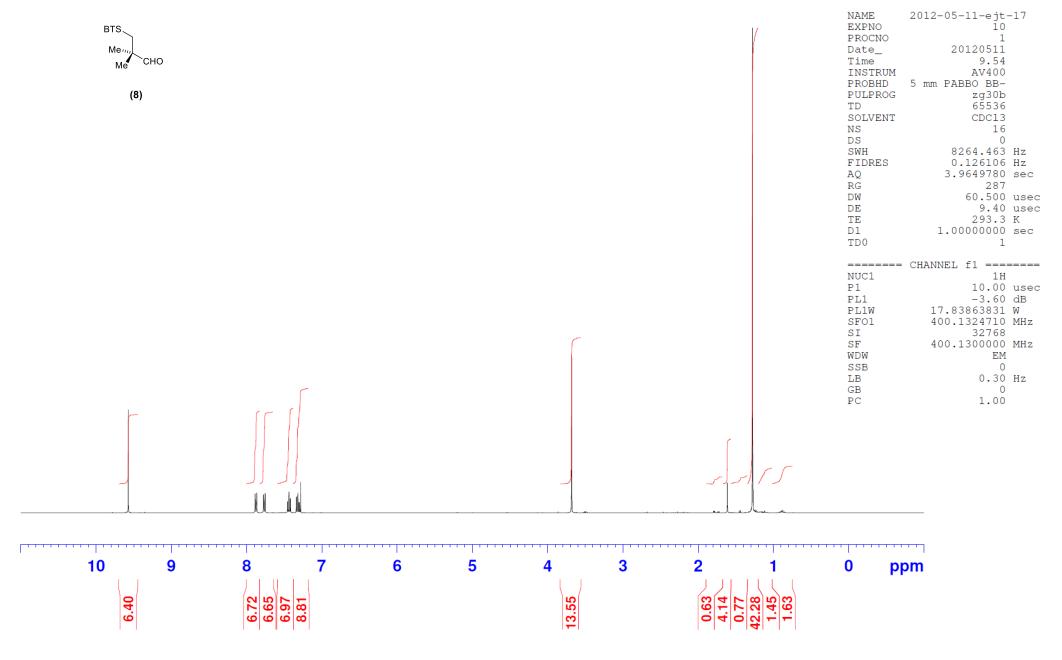
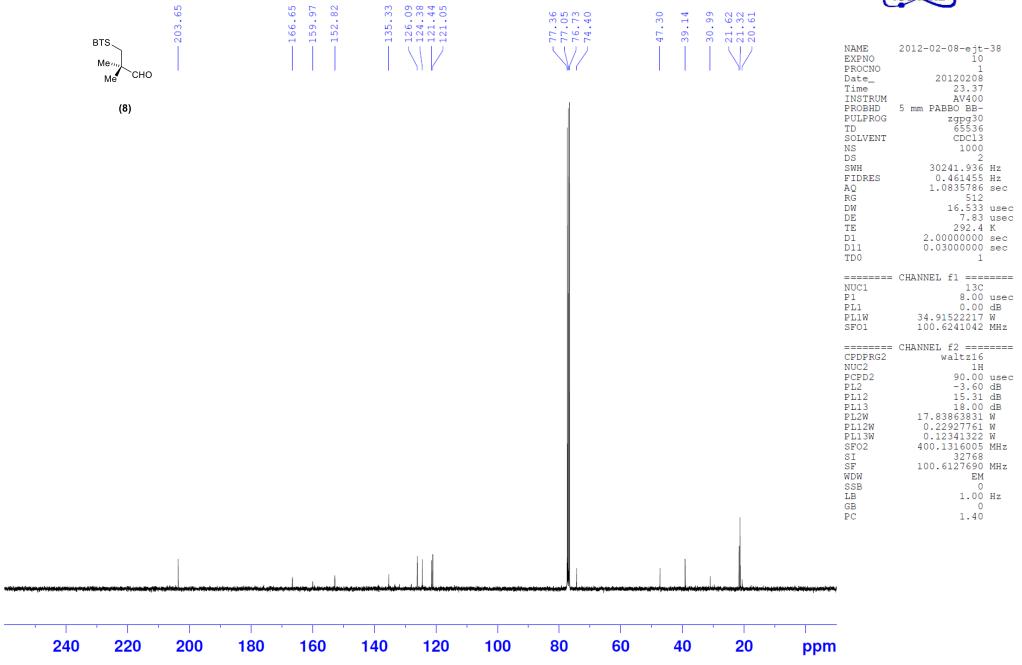
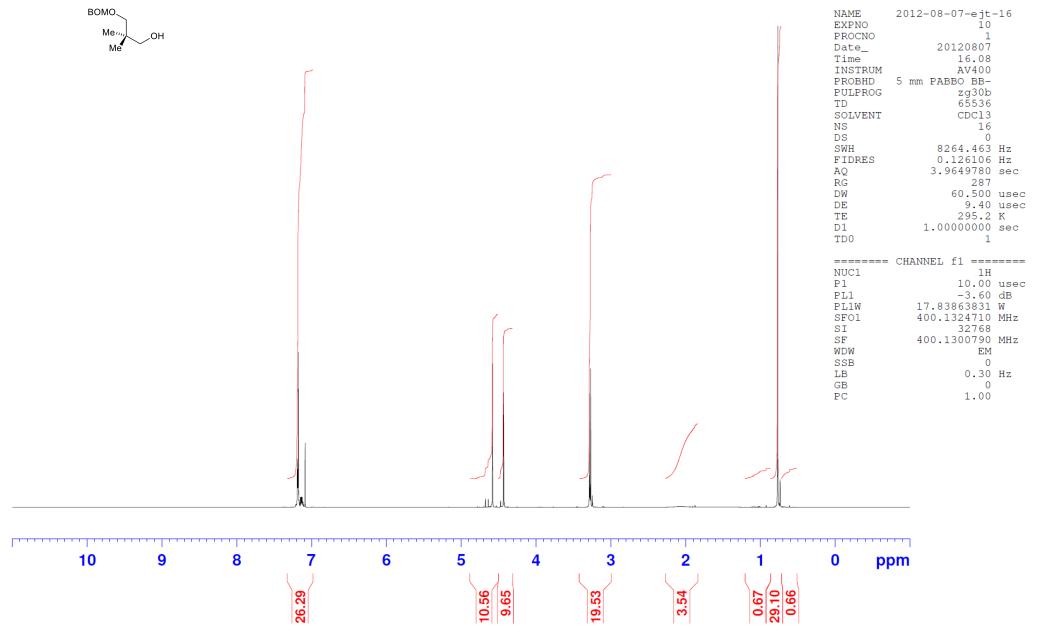
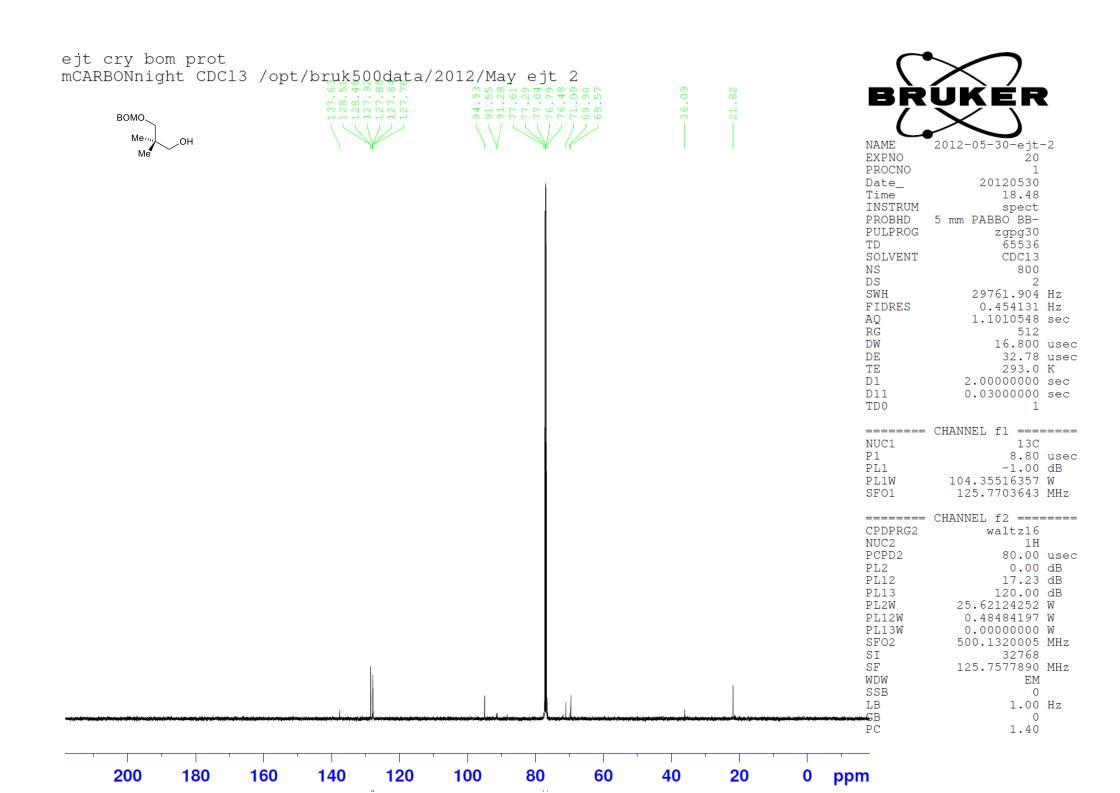


