMR spectrum of compound 1 in CDCI3.

-

Figure $\mathrm{S} 4 . \mathrm{HSQC}$ spectrum of compound 1 in CDCl_{3}.

Figure S5. HSQC expansion spectrum of compound 1 in CDCl_{3}.

Figure S 6 . HMBC spectrum of compound 1 in CDCl_{3}.

Figure S7. HMBC expansion spectrum of compound 1 in CDCl_{3}.

Figure $\mathrm{S} 8 .{ }^{1} \mathrm{H}-1{ }^{1} \mathrm{H} \operatorname{COSY}$ spectrum of compound 1 in CDCl_{3}.
\qquad

Figure $\mathrm{S} 9 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY expansion spectrum of compound 1 in CDCl_{3}.

Figure S10. NOESY spectrum of compound 1 in CDCl_{3}

Figure S11. NOESY expansion spectrum of compound 1 in CDCl_{3}