ejt cry alcohol mPROTON CDCl3 {e:\bruk400data\2012\Mar} ejt 38

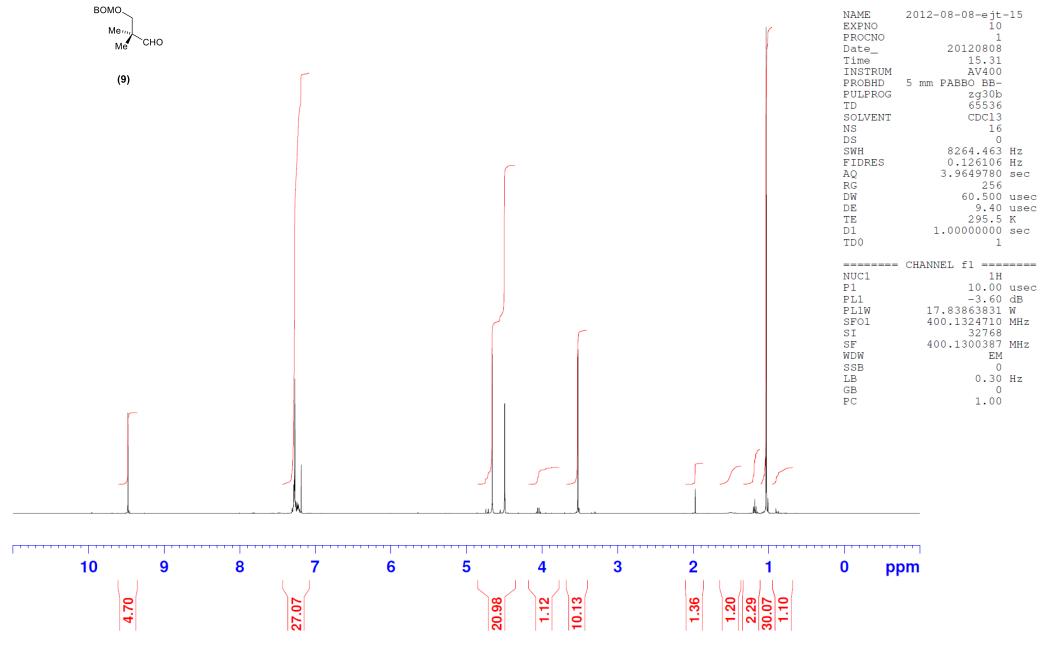


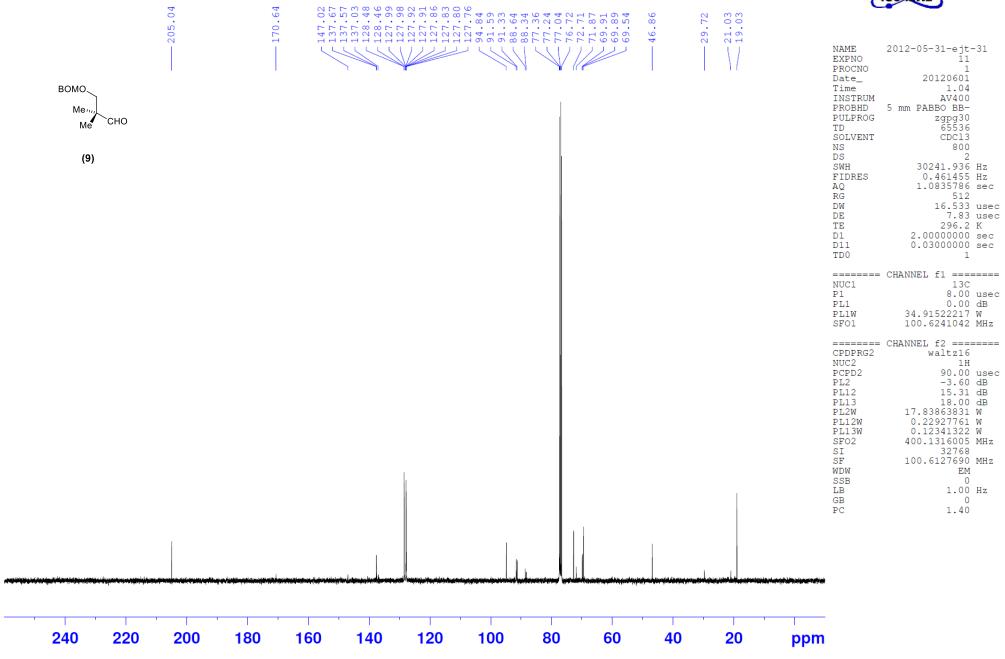

ejt cry swern mPROTON CDCl3 {e:\bruk400data\2012\May} ejt 17

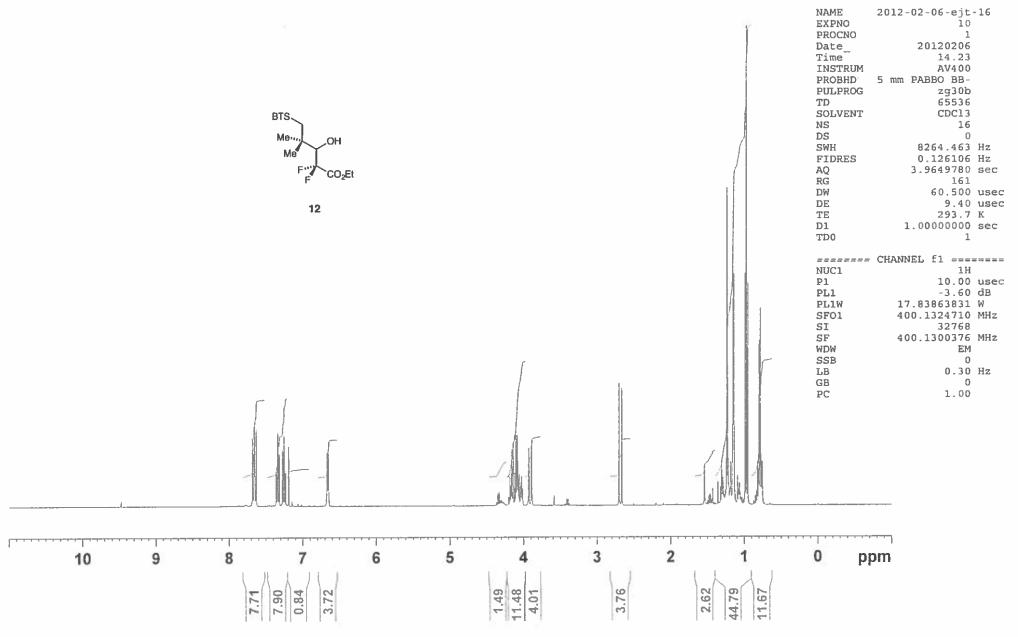

ejt cry ald mCARBONnight CDCl3 {e:\bruk400data\2012\Feb} ejt 38

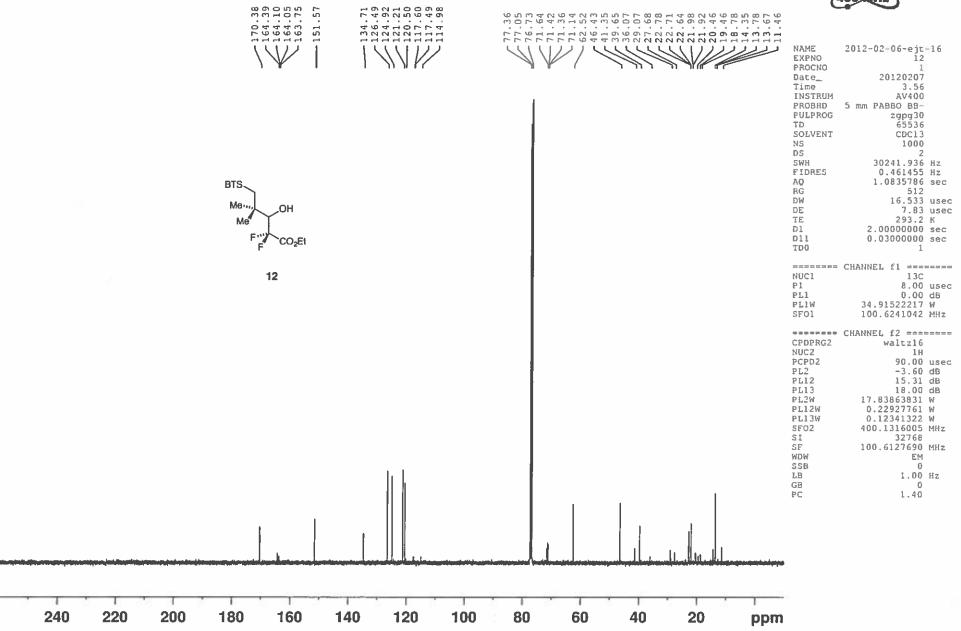


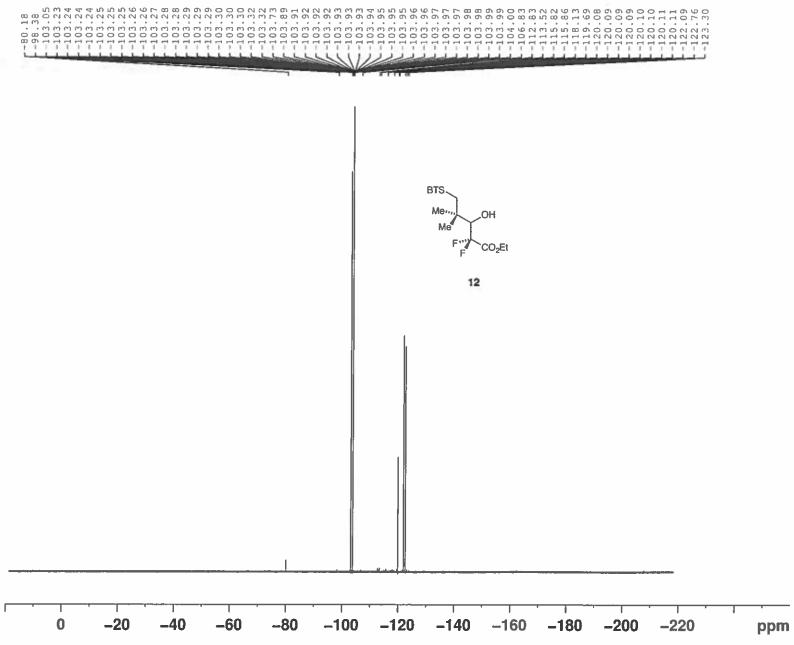
ejt cry bom oh mPROTON CDCl3 {e:\bruk400data\2012\Aug} ejt 16




ejt cry bom ald mPROTON CDCl3 {e:\bruk400data\2012\Aug} ejt 15


ejt cry swern mCARBONnight CDCl3 {e:\bruk400data\2012\May} ejt 31


ejt cry 7-9 mPROTON CDCI3 {e:\bruk400data\2012\Feb} ejt 16



ejt cry 7–9 mCARBONnight CDCl3 {e:\bruk400data\2012\Feb} ejt 16

ejt cry 7–9 mF19CPD CDCl3 {e:\bruk400data\2012\Feb} ejt 16

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS	2012-02-07-ejt- 10 10 20120207 9.30 AV400 5 mm PABBO BB- zgig 131072 CDC13	-16
DS SWH FIDRES AQ RG	89285.711 0.681196 0.7340532 4100	Hz Hz sec
DW DE TE D1	5.600 7.51 292.9 1.0000000	usec K
TD0 NUC1	CHANNEL fl 19F	
P1 PL1 PL1W SFO1	10.70 -5.00 27.00716019 376.4607164	dB W
CPDPRG2 NUC2 PCPD2	CHANNEL f2 ==== waltz16 1H 90.00	
PL2 PL12 PL2W PL12W SF02	-3.60 15.31 17.83863831 0.22927761	
SI SF WDW SSB	262144 376.4983660 EM 0	
LB GB PC	0.30 0 2.00	Hz

05/07/2012 12:44:14

Acquisition Time (se	ec) 3.1719		Commen	t	ejt cry ti	ps mPR	OTONnigh	CDCl3 /opt	/bruk500da	ta/2012/J	un ejt 10	Date		21	0 Jun 2012	03:46:24	
Date Stamp	20 Jun 2012	03:46:24															
ile Name	\\ss7a.ds.ma	n.ac.uk\v	ol5\vol3\user	s\snmrdata\	bruk500data	\bruk500)data\2012\	Jun\data\ejt\	nmr\2012-0	6-19-ejt-1	0\10\pdata\1	\1r					
requency (MHz)	500.13		Nucleus		1H		Nu	mber of Tra	ansients	16		Origin		S	pect		
Original Points Cou	nt 32768		Owner		vnmr1		Po	ints Count		32768		Pulse S	equence	20	g 30 b		
Receiver Gain	203.00		SW(cyclie	al) (Hz)	10330.5	8	So	lvent		CHLORO	FORM-d	Spectru	ım Offset (H	z) 31	079.9768		
Spectrum Type	STANDARD		Sweep W	idth (Hz)	10330.2	26	Te	mperature ((degree C)	20.001							
1.0 12012-06-19-ej	7.37 7.37 7.37	PticalS	ВОМО)	ΕΙ		4.77	4.35					-2.18			.06	
0.1 0.1 0.2 0.5 0.7 0.7	7.5 7.0	116461	6.5	6.0	5.5	5.0		4 4 602	4.0	3.41	3.0	2.5	5.09		1.5		0.5
8.0 8.0 7.40 7.73							4	5 chemical Sh	4.0 ift (ppm)	3.5	3.0		2.0)	1.5	1.00	
8.0 8.7 7.39	(Hz) Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	5 chemical Sh	4.0 ift (ppm)	3.5	3.0 (ppm)	(Hz)	2.0	No.	1.5 (ppm)	1.0 (Hz)	Height
8.0 8.0 8.7 7.39	(Hz) Height 501.0 0.0255	No. 12	(ppm) 1.26	(Hz) 630.2	Height 0.0225	No. 23	(ppm) 1.37	5 Chemical Sh (Hz) 686.0	4.0 ift (ppm) Height	3.5 No.	3.0 (ppm) 3.97	(Hz)	2.0 Height 0.0410	No. 45	1.5 (ppm) 4.59	1.0 (Hz) 2297.3	Height 0.0249
8.0 No. (ppm) 1 1.00 5 2 1.06 5	(Hz) Height 501.0 0.0255 531.9 0.2281	No. 12 13	(ppm) 1.26 1.27	(Hz) 630.2 634.0	Height 0.0225 0.0282	No. 23 24	(ppm) 1.37 1.38	5 chemical Sh (Hz) 686.0 690.1	4.0 ift (ppm) Height 0.0604 0.4235	3.5 No. 34 35	3.0 (ppm) 3.97 4.02	(Hz) 1987.4 2008.6	2.0 Height 0.0410 0.0394	No. 45 46	1.5 (ppm) 4.59 4.61	1.0 (Hz) 2297.3 2304.0	Height 0.0249 0.3359
8.0 No. (ppm) 6 1 1.00 5 2 1.06 5 3 1.07 5	(Hz) Height 501.0 0.0255 531.9 0.2281 533.7 0.0986	No. 12 13 14	(ppm) 1.26 1.27 1.29	(Hz) 630.2 634.0 644.1	Height 0.0225 0.0282 0.0230	No. 23 24 25	(ppm) 1.37 1.38 1.63	5. hernical Sh (Hz) 686.0 690.1 815.6	4.0 ift (ppm) Height 0.0604 0.4235 0.0229	3.5 No. 34 35 36	3.0 (ppm) 3.97 4.02 4.02	(Hz) 1987.4 2008.6 2012.3	2.0 Height 0.0410 0.0394 0.0387	No. 45 46 47	1.5 (ppm) 4.59 4.61 4.62	1.0 (Hz) 2297.3 2304.0 2309.9	Height 0.0249 0.3359 0.3286
8.0 No. (ppm) 6 1 1.00 5 2 1.06 5 3 1.07 5 4 1.09 5	(Hz) Height 501.0 0.0255 531.9 0.2281 533.7 0.0986 544.5 0.4125	No. 12 13 14 15	(ppm) 1.26 1.27 1.29 1.30	(Hz) 630.2 634.0 644.1 651.0	Height 0.0225 0.0282 0.0230 0.0371	No. 23 24 25 26	(ppm) 1.37 1.38 1.63 2.06	5. Chemical Sh (Hz) 686.0 690.1 815.6 1028.1	4.0 ift (ppm) Height 0.0604 0.4235 0.0229 0.0322	3.5 No. 34 35 36 37	3.0 (ppm) 3.97 4.02 4.02 4.33	(Hz) 1987.4 2008.6 2012.3 2163.7	2.0 Height 0.0410 0.0394 0.0387 0.0224	No. 45 46 47 48	1.5 (ppm) 4.59 4.61 4.62 4.64	1.0 (Hz) 2297.3 2304.0 2309.9 2321.6	Height 0.0249 0.3359 0.3286 0.0757
0.1 8.0 8.0 8.0 8.0 9.5 1.09 5 5 1.09 5 5	(Hz) Height 501.0 0.0255 531.9 0.2281 533.7 0.0986 544.5 0.4125 546.7 0.4379	No. 12 13 14 15 16	(ppm) 1.26 1.27 1.29 1.30 1.32	(Hz) 630.2 634.0 644.1 651.0 658.3	Height 0.0225 0.0282 0.0230 0.0371 0.0293	No. 23 24 25 26 27	(ppm) 1.37 1.38 1.63 2.06 2.18	5.5chemical Sh (Hz) 686.0 690.1 815.6 1028.1 1091.4	4.0 ift (ppm) Height 0.0604 0.4235 0.0229 0.0322 0.7925	3.5 No. 34 35 36 37 38	3.0 (ppm) 3.97 4.02 4.02 4.33 4.33	(Hz) 1987.4 2008.6 2012.3 2163.7 2167.8	2.0 Height 0.0410 0.0394 0.0387 0.0224 0.0898	No. 45 46 47 48 49	1.5 (ppm) 4.59 4.61 4.62 4.64 4.74	1.0 (Hz) 2297.3 2304.0 2309.9 2321.6 2372.4	Height 0.0249 0.3359 0.3286 0.0757 0.1213
0.1 8.0 8.0 8.0 8.0 5 1.00 5 5 1.09 5 6 1.11 5	(Hz) Height 501.0 0.0255 531.9 0.2281 533.7 0.0986 544.5 0.4125 546.7 0.4379 557.4 0.0224	No. 12 13 14 15 16 17	(ppm) 1.26 1.27 1.29 1.30 1.32 1.33	(Hz) 630.2 634.0 644.1 651.0 658.3 665.2	Height 0.0225 0.0282 0.0230 0.0371 0.0293 0.0251	No. 23 24 25 26 27 28	(ppm) 1.37 1.38 1.63 2.06 2.18 3.40	5.5 chemical Sh (Hz) 686.0 690.1 815.6 1028.1 1091.4 1698.0	4.0 ift (ppm) Height 0.0604 0.4235 0.0229 0.0322 0.7925 0.1140	3.5 No. 34 35 36 37 38 39	3.0 (ppm) 3.97 4.02 4.02 4.33 4.33 4.34	(Hz) 1987.4 2008.6 2012.3 2163.7 2167.8 2170.6	2.0 Height 0.0410 0.0394 0.0387 0.0224 0.0898 0.0238	No. 45 46 47 48 49 50	1.5 (ppm) 4.59 4.61 4.62 4.64 4.74 4.75	1.0 (Hz) 2297.3 2304.0 2309.9 2321.6 2372.4 2376.1	Height 0.0249 0.3359 0.3286 0.0757 0.1213 0.0240
8.0 No. (ppm) 1 1.00 5 2 1.06 5 3 1.07 5 4 1.09 5 5 1.09 5 6 1.11 5 7 1.20 5	(Hz) Height 501.0 0.0255 531.9 0.2281 533.7 0.0986 544.5 0.4125 546.7 0.4379	No. 12 13 14 15 16	(ppm) 1.26 1.27 1.29 1.30 1.32	(Hz) 630.2 634.0 644.1 651.0 658.3	Height 0.0225 0.0282 0.0230 0.0371 0.0293	No. 23 24 25 26 27	(ppm) 1.37 1.38 1.63 2.06 2.18	5.5chemical Sh (Hz) 686.0 690.1 815.6 1028.1 1091.4	4.0 ift (ppm) Height 0.0604 0.4235 0.0229 0.0322 0.7925	3.5 No. 34 35 36 37 38	3.0 (ppm) 3.97 4.02 4.02 4.33 4.33	(Hz) 1987.4 2008.6 2012.3 2163.7 2167.8	2.0 Height 0.0410 0.0394 0.0387 0.0224 0.0898	No. 45 46 47 48 49	1.5 (ppm) 4.59 4.61 4.62 4.64 4.74	1.0 (Hz) 2297.3 2304.0 2309.9 2321.6 2372.4	Height 0.0249 0.3359 0.3286 0.0757

3.84

3.93

3.97

1920.3

1964.7

1983.6

31

32

33

42

43

44

0.1186

0.0215

0.0433

4.37

4.38

4.58

2186.0

2189.2

2292.3

53

54

55

0.0262

0.0866

0.0859

4.78

7.27

7.30

0.1141

0.6329

0.0243

2391.0

3635.9

3650.1

1.22

1.24

1.25

10

11

609.7

618.6

627.1

0.5571

0.0300

0.0214

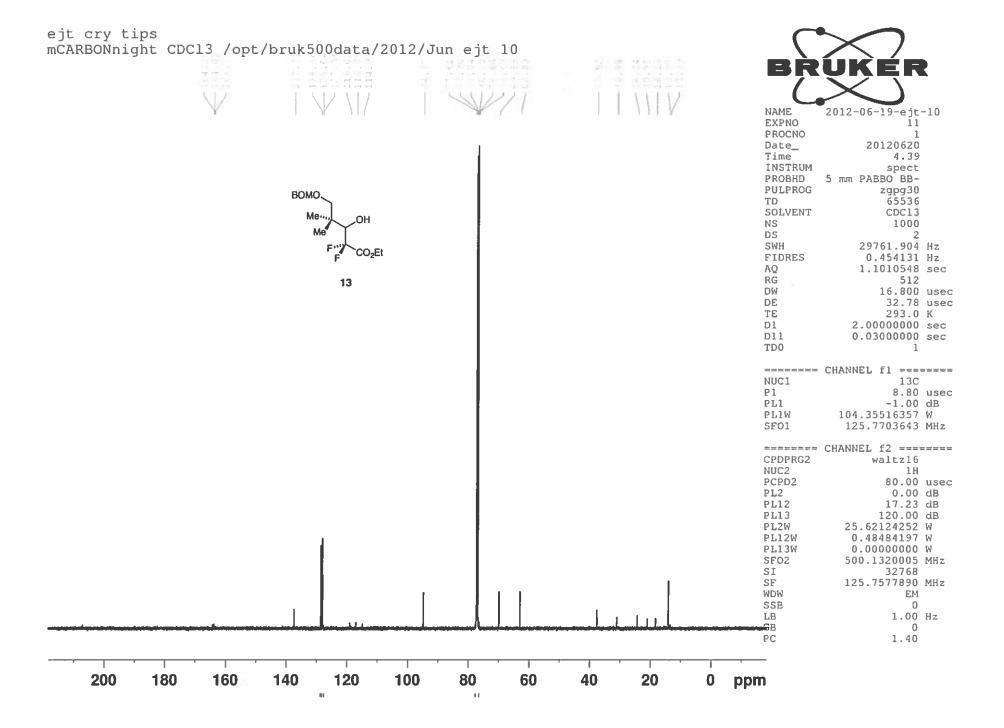
1.35

1.36

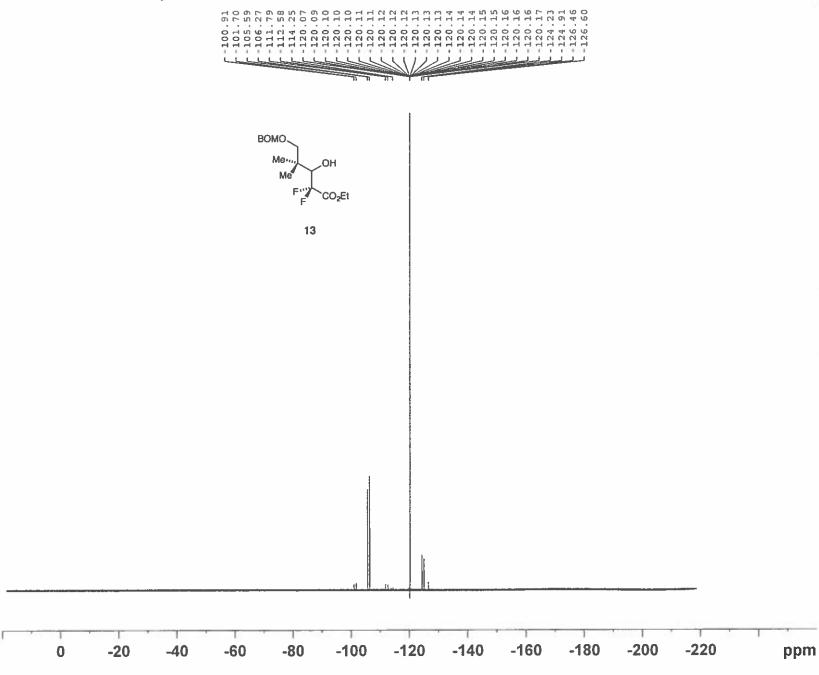
1.37

21

22


675.9

679.4


683.2

0.4465

0.0452

ejt cry zinc 2-6 mF19CPD CDCl3 {e:\bruk400data\2012\Jun} ejt 39

NAME EXPNO PROCNO Date Time INSTRUM	2012-06-11-ejt 11 1 20120611 12.34 AV400	-39
PROBHD PULPROG TD SOLVENT NS	5 mm PABBO BB- 2gig 131072 CDC13 16	
SWH FIDRES AQ RG DW	89285.711 0.681196 0.7340532 4100 5.600	sec
DE TE D1 D11 TD0	7.51 293.7 1.00000000 0.03000000	usec K sec
NUC1 P1 PL1 PL1W SF01	CHANNEL fl ==== 19F 10.70 -5.00 27.00716019 376.4607164	usec dB W
NUC1 P1 PL1 PL1W SFO1	19F 10.70 -5.00 27.00716019	usec dB W MHZ usec dB dB W W MHZ

TOWNSHIP I THE COLL	3.9649		Comment		ejl cry z	inc produc	t mPRO	ONnight CE	OCI3 (e:\br	uk400data	\2012\Sep}	ejt 37					
ate	25 Sep 2012 08	3:06:40						te Stamp			012 08:06:						
ile Name	\\ss7a.ds.man.a		15\vol3\user:	s\snmrdala\bi	ruk400data\	\2012\Sep	\data\ejt\r	mr\2012-09-	-24-ejt-37\	21\pdata\1	\1r	Freque	ncy (MHz)	4	00.13		
lucleus	1H	i		f Transients				igin		AV400		Origina	l Points Co	unt 3	2768		
wner	Administrator		Points Co	unt	32768		Pu	lse Sequend	ce	zg30b		Receiv	er Gain	9	0.50		
W(cyclical) (Hz)	8264.46		Solvent		CHLOR	OFORM-	d Sp	ectrum Offs	et (Hz)	2464.927	72	Spectro	ım Type	S	TANDARD		
weep Width (Hz)	8264.21		Temperat	ure (degree	C) 21.100												
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	7.021.001.1 4,669 (i	icalSc	TBDPSC Me)	a a										1.10		
0.4 =															1		
0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	7.44 -7.42 -7.38 -7.27							4.38 -4.13 -4.07	-3.87	3.39				1,41 1.39	1.19	111111111	
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	7.44 5.27 0.2 0.2 0.2		6.5	6.0	5.5	5.0	4.5	4.0 Chemical Sh	3.ift (ppm)	5	3.0	2.5	2.0	1.5	1.0	0.5	0
0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		No.	(ppm)	(Hz)	5.5 Height	No.	4.5 (ppm)	4.0 Chemical Sh	3.ift (ppm)	5 No.	(ppm)	(Hz)	Height	1.5 No.	1.0 (ppm)	(Hz)	Height
0.3 0.2 9.7 9.7 9.7 9.0 (Hz	z) Height 3.7 0.0991	No. 9	(ppm) 3.42	(Hz)	Height 0.0266	No.	4.5 (ppm) 7.38	4.0 Chemical Sh (Hz) 2954.1	3.ift (ppm) Height 0.0268	No. 25	(ppm) 7.46	(Hz) 2984.4	Height 0.0597	1.5 No. 33	1.0 (ppm) 7.73	(Hz) 3092.1	Height 0.0258
0.3 0.2 0.2 0.1 92.2 0.1 8.0 0. (ppm) (Hz 1 1.01 404 2 1.01 406	z) Height 3.7 0.0991 5.0 0.1034	No. 9	(ppm) 3.42 3.87	(Hz) 1367.4 1549.3	Height 0.0266 0.0257	No. 17 18	4.5 (ppm) 7.38 7.40	4.0 Chemical Sh (Hz) 2954.1 2960.4	3. ift (ppm) Height 0.0268 0.0893	No. 25 26	(ppm) 7.46 7.47	(Hz) 2984.4 2988.6	Height 0.0597 0.0512	1.5 No. 33 34	1.0 (ppm) 7.73 7.73	(Hz) 3092.1 3094.3	Height 0.0258 0.0699
0.3 0.2 4 52.7 4 62.7 4	z) Height 3.7 0.0991 5.0 0.1034 9.0 1.0000	No. 9 10	(ppm) 3.42 3.87 3.90	(Hz) 1367.4 1549.3 1559.4	Height 0.0266 0.0257 0.0233	No. 17 18 19	4.5 (ppm) 7.38 7.40 7.42	4.0 Chemical Sh (Hz) 2954.1 2960.4 2967.7	3. ift (ppm) Height 0.0268 0.0893 0.1354	5 No. 25 26 27	(ppm) 7.46 7.47 7.49	(Hz) 2984.4 2988.6 2995.2	Height 0.0597 0.0512 0.0433	1.5 No. 33 34 35	1.0 (ppm) 7.73 7.73 7.74	(Hz) 3092.1 3094.3 3095.6	Height 0.0258 0.0699 0.0802
0.3 0.2 9.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	z) Height 3.7 0.0991 6.0 0.1034 9.0 1.0000	No. 9	(ppm) 3.42 3.87 3.90 4.07	(Hz) 1367.4 1549.3 1559.4 1629.2	Height 0.0266 0.0257 0.0233 0.0093	No. 17 18 19 20	4.5 (ppm) 7.38 7.40 7.42 7.42	4.0 Chemical Sh (Hz) 2954.1 2960.4 2967.7 2969.2	3. ift (ppm) Height 0.0268 0.0893 0.1354 0.1038	5 No. 25 26 27 28	(ppm) 7.46 7.47 7.49 7.68	(Hz) 2984.4 2988.6 2995.2 3074.4	Height 0.0597 0.0512 0.0433 0.0505	1.5 No. 33 34 35 36	1.0 (ppm) 7.73 7.73 7.74 7.75	(Hz) 3092.1 3094.3 3095.6 3101.9	Height 0.0258 0.0699 0.0802 0.0759
0.3 0.2 9.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	z) Height 1.7 0.0991 1.0 0.1034 1.0000 1.9 0.1219	No. 9 10	(ppm) 3.42 3.87 3.90 4.07 4.13	(Hz) 1367.4 1549.3 1559.4 1629.2 1653.7	Height 0.0266 0.0257 0.0233 0.0093 0.0094	No. 17 18 19 20 21	4.5 (ppm) 7.38 7.40 7.42 7.42 7.43	4.0 Chemical Sh (Hz) 2954.1 2960.4 2967.7 2969.2 2971.0	3. ift (ppm) Height 0.0268 0.0893 0.1354 0.1038 0.0623	No. 25 26 27 28 29	(ppm) 7.46 7.47 7.49 7.68 7.70	(Hz) 2984.4 2988.6 2995.2 3074.4 3081.2	Height 0.0597 0.0512 0.0433 0.0505 0.0732	1.5 No. 33 34 35	1.0 (ppm) 7.73 7.73 7.74	(Hz) 3092.1 3094.3 3095.6	Height 0.0258 0.0699 0.0802
0.3 0.2 92.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	z) Height 3.7 0.0991 3.0 0.1034 9.0 1.0000 1.9 0.1219 1.3 0.0775	No. 9 10 11	(ppm) 3.42 3.87 3.90 4.07	(Hz) 1367.4 1549.3 1559.4 1629.2	Height 0.0266 0.0257 0.0233 0.0093	No. 17 18 19 20	4.5 (ppm) 7.38 7.40 7.42 7.42	4.0 Chemical Sh (Hz) 2954.1 2960.4 2967.7 2969.2	3. ift (ppm) Height 0.0268 0.0893 0.1354 0.1038	5 No. 25 26 27 28	(ppm) 7.46 7.47 7.49 7.68	(Hz) 2984.4 2988.6 2995.2 3074.4	Height 0.0597 0.0512 0.0433 0.0505	1.5 No. 33 34 35 36	1.0 (ppm) 7.73 7.73 7.74 7.75	(Hz) 3092.1 3094.3 3095.6 3101.9	Height 0.0258 0.0699 0.0802 0.0759

7.46

24

2983.3

3.39

1357.3

16

0.0242

7.27

2908.9

0.0286

32

0.0587

7.72

0.0400

			1													11/2012 13:
cquisition	n Time (sec)		Comment				30Nnight CDC	13 {e:\bru	k400data	1\2012\Sep} e	1 37					
Date		25 Sep 2012 08:04			p 2012 08:0											
ile Name			vol5\vol3\users\snmrd	ata\bruk400dat	a\2012\Sep	\data\ejt\n	mr\2012-09-24	-ejt-37\20		\1r		ency (MHz)		100.61		
lucleus		13C	Number of Trans	sients 1000		0	rigin		AV400			al Points C	ount	32768		
wner		Administrator	Points Count	32768			ulse Sequence		zgpg30			ver Gain		512.00		
W(cyclica	al) (Hz)	30241.94	Solvent		DROFORM-	d S	pectrum Offse	et (Hz)	11328.5	381	Specti	rum Type		STANDAR	lD	
weep Wid	dth (Hz)	30241.01	Temperature (de	gree C) 21.60	0											
0.9 0.8 0.7 0.6 0.7 0.6 0.3 majarajarajarajarajarajarajarajarajaraja	12-0 9-24-cj t-37	164.36 164.06 163.73 158.97	Cca 135.68 136.77 136.63 136.77 129.61			e	OH CO₂Et	77.32.77.00					- 38.04	-29.67 -26.76 -26.52	$\frac{-20.16}{-18.98} -19.11$ -13.92	
1	176 168	160 152	144 136 12	28 120	112	104	96 88	71111111111111111111111111111111111111	72	64	56 4	48 40	3	24	16	8
			144 136 12	28 120	112 1	104 S	hemical Shift		72	64 (ppm)	56 4	48 40	No.	2 24 (ppm)	16 (Hz)	8 Height
lo. (pp	pm) (Hz)) Height N	144 136 12 (ppm) (Hz	28 120) Height	112 No.	104	Chemical Shift (Hz)	(ppm)		(ppm)						
lo. (pp	pm) (Hz)) Height 1 0.0093	144 136 12 (ppm) (Hz 26.52 2668	28 120) Height .4 0.6070	112 1	(ppm)	(Hz) 7747.2	(ppm) Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
lo. (pp 1 5.7 2 6.5	pm) (Hz) .74 577. .56 660.) Height N 1 0.0093 2 0.0119	144 136 12 (ppm) (Hz 26.52 2668 26.76 2692) Height .4 0.6070 .4 0.6829	No. 19	(ppm) 77.00	(Hz) 7747.2 7767.5	(ppm) Height 1.0000	No. 28	(ppm) 127.84 129.61	(Hz) 12862.0	Height 0.5090	No.	(ppm) 135.68	(Hz) 13651.0	Height 0.3960
lo. (pp 1 5.7 2 6.5 3 6.7	pm) (Hz) .74 577. .56 660. .79 683.	Height 1 0.0093 2 0.0119 2 0.0090	144 136 12 (ppm) (Hz 26.52 2668 26.76 2692 29.67 2985	28 120) Height 1.4 0.6070 1.4 0.6829 1.0 0.0095	No. 19 20 21	(ppm) 77.00 77.20 77.32	(Hz) 7747.2 7767.5 7779.5	(ppm) Height 1.0000 0.0691	No. 28 29	(ppm) 127.84 129.61	(Hz) 12862.0 13040.1	Height 0.5090 0.4893	No. 37 38	(ppm) 135.68 158.97	(Hz) 13651.0 15994.3	Height 0.3960 0.0089
lo. (pp 1 5.7 2 6.5 3 6.7 4 13.	pm) (Hz) .74 577. .56 660. .79 683. 3.92 1400.	Height 1 0.0093 2 0.0119 2 0.0090 3 0.2237	144 136 12 (ppm) (Hz 26.52 2668 26.76 2692 29.67 2985 38.04 3827) Height .4 0.6070 .4 0.6829 .0 0.0095 .6 0.1250	No. 19 20 21 22	(ppm) 77.00 77.32 114.42	(Hz) 7747.2 7767.5 7779.5	(ppm) Height 1.0000 0.0691 0.8987 0.0121	No. 28 29 30 31	(ppm) 127.84 129.61 129.98 130.01	(Hz) 12862.0 13040.1 13077.9 13080.7	Height 0.5090 0.4893 0.2343	No. 37 38 39	(ppm) 135.68 158.97 163.73 164.02	(Hz) 13651.0 15994.3 16473.3 16502.8	Height 0.3960 0.0089 0.0166
lo. (pp 1 5.7 2 6.5 3 6.7 4 13. 5 18.	pm) (Hz) .74 577. .56 660. .79 683. .92 1400. .8.98 1909.	Height 1 0.0093 2 0.0119 2 0.0090 3 0.2237 8 0.1580	144 136 12 (ppm) (Hz 26.52 2668 26.76 2692 29.67 2985 38.04 3827 62.77 6315	28 120) Height .4 0.6070 .4 0.6829 .0 0.0095 .6 0.1250 .7 0.1868	No. 19 20 21 22 23	(ppm) 77.00 77.20 77.32 114.42 116.95	(Hz) 7747.2 7767.5 7779.5 11511.7	(ppm) Height 1.0000 0.0691 0.8987 0.0121 0.0172	No. 28 29 30 31 32	(ppm) 127.84 129.61 129.98 130.01 132.09	(Hz) 12862.0 13040.1 13077.9 13080.7 13290.2	Height 0.5090 0.4893 0.2343 0.2185 0.1047	No. 37 38 39 40 41	(ppm) 135.68 158.97 163.73 164.02 164.06	(Hz) 13651.0 15994.3 16473.3 16502.8 16506.5	Height 0.3960 0.0089 0.0166 0.0220 0.0221
o. (pp 1 5.7 2 6.5 3 6.7 4 13. 5 18. 6 19.	pm) (Hz) .74 577. .56 660. .79 683. .92 1400. .8.98 1909.	Height 1 0.0093 2 0.0119 2 0.0090 3 0.2237 8 0.1580 7 0.2472	144 136 12 (ppm) (Hz 26.52 2668 26.76 2692 29.67 2985 38.04 3827 62.77 6315 73.31 7376	28 120) Height .4 0.6070 .4 0.6829 .0 0.0095 .6 0.1250 .7 0.1868 .2 0.0789	No. 19 20 21 22 23 24	(ppm) 77.00 77.32 114.42	(Hz) 7747.2 7767.5 7779.5 11511.7 11766.5	(ppm) Height 1.0000 0.0691 0.8987 0.0121	No. 28 29 30 31	(ppm) 127.84 129.61 129.98 130.01 132.09	(Hz) 12862.0 13040.1 13077.9 13080.7	Height 0.5090 0.4893 0.2343 0.2185	No. 37 38 39 40	(ppm) 135.68 158.97 163.73 164.02	(Hz) 13651.0 15994.3 16473.3 16502.8	Height 0.3960 0.0089 0.0166 0.0220

0.4990

12860.1

135.63

13646.4

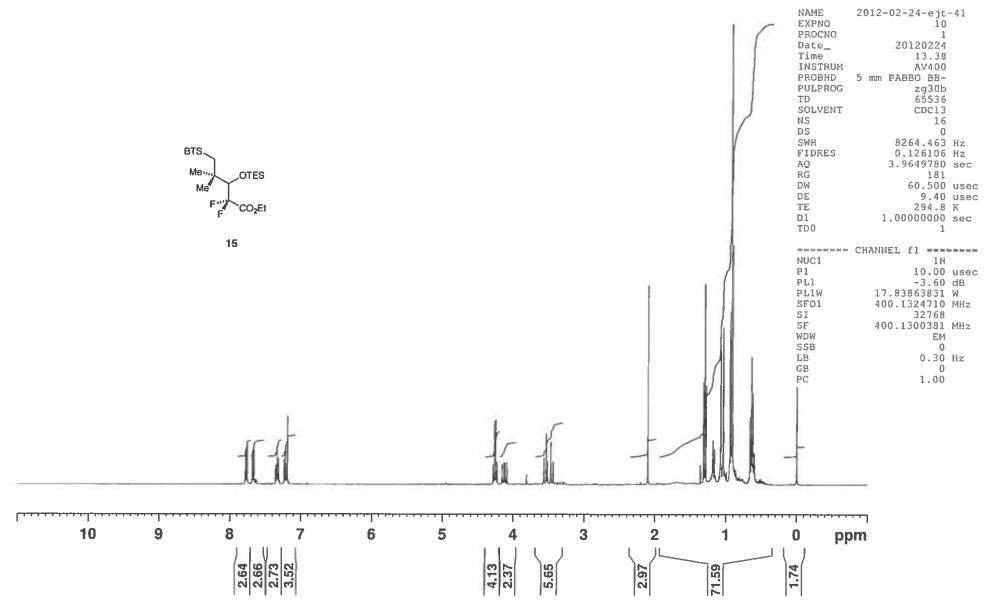
0.4880

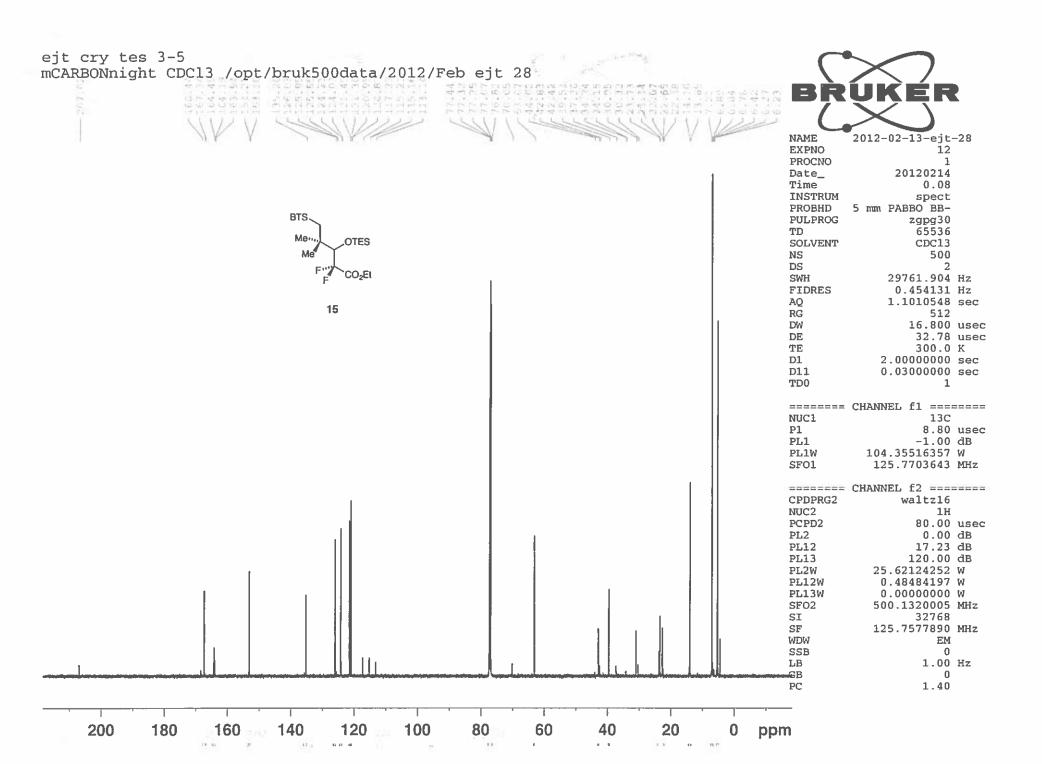
0.0754

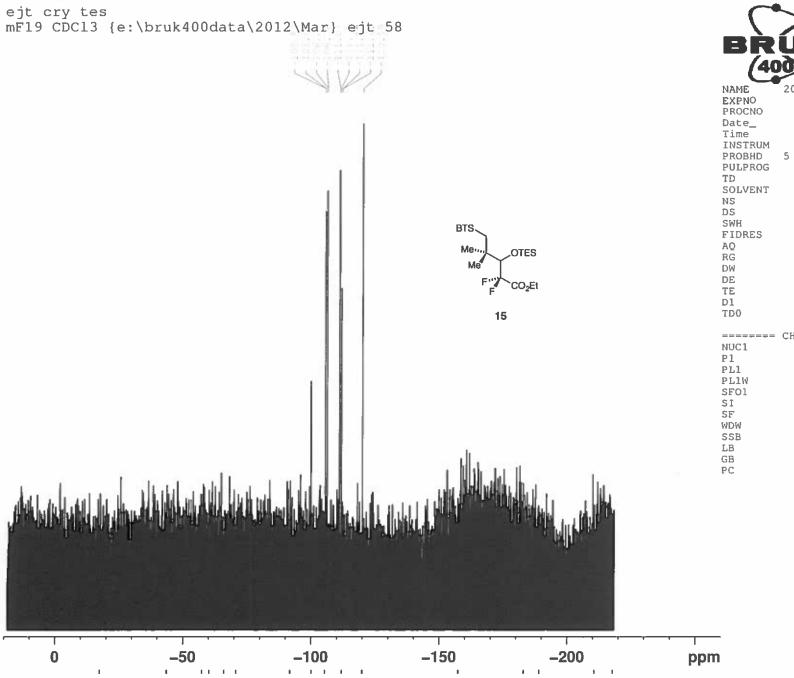
7739.8

0.0903

23.80

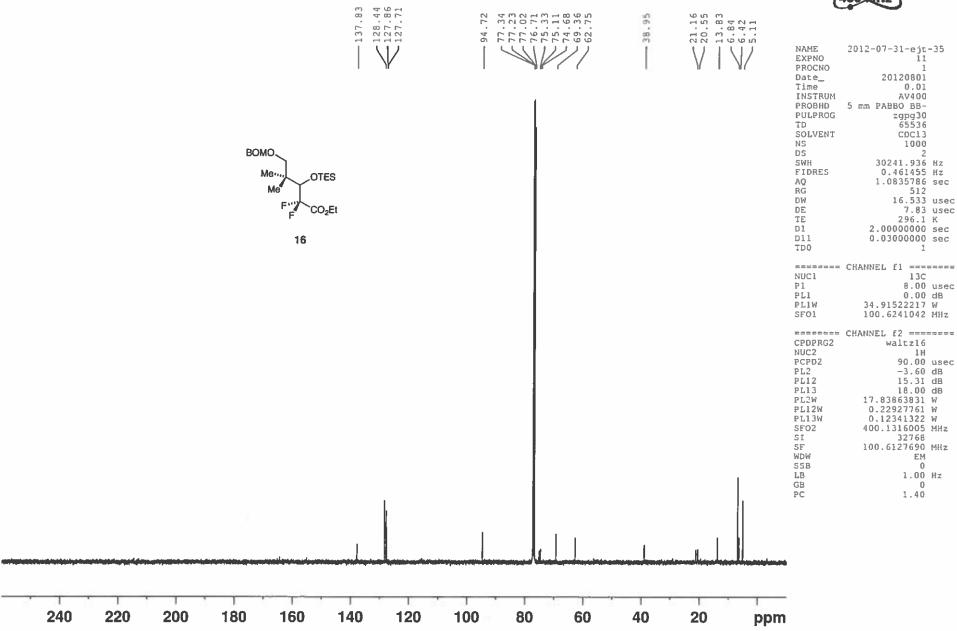

2394.3


76.93

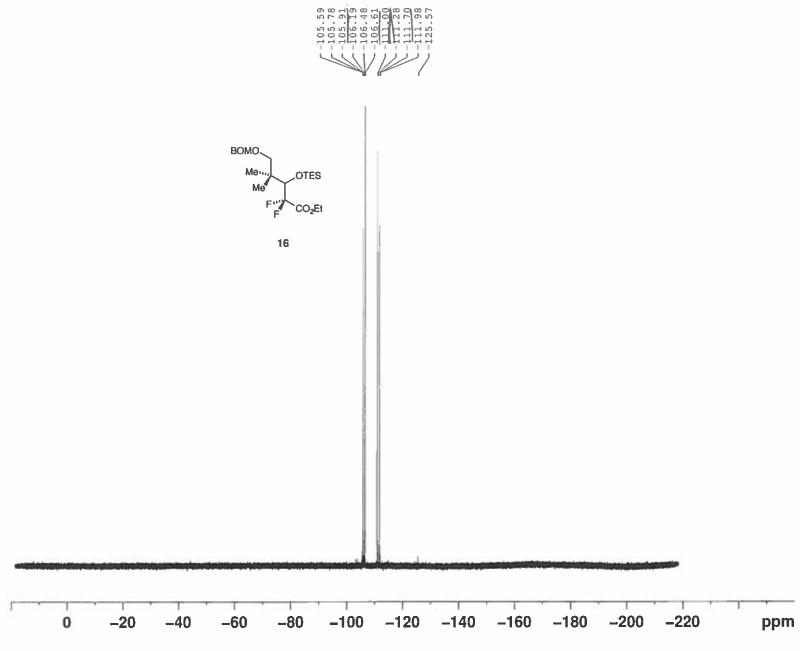

18

27

NAME	2012-03-21-ejt	-58
EXPNO	10	
PROCNO	1	
Date_	20120321	
Time	15.43	
INSTRUM	AV400	
PROBHD	5 mm PABBO BB-	
PULPROG	żg	
TD	131072	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	89285.711	Hz
FIDRES	0.681196	Hz
AQ	0.7340532	sec
RG	4100	
DW	5.600	usec
DE	11.01	usec
TE	295.1	K
D1	1.00000000	sec
TD0	1	

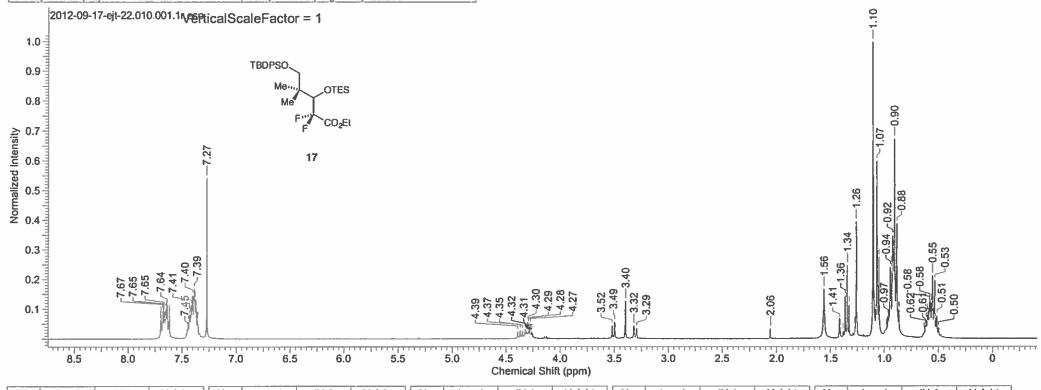

=======	CHANNEL f1 ====	
NUC1	19F	
P1	10.70	usec
PL1	-5.00	dB
PL1W	27.00716019	W
SF01	376.4607164	MHz
SI	262144	
SF	376.4983660	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	2.00	

								29/11/2012 16:44:47
Acquisition Time (sec)	3.1719	Comment	ejt cry tes prot mPROT	ON CDCl3 /opt/bruk500da	ta/2012/Jul ejt 10	Date	31 Jul 2012 11:08:00	
Date Stamp	31 Jul 2012 11:08:00	File Name	\\ss7a.ds.man.ac.uk\vc	ol5\vol3\users\snmrdata\bru	k500data\bruk500data\2	2012\Juf\data\ejt\nmr\2012-	07-31-ejt-10\10\pdata\1	1r
Frequency (MHz)	500.13	Nucleus	1H	Number of Transients	16	Origin	spect	
Original Points Count	32768	Owner	vnmr1	Points Count	32768	Pulse Sequence	zg30b	
Receiver Gain	90.50	SW(cyclical) (Hz)	10330.58	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	3080.2925	
Spectrum Type	STANDARD	Sweep Width (Hz)	10330.26	Temperature (degree C)	27.000			
Normalized Intensity 7.37 7.37 7.37 7.36 Normalized Intensity 6.0 7.37 7.37	0.010.001.11.46PticalSc	BOMO Me OTES Me CO ₂ Et 16	0.5 0.4.76 4.75 4.72 4.72		3.45	2.5 2.0	-1.58 -1.38 -1.35 -1.03	0.69 0.69 0.69 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
				Chemical Shift (ppm)				

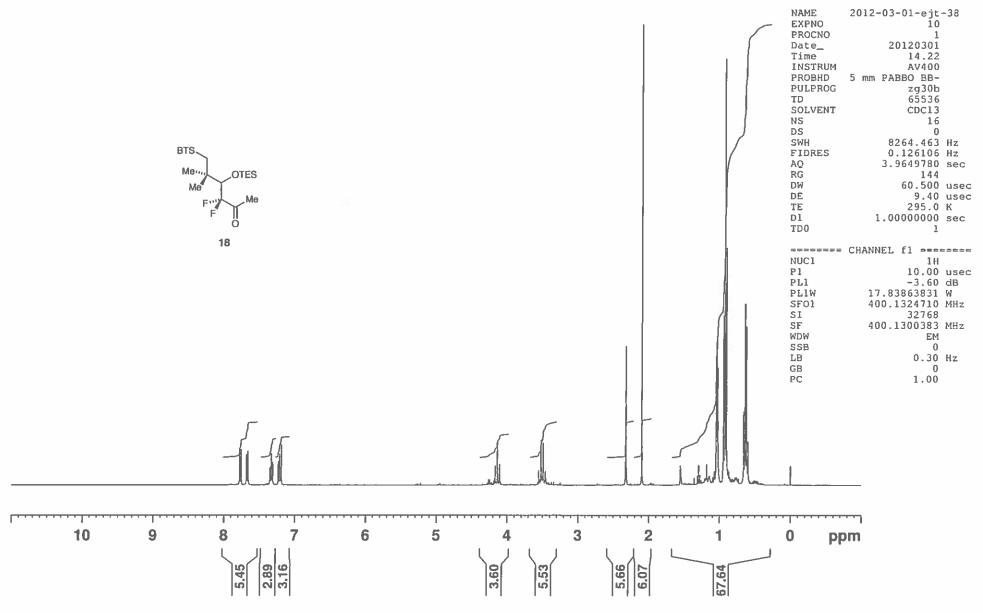

Ala.	((1.1-)	11-1-64	Ma	/>	71.1-1	11-1-64	N1=	((1.1-1	1 letelet	Ma	(46.1-3	I Intolet	Ma	(71.1-3	I totalet
No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
1	0.52	259.2	0.0866	10	0.69	347.1	0.0698	19	1.35	676.2	0.1536	28	4.29	2146.6	0.0634	37	4.75	2373.3	0.1291
2	0.53	267.0	0.0938	11	0.92	461.9	0.0986	20	1.36	679.7	0.0425	29	4.31	2153.9	0.0958	38	4.76	2379.9	0.0568
3	0.64	319.4	0.0536	12	0.94	469.7	0.1950	21	1.37	683.5	0.3057	30	4.32	2161.1	0.0920	39	7.27	3635.9	0.3093
4	0.65	323.8	0.0573	13	0.96	477.6	0.1019	22	1.38	690.4	0.1533	31	4.56	2278.4	0.0522	40	7.35	3675.0	0.0455
5	0.65	327.6	0.1427	14	0.96	479.5	0.0617	23	1.58	789.4	0.0789	32	4.58	2290.1	0.1087	41	7.36	3678.8	0.4257
6	0.66	331.7	0.1452	15	0.97	484.9	0.3933	24	3.30	1652.3	0.0458	33	4.62	2311.8	0.1047	42	7.36	3681.7	0.1335
7	0.67	335.4	0.1599	16	0.99	492.8	1.0000	25	3.32	1661.4	0.0594	34	4.65	2323.5	0.0587	43	7.37	3684.5	0.1228
8	0.68	339.5	0.1533	17	1.00	500.6	0.3154	26	3.43	1716.3	0.0788	35	4.72	2358.5	0.0520				
9	0.69	343.6	0.0687	18	1.03	515.1	0.2534	27	3.45	1725.4	0.0613	36	4.73	2365.1	0.1230				

ejt cry tes prot mCARBONnight CDCl3 {e:\bruk400data\2012\Jul} ejt 35

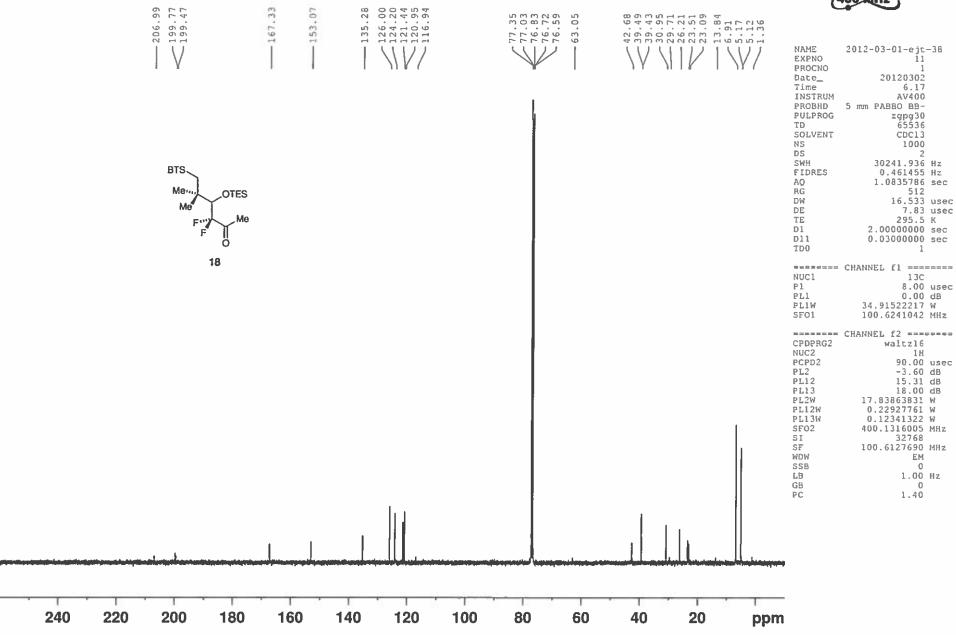
ejt cry tes prot mF19CPD CDCl3 {e:\bruk400data\2012\Jul} ejt 35

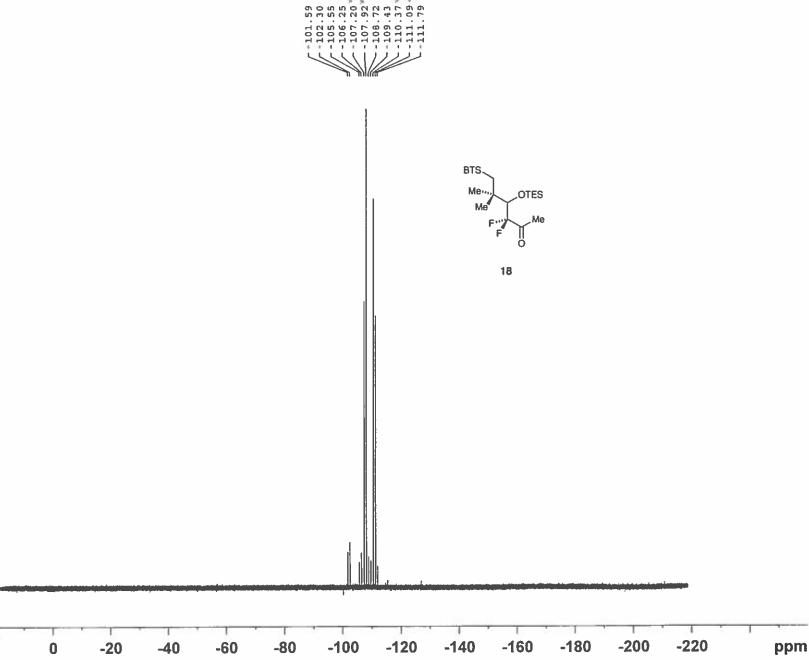


NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	2012-07-31-e jt- 10 20120731 11.44 AV400 5 mm PABBO BB- zgig 131072 CDC13 16 4	-35
SWH FIDRES AQ RG DW DE TE D1 D11 TD0	89285.711 0.681196 0.7340532 4100 5.600 7.51 295.6 1.00000000 0.03000000	
NUC1 P1 PL1 PL1W SFO1	CHANNEL f1 ==== 19F 10.70 -5.00 27.00716019 376.4607164	usec dB W
CPDPRG2 NUC2 PCPD2 PL12 PL12W PL12W SFO2 SI SF WDW SSB LB GB PC	CHANNEL f2 waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761 400.1316005 262144 376.4983660 EM 0 0.30 0 2.00	usec dB


30/11/2012 14:32:02

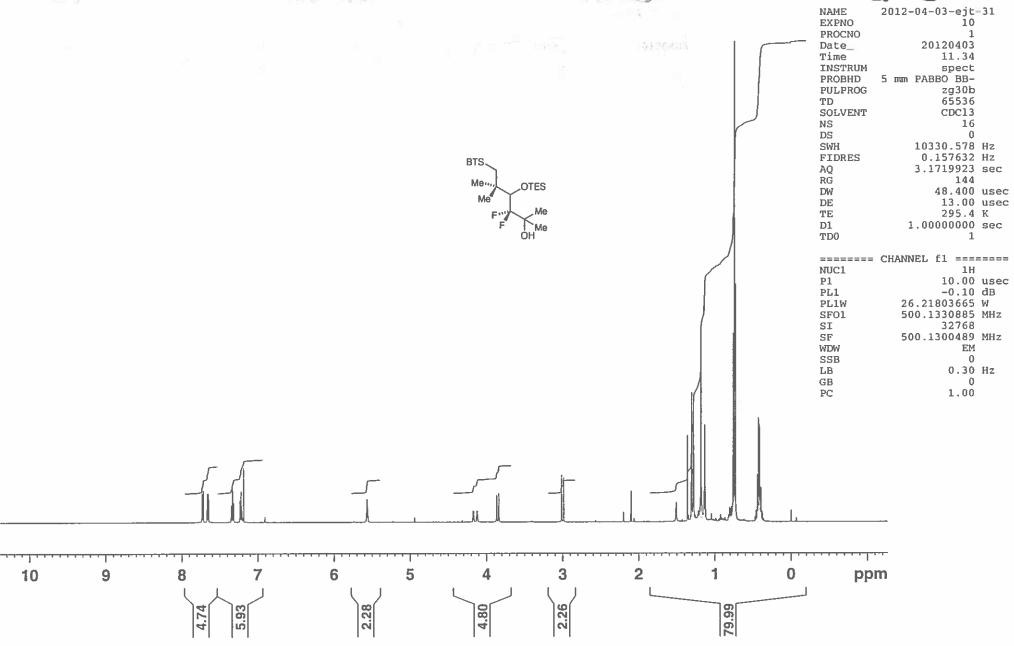
Acquisition Time (sec)	3.9649	Comment	ejt cry tes protection m	PROTON CDCl3 (e:\bruk4	100data\2012\Sep} ejt 22		
Date	17 Sep 2012 15:04:48			Date Stamp	17 Sep 2012 15:04:48		
File Name	\\ss7a.ds.man.ac.uk\vc	ol5\vol3\users\snmrdata\bru	k400data\2012\Sep\data	\ejt\nmr\2012-09-17-ejt-22\	\10\pdata\1\1r	Frequency (MHz)	400.13
Nucleus	1H	Number of Transients	16	Origin	AV400	Original Points Count	32768
Owner	Administrator	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	287.00
SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2464.6750	Spectrum Type	STANDARD
Sweep Width (Hz)	8264.21	Temperature (degree C)	22.200				

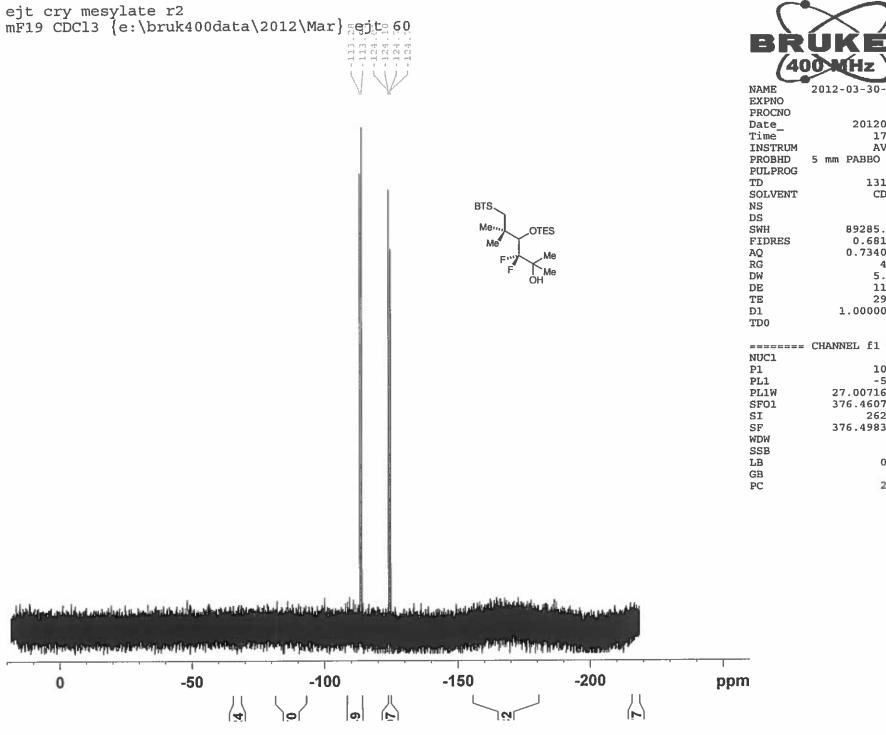

N	lo.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height												
	1	0.50	198.9	0.0365	12	0.61	244.1	0.0597	23	0.94	377.0	0.2404	34	1.26	503.4	0.3944	45	3.29	1318.0	0.0350
	2	0.51	205.2	0.0761	13	0.61	245.8	0.0438	24	0.95	378.3	0.2398	35	1.27	508.1	0.0415	46	3.32	1327.8	0.0429
	3	0.53	213.1	0.1953	14	0.62	247.9	0.0422	25	0.96	383.8	0.0689	36	1.33	530.6	0.1129	47	3.40	1359.1	0.1272
	4	0.54	217.3	0.0733	15	0.63	251.6	0.0247	26	0.97	386.3	0.0770	37	1.34	537.7	0.2470	48	3.49	1398.5	0.0558
	5	0.55	220.9	0.2121	16	0.86	345.7	0.0959	27	0.97	389.4	0.0415	38	1.36	544.7	0.1441	49	3.52	1408.3	0.0440
	6	0.56	225.2	0.1204	17	0.88	353.0	0.3885	28	0.98	391.6	0.0350	39	1.38	552.0	0.0236	50	4.26	1704.4	0.0213
1	7	0.58	230.2	0.1316	18	0.90	360.9	0.6733	29	1.05	419.6	0.2737	40	1.41	564.4	0.0379	51	4.27	1709.4	0.0484
	8	0.58	233.0	0.1224	19	0.91	362.4	0.5130	30	1.07	426.7	0.5991	41	1.41	565.9	0.0633	52	4.28	1711.7	0.0527
	9	0.59	236.0	0.0720	20	0.92	366.7	0.3024	31	1.08	432.5	0.0672	42	1.42	567.4	0.0394	53	4.29	1716.5	0.0498
1	10	0.60	238.3	0.0895	21	0.92	368.7	0.3475	32	1.09	434.5	0.0747	43	1.56	624.4	0.1664	54	4.30	1718.8	0.0555
1	l1	0.60	240.5	0.0780	22	0.93	370.4	0.2798	33	1.10	440.8	1.0000	44	2.06	822.9	0.0340	55	4.31	1723.6	0.0223



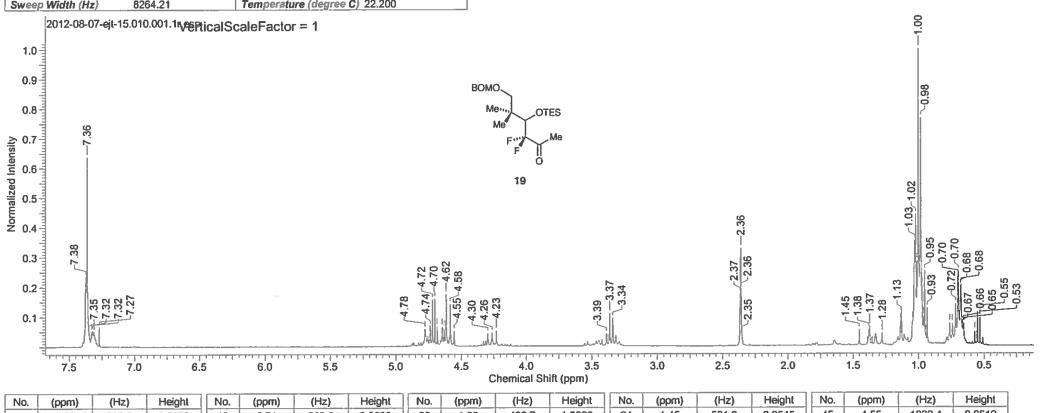
me ketone mCARBONnight CDCl3 {e:\bruk400data\2012\Mar} ejt 38

me ketone mF19CPD CDCl3 {e:\bruk400data\2012\Mar} ejt 38





NAME	2012-03-01-ejt-	-38
EXPNO	12	
PROCNO	1	
Date	20120301	
Time	14.23	
INSTRUM	AV400	
PROBHD	5 mm PABBO BB-	
PULPROG	zgig	
TD	131072	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	89285.711	Hz
FIDRES		Hz
AO	0.7340532	sec
RG	4100	
DW	5,600	usec
DE	7.51	
TE	295.1	
Di	1.00000000	
D11	0.03000000	
TDO	1	
	-	
*****	CHANNEL f1 ====	====
	CHANNEL f1 ====	
NUC1 P1	19F	
NUC1		usec
NUC1 P1 PL1	19F 10.70 -5.00	usec dB
NUC1 P1	19F 10.70	usec dB W
NUC1 P1 PL1 PL1W	19F 10.70 -5.00 27.00716019	usec dB W
NUC1 P1 PL1 PL1W SFO1	19F 10.70 -5.00 27.00716019	usec dB W MHz
NUC1 P1 PL1 PL1W SFO1	19F 10.70 -5.00 27.00716019 376.4607164	usec dB W MHz
NUC1 P1 PL1 PL1W SFO1	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2	usec dB W MHz
NUC1 P1 PL1 PL1W SFO1 CPDPRG2	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 ==== waltz16	usec dB W MHz
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 ==== waltz16 1H	usec dB W MHz
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2 PCPD2	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2	usec dB W MHz usec dB
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2 PCPD2 PL2	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 ==== waltz16 1H 90.00 -3.60	usec dB W MHZ usec dB dB
NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 ==== waltz16 1H 90.00 -3.60 15.31	usec dB W MHz usec dB dB
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 PL2W	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 ==== waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761	usec dB W MHz usec dB dB
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 PL12W PL12W	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761	usec dB W MHz usec dB dB W
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 PL12W PL12W SFO2	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 ==== waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761 400.1316005	usec dB W MHZ usec dB dB W W MHZ
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12W PL12W PL12W SFO2 SI	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 ==== waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761 400.1316005 262144	usec dB W MHZ usec dB dB W W MHZ
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2 PCPD2 PL12 PL12W PL12W PL12W SFO2 SI SF	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 ==== waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761 400.1316005 262144 376.4983660	usec dB W MHZ usec dB dB W W MHZ
NUC1 P1 PL1 PL1W SF01 ======= CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 PL12W SF02 SI SF WDW	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761 400.1316005 262144 376.4983660 EM	usec dB W MHZ usec dB dB W W MHZ
NUC1 P1 PL1 PL1W SFO1 CPDPRG2 NUC2 PCPD2 PL12 PL12 PL12W PL12W SFO2 SI SFO2 SSF	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761 400.1316005 262144 376.4983660 EM	usec dB W MHZ usec dB dB W W MHZ
NUC1 P1 PL1 PL1 PL1W SFO1 CCPDPRG2 NUC2 PCPD2 PL2 PL12 PL12W PL112W SFO2 SI SF WDW SSB LB	19F 10.70 -5.00 27.00716019 376.4607164 CHANNEL f2 waltz16 1H 90.00 -3.60 15.31 17.83863831 0.22927761 400.1316005 262144 376.4983660 EM 0 0.30	usec dB W MHZ usec dB dB W W MHZ



	,				
NAME	21	012-	-03-30-	-ejt∙	-60
EXPNO				10	
PROCNO				1	
Date_			20120	0330	
Time _			17	7.57	
INSTRUM			A)	7400	
PROBHD	5	mm	PABBO	BB-	
PULPROG				zg	
TD			133	L072	
SOLVENT			CI	Cl3	
NS				16	
DS				4	
SWH			89285	711	Hz
FIDRES			0.681	1196	Hz
AQ			0.7340)532	sec
RG			4	1100	
DW			5.	600	used
DE			11	L.01	used
TE			29	95.1	K
D1		3	L.00000	0000	sec
TD0				1	

=======	CHANNEL fl ======
NUCl	19F
P1	10.70 used
PL1	-5.00 dB
PL1W	27.00716019 W
SF01	376.4607164 MHz
SI	262144
SF	376.4983660 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	2.00

29/11/2012 17:03:06

Acquisition Time (sec)	3.9649	Comment	ejt cry meli mPROTO	N CDCI3 (e:\bruk400data\2	2012\Aug} ejt 15	Date	07 Aug 2012 16:04:32
Date Stamp	07 Aug 2012 16:04:32	2					
File Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bri	uk400data\2012\Aug\da	sta\ejt\nmr\2012-08-07-ejt-1	5\10\pdata\1\1r	Frequency (MHz)	400.13
Nucleus	1H	Number of Transients	16	Origin	AV400	Original Points Count	32768
Owner	Administrator	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	57.00
SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2464.9272	Spectrum Type	STANDARD
Sween Width (Hz)	8264 21	Temperature (degree C	1 22 200				

No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	Hz)	Height	No.	(ppm)	(HZ)	Height	NO.	(ppm)	(HZ)	Height
1	0.53	212.0	0.0952	12	0.71	282.9	0.0629	23	1.00	400.7	1.0000	34	1.45	581.3	0.0545	45	4.55	1822.4	0.0519
2	0.55	220.1	0.1146	13	0.72	287.2	0.1403	24	1.01	404.7	0.2829	35	2.35	941.7	0.0446	46	4.58	1834.0	0.1428
3	0.57	228.2	0.0492	14	0.74	296.8	0.0743	25	1.02	408.8	0.4415	36	2.36	943.5	0.1913	47	4.62	1846.9	0.1761
4	0.65	262.0	0.0748	15	0.76	304.9	0.0762	26	1.03	410.5	0.2809	37	2.36	945.2	0.3289	48	4.63	1853.2	0.0599
5	0.66	264.3	0.0802	16	0.93	373.5	0.1267	27	1.03	412.1	0.3534	38	2.37	946.7	0.1756	49	4.65	1858.7	0.0647
6	0.67	266.8	0.0663	17	0.94	377.2	0.0432	28	1.04	417.9	0.0848	39	3.34	1337.2	0.0945	50	4.69	1874.6	0.0660
7	0.68	270.3	0.2067	18	0.95	381.3	0.2509	29	1.13	451.9	0.0942	40	3.37	1346.5	0.1099	51	4.70	1881.2	0.1598
8	0.68	272.1	0.2004	19	0.96	385.1	0.0987	30	1.13	453.4	0.1088	41	3.39	1355.8	0.0427	52	4.72	1888.5	0.1570
9	0.69	275.1	0.0892	20	0.97	389.4	0.1997	31	1.28	511.2	0.0430	42	4.23	1692.8	0.0518	53	4.74	1895.1	0.0676
10	0.70	278.6	0.2478	21	0.98	392.9	0.7667	32	1.37	549.0	0.0650	43	4.26	1706.1	0.0454	54	4.74	1896.8	0.0426
11	0.70	279.6	0.2340	22	0.99	396.9	0.2736	33	1.38	552.0	0.0558	44	4.30	1719.0	0.0431	55	4.78	1910.7	0.0575

30/11/2012 10:40:20

																	30/	11/2012 10:40
Acquisition Time		0835		Commen	1	ejt cry n	neli mC/	ARBONnig	ht CDCI3 (e:	\bruk400dat	a\2012\A	ug) ejt 15	Date		0	8 Aug 2012	2 01:51:12	
Date Stamp		Aug 2012 0																
File Name	l/s	s7a.ds.man.	ac.uk\vc	l5\vol3\user	s\snmrdata\t	ruk400data	2012VA		nmr\2012-08	-07-ejt-15\2	2\pdata\1	\1г	Freque	ncy (MHz)		00.61		
Nucleus	13	C		Number o	of Transient	s 1000		0	rigin		AV400		Origina	il Points Co		2768		
Owner	Ac	Iministrator		Points Co	ount	32768		P	ulse Seguen	ıce	zgpg30		Receiv	er Gain	5	12.00		
SW(cyclical) (Hz)	30	241.94		Solvent		CHLOF	OFOR	VI-d S	pectrum Off	set (Hz)	11330.3	838	Spectro	ım Type	S	STANDARD)	
Sweep Width (Hz)	30	241.01		Temperat	ure (degree	C) 23.100												
1.0 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.2	199.11	2.001.1r _v e _p p				140	05 127.68 127.84	150	.]	00 90	15.77		-62.69		05-1/-38.9138.84	-29.6	20.94	0-5.04 -6.84
No. (ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
1 5.04	506.9	0.5443	11	13.78	1386.5	0.0286	21	69.31	6973.8	0.0433	31	77.00	7747.2	1.0000	41	127.84	12862.0	0.4885
2 5.40	542.9	0.1020	12	20.94	2107.3	0.1033	22	69.37	6979.3	0.2156	32	77.31	7778.6	0.9035	42	127.93	12871.2	0.0317
3 5.47	550.3	0.0425	13	21.12	2124.8	0.0187	23	69.45	6987.6	0.0507	33	90.76	9131.5	0.0177	43	128.40	12918.3	0.5878
4 6.26	629.7	0.0241	14	21.60	2172.8	0.1212	24	69.79	7021.8	0.0204	34	94.50	9508.1	0.2119	44	137.72	13856.9	0.1744
5 6.38	641.7	0.0241	15	26.00	2615.8	0.1999	25	74.17	7462.0	0.1225	35	94.68	9525.6	0.0300	45	137.80	13864.2	0.0260
6 6.74	678.6	0.1336	16	29.68	2985.9	0.1999	26	74.54	7499.8	0.0398	36	94.71	9529.3	0.0407	46	199.11	20033.0	0.0260
		-	17	38.84	3907.9	0.1899	27	74.63	7509.1	0.0360	37	117.14	11785.8	0.0240	47	199.41	20063.4	0.0447
	681.4	0.1883		ž						1	38	119.71	12044.3	0.0240	48	199.72	20093.9	0.0240
8 6.80	684.1	0.1352	18	38.91	3915.3	0.0243	28	74.78	7523.8	0.0857	7 —		1		40	155.12	20093.9	0.0240
9 6.84	687.8	0.7244	19	39.72	3996.5	0.0196	29	75.02	7547.8	0.0449	39	127.68	12846.3	0.2237				
	7000	1 0 4000 1	. ~~			0.0000	- 20	. 70.00	77440	. 0.0700	11 40 1	477 07	: 400004	0.7060				

30

0.0302

76.68

7714.9

0.9789

10

6.98

702.6

0.1890

20

62.69

6307.4

127.82

40

12860.1

29/11/2012 13:22:34

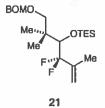
		_ .																
	sition Time			ł	Comment		ejt cry m	neli 3 mP	ROTON C	DCI3 /opt/bruk500	data/2012/O	t ejt 34	Date		19	Oct 2012 1	11:33:36	
	Stamp		Oct 2012 11:															
ile Na				c.uk\vol		\snmrdata\b		\bruk500		Oct\data\ejt\nmr\2		-34\10\pdata\						
	ency (MHz)		0.13		Nucleus		<u>1H</u>			mber of Transien			Origin			ect		
	al Points C		768		Owner		vnmr1			ints Count	32768	0.700	Pulse Se			30b		
	ver Gain		0.80		SW(cyclic		10330.5			lvent		OFORM-d	Spectrui	m Offset (Ha	z) 30	80.2925		
pectr	rum Type		FANDARD		Sweep Win		10330.2	(6	lei	mperature (degre	(C) 27.000							3
1.0 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.4 -]	o ojeonio (C	0.001.1 ı√eşp ti	caisc	aleraciói	-1			TBDPS A	OTES Me F O 20						-1.12		
0.5 - 0.4 - 0.3 - 0.2 -	1	7.68	7.44	L7.39	7					4.35	3.52 -3.48 -3.42	13.34 13.34 13.44 14.44	2.34		1.57		0.50	0.55
0.3	8.5	7.68	7.44	7.39	6.5	6.0	5.5	;		4.5 4.0 Chemical Shift (pp		3.0	2.5	2.0	1.5	0.1.15	0.59	0.55
0.3 - 0.2 - 0.1 -	8.5 (ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	4.5 4.0 Chemical Shift (pp	n) ght No.	(ppm)	2.5 (Hz)	Height	1.5	0.1 (bbu)	0.5 65.0 0.5 0.5 (Hz)	Height
0.3 - 0.2 - 0.1 -	8.5 (ppm)	(Hz) 267.7	Height 0.0431	No.	(ppm) 0.63	(Hz) 314.0	Height 0.0186	No. 23	(ppm) 0.94	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3	n) ght No. 353 34	(ppm) 1.03	2.5 (Hz) 517.0	Height 0.0402	1.5 No. 45	1.0 (ppm) 1.16	09:0 09:0 0.5 (Hz) 581.4	Height 0.0182
0.3 - 0.2 - 0.1 -	8.5 (ppm) 0.54 0.54	(Hz) 267.7 268.9	Height 0.0431 0.0464	No. 12 13	(ppm) 0.63 0.63	(Hz) 314.0 317.2	Height 0.0186 0.0284	No. 23 24	(ppm) 0.94 0.96	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0	n) ght No. 353 34 683 35	(ppm) 1.03 1.04	2.5 (Hz) 517.0 518.6	Height 0.0402 0.0352	1.5 No. 45 46	1.0 (ppm) 1.16 1.17	09:0 09:0 0.5 (Hz) 581.4 584.8	Height 0.0182 0.0152
0.3 - 0.2 - 0.1 - 1 2 3	8.5 (ppm) 0.54 0.54 0.55	(Hz) 267.7 268.9 276.8	Height 0.0431 0.0464 0.1038	No. 12 13 14	(ppm) 0.63 0.63 0.65	(Hz) 314.0 317.2 325.0	Height 0.0186 0.0284 0.0140	No. 23 24 25	(ppm) 0.94 0.96 0.96	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0 481.4 0.0	m) ght No. 353 34 383 35 315 36	(ppm) 1.03 1.04 1.04	2.5 (Hz) 517.0 518.6 522.4	Height 0.0402 0.0352 0.0359	1.5 No. 45 46 47	1.0 (ppm) 1.16 1.17 1.28	0.5 0.5 0.5 0.5 0.5 0.5 0.5	Height 0.0182 0.0152 0.1818
0.3 - 0.2 - 0.1 - 0.1 - 1 2 3 4	8.5 (ppm) 0.54 0.54	(Hz) 267.7 268.9	Height 0.0431 0.0464	No. 12 13 14 15	(ppm) 0.63 0.63 0.65 0.67	(Hz) 314.0 317.2 325.0 336.7	Height 0.0186 0.0284 0.0140 0.0190	No. 23 24 25 26	(ppm) 0.94 0.96 0.96 0.97	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0 481.4 0.0 486.8 0.0	ght No. 353 34 683 35 36 15 36 37	(ppm) 1.03 1.04 1.04 1.06	2.5 (Hz) 517.0 518.6 522.4 531.2	Height 0.0402 0.0352 0.0359 0.1567	1.5 No. 45 46 47 48	1.0 (ppm) 1.16 1.17 1.28 1.34	0.5 (Hz) 581.4 584.8 639.0 671.2	Height 0.0182 0.0152 0.1818 0.0200
0.3 - 0.2 - 0.1 - 0.1 - 1 2 3 4	8.5 (ppm) 0.54 0.54 0.55	(Hz) 267.7 268.9 276.8	Height 0.0431 0.0464 0.1038	No. 12 13 14 15	(ppm) 0.63 0.63 0.65	(Hz) 314.0 317.2 325.0 336.7 344.9	Height 0.0186 0.0284 0.0140	No. 23 24 25 26 27	(ppm) 0.94 0.96 0.96 0.97 0.98	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0 481.4 0.0 486.8 0.0 491.5 0.0	m) ght No. 353 34 683 35 615 36 106 37 607 38	(ppm) 1.03 1.04 1.04 1.06 1.07	2.5 (Hz) 517.0 518.6 522.4 531.2 534.1	Height 0.0402 0.0352 0.0359 0.1567 0.0731	1.5 No. 45 46 47 48 49	1.0 (ppm) 1.16 1.17 1.28 1.34 1.36	0.5 (Hz) 581.4 584.8 639.0 671.2 678.5	Height 0.0182 0.0152 0.1818 0.0200 0.0397
0.3 - 0.2 - 0.1 - 0.1 - 1 2 3 4 5 5	8.5 (ppm) 0.54 0.54 0.55 0.56	(Hz) 267.7 268.9 276.8 282.5	Height 0.0431 0.0464 0.1038 0.0932	No. 12 13 14 15	(ppm) 0.63 0.63 0.65 0.67	(Hz) 314.0 317.2 325.0 336.7	Height 0.0186 0.0284 0.0140 0.0190	No. 23 24 25 26 27 28	(ppm) 0.94 0.96 0.96 0.97	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0 481.4 0.0 486.8 0.0 491.5 0.0	ght No. 353 34 683 35 36 15 36 37	(ppm) 1.03 1.04 1.04 1.06	2.5 (Hz) 517.0 518.6 522.4 531.2	Height 0.0402 0.0352 0.0359 0.1567	1.5 No. 45 46 47 48	1.0 (ppm) 1.16 1.17 1.28 1.34	0.5 (Hz) 581.4 584.8 639.0 671.2	Height 0.0182 0.0152 0.1818 0.0200
0.3- 0.2- 0.1- 0.1- 2 3 4 5 6	8.5 (ppm) 0.54 0.54 0.55 0.56 0.57	(Hz) 267.7 268.9 276.8 282.5 284.7	Height 0.0431 0.0464 0.1038 0.0932 0.1130	No. 12 13 14 15	(ppm) 0.63 0.63 0.65 0.67 0.69	(Hz) 314.0 317.2 325.0 336.7 344.9	Height 0.0186 0.0284 0.0140 0.0190 0.0219	No. 23 24 25 26 27	(ppm) 0.94 0.96 0.96 0.97 0.98	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0 481.4 0.0 486.8 0.0 491.5 0.0	m) ght No. 353 34 383 35 363 36 360 37 3607 38 414 39	(ppm) 1.03 1.04 1.04 1.06 1.07	2.5 (Hz) 517.0 518.6 522.4 531.2 534.1	Height 0.0402 0.0352 0.0359 0.1567 0.0731	1.5 No. 45 46 47 48 49	1.0 (ppm) 1.16 1.17 1.28 1.34 1.36	0.5 (Hz) 581.4 584.8 639.0 671.2 678.5 685.7 719.8	Height 0.0182 0.0152 0.1818 0.0200 0.0397
0.3- 0.2- 0.1- 1 2 3 4 5 6	8.5 (ppm) 0.54 0.54 0.55 0.56 0.57 0.58	(Hz) 267.7 268.9 276.8 282.5 284.7 290.4	Height 0.0431 0.0464 0.1038 0.0932 0.1130 0.0931	No. 12 13 14 15 16 17	(ppm) 0.63 0.63 0.65 0.67 0.69	(Hz) 314.0 317.2 325.0 336.7 344.9 352.8	Height 0.0186 0.0284 0.0140 0.0190 0.0219 0.0133	No. 23 24 25 26 27 28	(ppm) 0.94 0.96 0.96 0.97 0.98	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0 481.4 0.0 486.8 0.0 491.5 0.0 494.7 0.0	m) ght No. 353 34 683 35 615 36 607 38 614 39 647 40	(ppm) 1.03 1.04 1.04 1.06 1.07	2.5 (Hz) 517.0 518.6 522.4 531.2 534.1 536.9	Height 0.0402 0.0352 0.0359 0.1567 0.0731 0.0888	1.5 No. 45 46 47 48 49 50	1.0 (ppm) 1.16 1.17 1.28 1.34 1.36 1.37	0.5 (Hz) 581.4 584.8 639.0 671.2 678.5 685.7 719.8 784.1	Height 0.0182 0.0152 0.1818 0.0200 0.0397 0.0202
0.3	8.5 (ppm) 0.54 0.54 0.55 0.56 0.57 0.58 0.59	(Hz) 267.7 268.9 276.8 282.5 284.7 290.4 294.5	Height 0.0431 0.0464 0.1038 0.0932 0.1130 0.0931 0.0897	No. 12 13 14 15 16 17 18	(ppm) 0.63 0.63 0.65 0.67 0.69 0.71	(Hz) 314.0 317.2 325.0 336.7 344.9 352.8 430.3	Height 0.0186 0.0284 0.0140 0.0190 0.0219 0.0133 0.0132	No. 23 24 25 26 27 28 29	(ppm) 0.94 0.96 0.96 0.97 0.98 0.99	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0 481.4 0.0 486.8 0.0 491.5 0.0 494.7 0.0 499.4 0.0	ght No. 353 34 683 35 3615 36 37 38 114 39 347 40 289 41	(ppm) 1.03 1.04 1.04 1.06 1.07 1.07	2.5 (Hz) 517.0 518.6 522.4 531.2 534.1 536.9 537.8	Height 0.0402 0.0352 0.0359 0.1567 0.0731 0.0888 0.0738	1.5 No. 45 46 47 48 49 50 51	1.0 (ppm) 1.16 1.17 1.28 1.34 1.36 1.37	0.5 (Hz) 581.4 584.8 639.0 671.2 678.5 685.7 719.8	Height 0.0182 0.0152 0.1818 0.0200 0.0397 0.0202 0.0216
0.3 - 0.2 - 0.1 - 1 2 3 4 5 6 7 8	8.5 (ppm) 0.54 0.54 0.55 0.56 0.57 0.58 0.59 0.60	(Hz) 267.7 268.9 276.8 282.5 284.7 290.4 294.5 298.6	Height 0.0431 0.0464 0.1038 0.0932 0.1130 0.0931 0.0897 0.0594	No. 12 13 14 15 16 17 18 19	(ppm) 0.63 0.63 0.65 0.67 0.69 0.71 0.86	(Hz) 314.0 317.2 325.0 336.7 344.9 352.8 430.3 441.1	Height 0.0186 0.0284 0.0140 0.0190 0.0219 0.0133 0.0132 0.0372	No. 23 24 25 26 27 28 29 30	(ppm) 0.94 0.96 0.96 0.97 0.98 0.99 1.00	4.5 4.0 Chemical Shift (pp (Hz) He 469.1 0.3 478.9 0.0 481.4 0.0 491.5 0.0 494.7 0.0 499.4 0.0 504.7 0.0	ght No. 353 34 355 363 35 365 360 37 38 39 41 40 330 42	(ppm) 1.03 1.04 1.04 1.06 1.07 1.07 1.08 1.09	2.5 (Hz) 517.0 518.6 522.4 531.2 534.1 536.9 537.8 542.9	Height 0.0402 0.0352 0.0359 0.1567 0.0731 0.0888 0.0738 0.3437	1.5 No. 45 46 47 48 49 50 51 52	1.0 (ppm) 1.16 1.17 1.28 1.34 1.36 1.37 1.44 1.57	0.5 (Hz) 581.4 584.8 639.0 671.2 678.5 685.7 719.8 784.1	Height 0.0182 0.0152 0.1818 0.0200 0.0397 0.0202 0.0216 0.0186

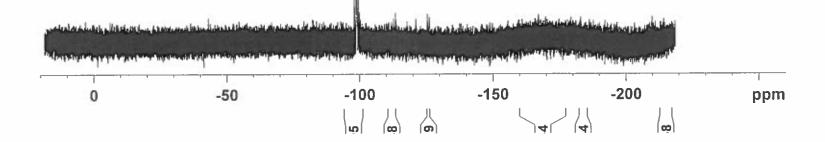
ejt cry meli mCARBONnight CDCl3 {e:\bruk400data\2012\Sep} ejt 20

30/11/2012 11:35:13

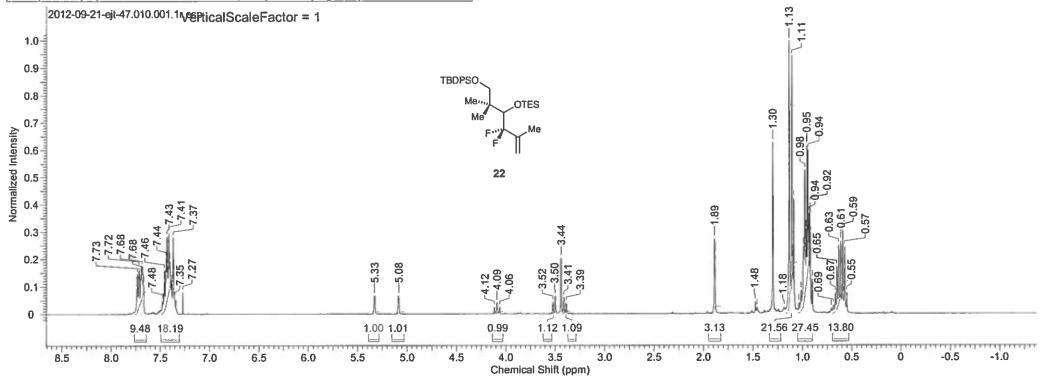
	•		_													30/	11/2012 11:35:13
Acquisition Time (sec)	3.1719	10	Comment		ejt cry w	ittig mPl	ROTON CI	OCI3 /opt/bru	ık500data/2	012/Aug	ejt 15	Date		06	Aug 2012	11:08:00	
Date Stamp	06 Aug 2012 11																
File Name	\\ss7a.ds.man.a		\vol3\users	\snmrdata\t	ruk500data	bruk500)data\2012\	Aug\data\ejt\	.nmr\2012-0	8-06-ejt-	15\10\pdata\	.1\1 <u>r</u>					
Frequency (MHz)	500.13	٨	Vucleus		1H		Nu	mber of Tra	nsients	16		Origin		sp	ect		
Original Points Count	32768	C	Owner		vnmr1		Po	ints Count		32768		Pulse S	equence	zg	3 0 b		
Receiver Gain	90.50	S	SW(cyclica	ıl) (Hz)	10330.5	8	So	vent		CHLORO	FORM-d	Spectru	m Offset (Ha	z) 30	80.2925		
Spectrum Type	STANDARD	S	Sweep Wid	fth (Hz)	10330.2	6	Te	nperature (degree C)	19.310							
2012-08-06-ejt-1	5.010.001.1 ւ_{/ՔБРէ} ј	calScal	leFactor	= 1												0.98	
0.9				ВОМО	_												
0.8				Me N	OTE	S											
0.7-9e-7-36					F	/le										:	
Normalized Intensity 0.0 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					21											_	
0.5 mg													191			1.01	
2 0.4															9	2	T)
0.3	77.1-					4.75	583								4	0.69	0.67
0.2	!				5.40	-	4.65 4.56.4.6	22	4	32.42					1.44	96.071	0.65
					5 5	7.4	4114	4.07 -4.05 4.02	ઌૄ૽	9.33 9.33 9.30				1.59	.27	o o	o
0.1 4								4					Į.	1	Ī	$\mathbb{N}_{\mathbb{N}}$	
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>					11111					3.0	2.5	2.0	1.		1.0	0.5
7.5	7.0	6.5	6.0	5.	o :	i.0	4.5	4.0 Chemical Sh	3.5 aift (ppm)		3.0	2.5	2.0				0.5
No. (ppm) (Hz	z) Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ррт)	(Hz)	Height	No.	(ppm)	(Hz)	Height
1 0.65 327	.6 0.0833	10	0.96	481.7	0.0726	19	3.30	1649.5	0.0662	28	4.63	2314.0	0.1497	37	7.31	3654.5	0.0471
2 0.66 330	.7 0.0898	11	0.98	487.7	0.9220	20	3.32	1658.6	0.0885	29	4.65	2325.7	0.0829	38	7.31	3657.7	0.0381
3 0.67 335	.8 0.2117	12	0.99	495.3	1.0000	21	3.42	1709.4	0.1050	30	4.73	2365.7	0.0640	39	7.32	3659.6	0.0439
4 0.68 338	.6 0.2200	13	1.01	503.5	0.4271	22	3.44	1718.5	0.0793	31	4.74	2372.4	0.1916	40	7.32	3663.1	0.0375
5 0.69 344		14	1.03	517.4	0.3013	23	4.02	2012.3	0.0466	32	4.75	2377.7	0.1894	41	7.35	3676.0	0.0414
6 0.69 346		15	1.27	632.7	0.0427	24	4.05	2023.1	0.0813	33	4.77	2384.3	0.0667	42	7.36	3681.0	0.6262
7 0.70 352		16	1.44	722.6	0.1420	25	4.07	2033.8	0.0442	34	5.15	2575.1	0.0948	43	7.37	3684.5	0.2032
8 0.71 354		17	1.59	794.5	0.0578	26	4.56	2281.3	0.0744	35	5.40	2701.8	0.0979	44	7.37	3686.1	0.2121
9 0.95 474	.8 0.0435	18	1.91	956.8	0.3996	27	4.58	2292.9	0.1522	36	7.27	3635.9	0.2110				

30/11/2012 11:46:40


			.				****											11/2012 11:	46:40
Acquisition Time (010	4.00.04	Commen	£	ejt cry v	vittig m(ARBONIII	ght CDCI3 /d	pvbruk500d	lata/2012	/Aug ejt 23	Date			06 Aug 201	2 14:26:24		
Date Stamp File Name		Aug 2012 1		IE)vol2)vicos	eleamedatali	auk600data	hauk50	34345\2012\	Aug\data\ejt\	nm42012 0	9 06 dt 1	22\10\ndata\	1116						
Frequency (MHz)		5.76	ac.ukwo	Nucleus	Sistinualau	13C	טוטאטוט		umber of Ti		1000	corropoalar	Origin			spect			
Original Points Co				Owner		vnmr1			oints Count		32768			Sequence		zgpg30			
Receiver Gain		2.00		SW(cyclic	onli /H=1	29761.9	20		olvent			OFORM-d	-	rum Offset (12570.2578			
Spectrum Type		ANDARD		Sweep W		29761.			emperature	(degree C)		OFORIVI-U	Speca	rum Onsec	112)	12370.2370	<u>, </u>		
2012-08-06			RcalSc			20101.			77.00	100g.00 0)	10.000								
Normalized Intensity 0.40 0.00 0.00 0.10 0.10 0.10 0.10 0.10	t 140.59 	128.40 127.84	~123.22 ~121.26 ~119.29	116.22 (-116.08	BOMC Me)	S Ne		75.02				-38.81	-30.29	21 14				
0				L				والمراجعة والمراجعة	JU						······································			VALUE - 10	-
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	136	128	120	0 112	2 104	96	88		72 Chemical SI	64 hift (ppm)	56	48		32	24	16	1111111111111 8	0	-8 8-
No. (ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height]
1 5.04	633.4	0.2561	8	21.14	2657.9	0.0346	15	76.75	9651.6	0.9667	22	116.22	14616.1	0.0151	29	127.99	16095.7	0.0101	
2 6.41	806.0	0.0136	9	30.29	3808.7	0.0208	16	76.86	9666.1	0.0343	23	119.29	15002.1	0.0117	30	128.40	16147.4	0.1971	
3 6.76	849.6	0.0164	10	38.81	4880.5	0.0501	17	77.00	9683.3	1.0000	24	121.26	15249.2	0.0223	31	137.87	17338.2	0.0763]
4 6.95	874.1	0.3625	11	69.25	8708.8	0.1144	18	77.25	9715.1	0.9716	25	123.22	15496.2	0.0117	32	140.40	17657.0	0.0125	1
	2395.5	0.0298	12	75.02	9434.5	0.0423	19	94.74	11914.0	0.0742	26	127.66	16054.8	0.1289	33	140.59	17680.6	0.0279	1
	2398.2	0.0512	13	76.41	9609.8	0.0225	20	116.08	14598.0	0.0146	27	127.74	16064.8	0.0119	34	140.78	17704.2	0.0156	1
	2590.7	0.0517	14	76,64	9637.9	0.0394	21	116.15	14607.0	0.0313	28	127.84	16076.6	0.2612		,		1	J
- T 40.00	2000.6	0.0011		1 41,47	00000	0.0007		7 10.10	1 1 1 0 0 1 1 0	, 5,5510		1-1-1-1		0.2012					


ejt cry wittig
mF19 CDCl3 {e:\bruk400data\2012\Aug} ejt 14

NAME	2012-08-07-ejt	-14
EXPNO	10	
PROCNO	1	
Date	20120807	
Time	15.57	
INSTRUM	AV400	
PROBHD	5 mm PABBO BB-	
PULPROG	29	
TD	131072	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	89285.711	Hz
FIDRES	0.681196	Hz
AQ	0.7340532	sec
RG	4100	
DW	5.600	usec
DE	11.01	usec
TE	295.2	K
D1	1.00000000	sec
TD0	1	

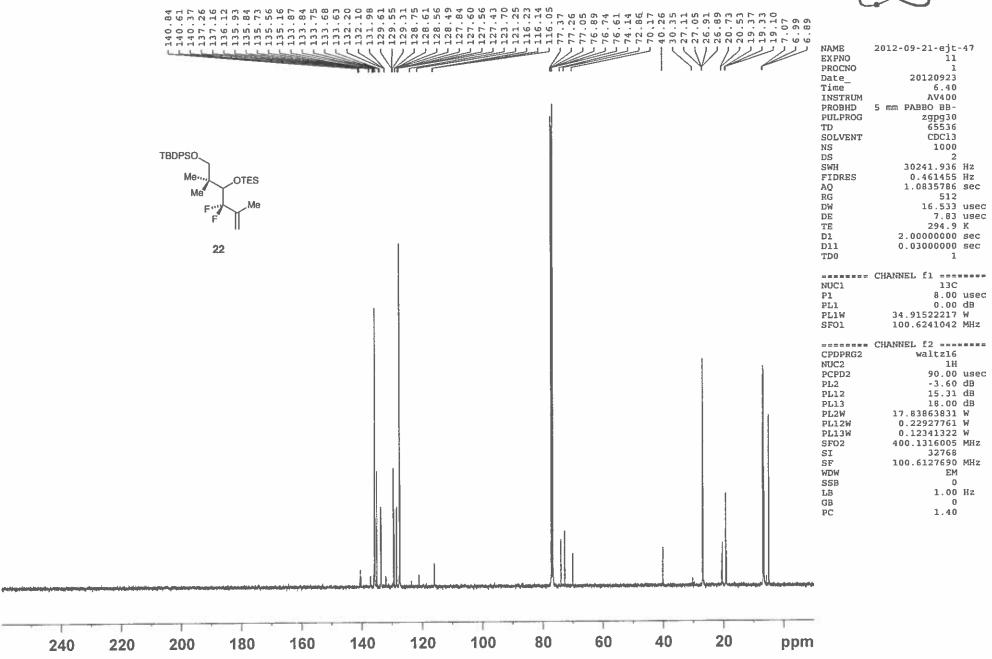

CHANNEL fl ====	====
19F	
10.70	usec
-5.00	dB
27.00716019	W
376.4607164	MHz
262144	
376.4983660	MHz
EM	
0	
0.30	Hz
0	
2.00	
	10.70 -5.00 27.00716019 376.4607164 262144 376.4983660 EM 0

23/11/2012 15:30:05

Acquisition Time (sec)	3.9649	Comment	ejt cry wittig mPROTO	Nnight CDCl3 (e:\bruk400c	data\2012\Sep} ejt 47	Date	23 Sep 2012 05:48:00
Date Stamp	23 Sep 2012 05:48:00)					
File Name	\\ss7a.ds.man.ac.uk\w	ol5\vol3\users\srimrdata\bru	Frequency (MHz)	400.13			
Nucleus	1H	Number of Transients	16	Origin	AV400	Original Points Count	32768
Owner	Administrator	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	40.30
SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2464.9272	Spectrum Type	STANDARD
Sweep Width (Hz)	8264.21	Temperature (degree C	21.200				

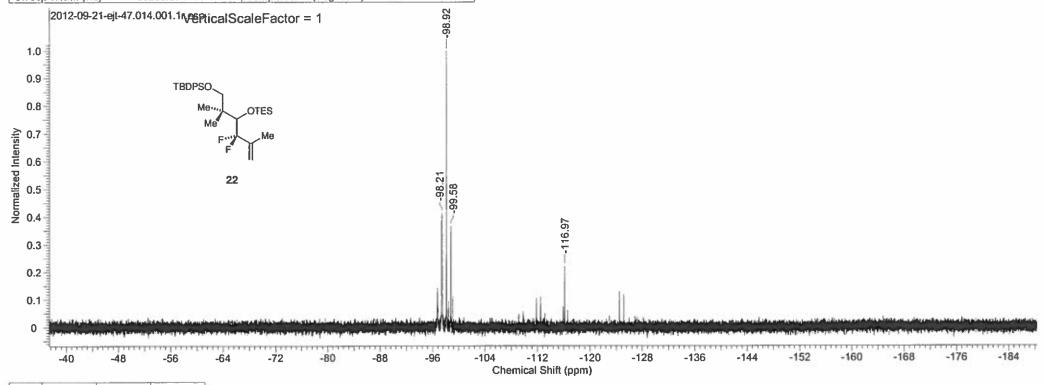
No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	5311 0.69	3.7977647	1.79901200e+8	13.79776478
2	3997 1.04	7.4501934	3.57907424e+8	27.45019341
3	0554 1.17	1.5567245	2.81065856e+8	21.55672455
4	3255 1.94	3. 1294 6820	4.08033520e+7	3.12946820
5	3494 3.43	1.09304404	1.42515790e+7	1.09304404
6	1723 3.56	1.11904001	1.45905260e+7	1.11904001

l	No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	7	0295 4.13	0.98917204	1.28972510e+7	0.98917204
Ì	8	0290 5.15	1 .011 08396	1.31829480e+7	1.01108396
	9	2830 5.38	1.00019169	1.30409290e+7	1.00019169
1	10	3067 7.4 9	8.18846893	2.37149088e+8	18.18846893
1	11	54 26 7.7 6	9.48153591	1.23624344e+8	9.48153591
1					

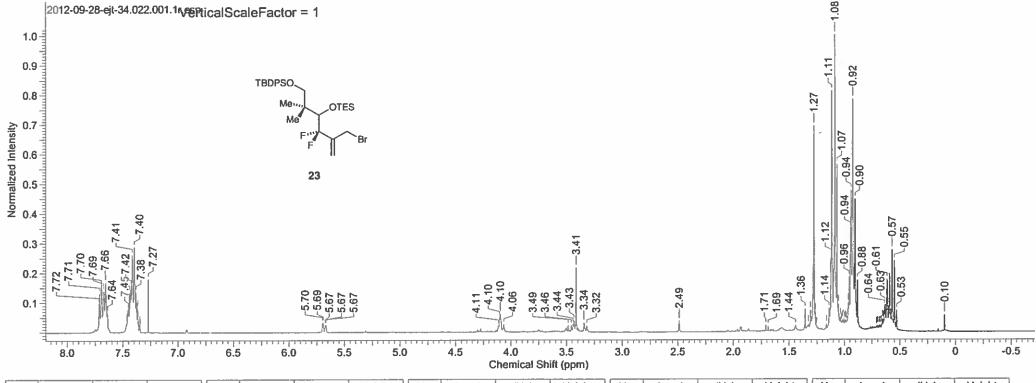

į	No.	(ppm)	(Hz)	Height	П
İ	1	0.55	220.6	0.0768	П
İ	2	0.57	228.4	0.2431	П
i	3	0.59	236.5	0.3054	li

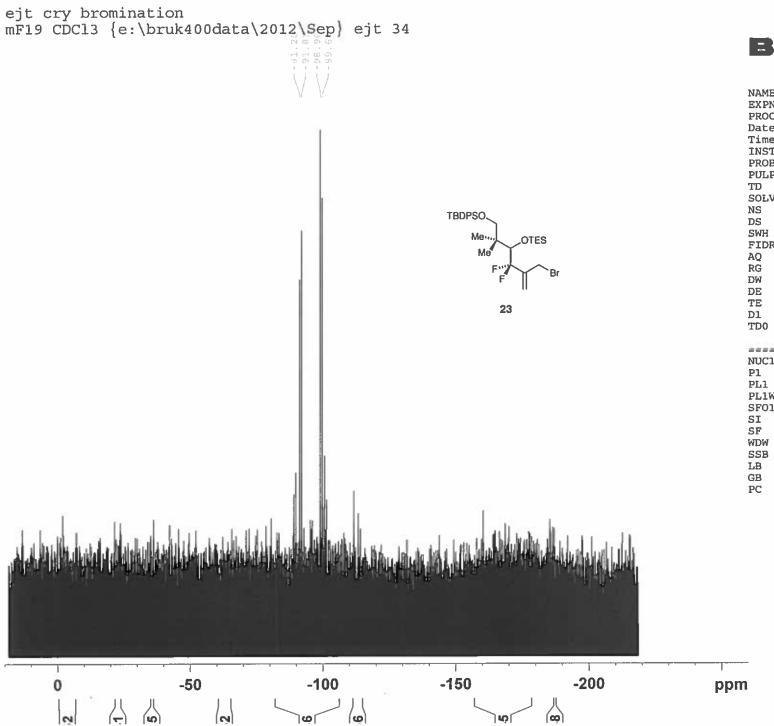
No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
4	0.61	244.6	0.2646	7	0.67	267.0	0.0752
5	0.63	252.7	0.2509	8	0.69	274.6	0.0313
6	0.65	259.7	0.1726	9	0.71	283.7	0.0202

	No.	(ppm)	(Hz)	Height
٦	10	0.90	360.9	0.1269
٦	11	0.92	369.7	0.4047
	12	0.94	374.2	0.3671


No.	(ppm)	(Hz)	Height
13	0.94	377.8	0.6009
14	0.95	382.0	0.6156
 15	0.96	385.8	0.3093

24/09/2012 09:56:17

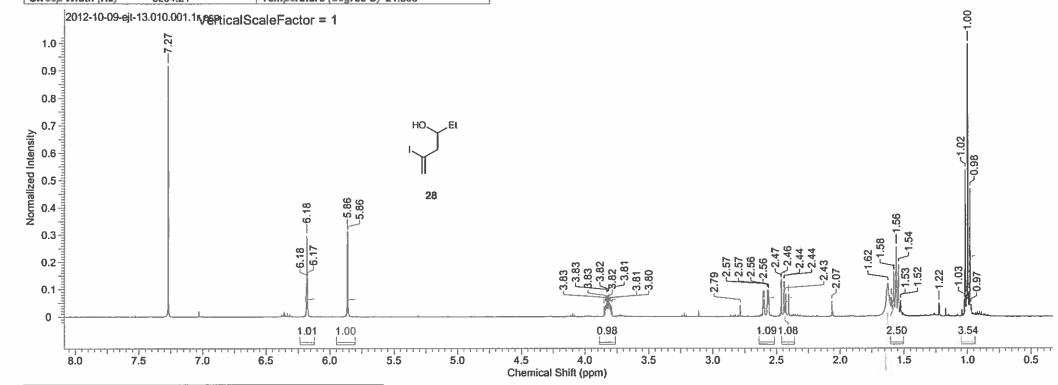

Acquisition Time (sec)	0.7340	Comment	ejt cry wittig mF19CPD	CDCl3 (e:\bruk400data\20	012\Sep} ejt 47	Date	21 Sep 2012 17:08:32
Date Stamp	21 Sep 2012 17:08:32						<u> </u>
File Name	\\ss7a.ds.man.ac.uk\vc	ol5\vol3\users\snmrdata\bru	k400data\2012\Sep\data	Frequency (MHz)	376.50		
Nucleus	19F	Number of Transients	16	Origin	AV400	Original Points Count	65536
Owner	Administrator	Points Count	262144	Pulse Sequence	zgig	Receiver Gain	4100.00
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
Sweep Width (Hz)	89285.37	Temperature (degree C)	21.300				


	No.	(ppm)	(Hz)	Height
	1	-116.97	-44039.7	0.2203
	2	-99.58	-37493.1	0.3652
	3	-98.92	-37241.4	1.0000
İ	4	-98.21	-36974.7	0.4116

30/11/2012 16:12:31

Acquisition Time (sec)	3.9649	Comment	ejt cry bromination mPf	ROTONnight CDCl3 (e:\bri	.k400data\2012\Sep} ejt	34	
Date	29 Sep 2012 06:41:20			Date Stamp	29 Sep 2012 06:41:20		
File Name	\\ss7a.ds.man.ac.uk\vo	15\vol3\users\snmrdata\brul	400data\2012\Sep\data	ejt\nmr\2012-09-28-ejt-34\	22\pdata\1\1r	Frequency (MHz)	400.13
Nucleus	1H	Number of Transients		Origin		Original Points Count	32768
Оwпег	Administrator	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	90.50
SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2464.9272	Spectrum Type	STANDARD
Sweep Width (Hz)	8264.21	Temperature (degree C)	21.900				

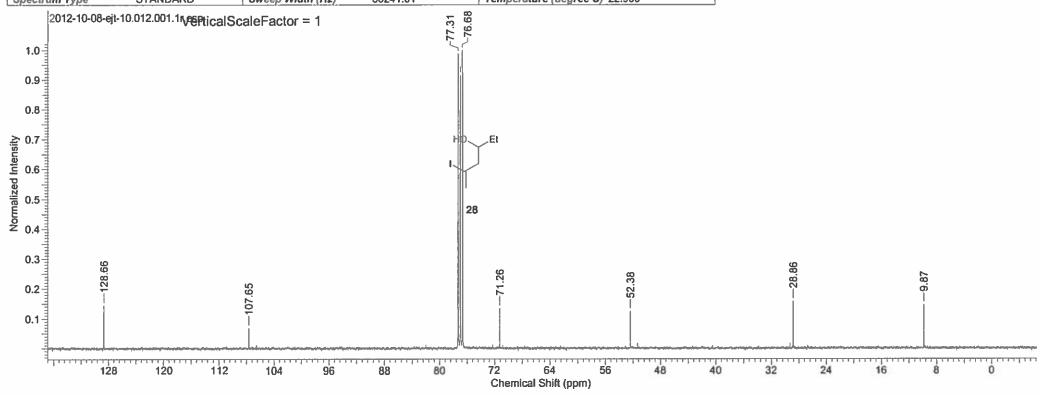
No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(H2)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(HZ)	Height
1	0.10	39.3	0.0569	12	0.64	255.4	0.0854	23	0.92	369.2	0.7846	34	1.02	410.0	0.0333	45	1.25	500.8	0.0197
2	0.53	211.5	0.0728	13	0.65	258.7	0.0423	24	0.94	374.7	0.4768	35	1.04	414.6	0.0491	46	1.26	505.6	0.0664
3	0.55	219.6	0.2398	14	0.66	262.7	0.0431	25	0.94	377.2	0.3485	36	1.05	421.1	0.0929	47	1.27	510.2	0.6938
4	0.57	227.4	0.2773	15	0.67	266.3	0.0256	26	0.96	382.8	0.1848	37	1.07	426.4	0.5648	48	1.31	522.3	0.0724
5	0.58	232.0	0.0477	16	0.67	270.1	0.0215	27	0.96	386.1	0.0974	38	1.07	430.0	0.1603	49	1.33	530.8	0.0254
6	0.59	235.8	0.1562	17	0.68	273.3	0.0229	28	0.98	391.6	0.0344	39	1.08	433.5	1.0000	50	1.36	542.4	0.0765
7	0.59	236.8	0.1676	18	0.69	277.4	0.0206	29	0.99	394.1	0.0378	40	1.09	436.8	0.2914	51	1.44	577.0	0.0218
8	0.60	240.0	0.0879	19	0.70	281.4	0.0220	30	0.99	396.4	0.0415	41	1.11	444.8	0.8124	52	1.69	675.4	0.0202
9	0.61	244.8	0.1781	20	0.71	284.9	0.0185	31	1.00	398.7	0.0372	42	1,12	447.9	0.2577	53	1.71	683.2	0.0231
10	0.62	247.9	0.1145	21	0.88	352.3	0.1744	32	1.01	402.2	0.0435	43	1.14	455.2	0.0789	54	2.49	995.7	0.0366
11	0.63	252.7	0.0927	22	0.90	360.9	0.4475	33	1.02	407.3	0.0412	44	1.16	465.0	0.0262	55	3.32	1328.1	0.0218



NAME EXPNO	20	012-	-09-28	ejt. 20	-34
PROCNO				1	
Date			2012	0928	
Time			1.	3.29	
INSTRUM			A ¹	V400	
PROBHD	5	mm	PABBO	BB-	
PULPROG				zg	
TD			13:	1072	
SOLVENT			Cl	DC13	
NS				16	
DS				4	
SWH			89285	.711	Hz
FIDRES			0.683	1196	Hz
AQ			0.734	3532	sec
RG			4	4100	
ÐW			_	.600	
ĐE				1.01	
TE				95.2	
D1		1	L.0000	0000	sec
TDO				1	

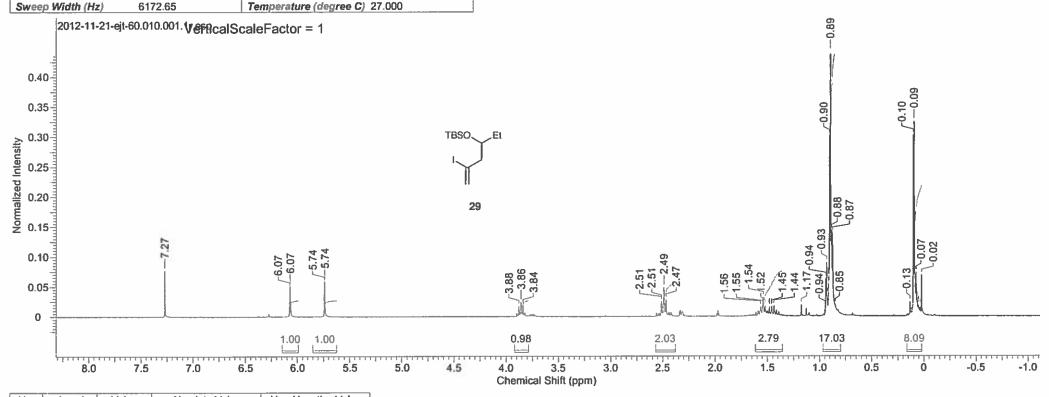
	CHANNEL	f1		=====
NUCL			19F	
P1		10	3.70	usec
PL1		- 5	00.6	đВ
PL1W	27.00	716	019	W
SF01	376.4	1607	7164	MHz
SI		262	2144	
SF	376.4	1983	3660	MHz
WDW			EM	
SSB			0	
LB		(0.30	Hz
GB			0	
PC		- 2	00.5	

20/11/2012 17:35:28


Acquisition Time (sec)	3.9649	Comment	ejt cry vinyl iodide mPF	ROTON CDCI3 (e:\bruk400)data\2012\Oct} ejt 13	Date	09 Oct 2012 12:46:08
Date Stamp	09 Oct 2012 12:46:08						
File Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bru	k400data\2012\Oct\data	\ejt\nmr\2012-10-09-ejt-13	\10\pdata\1\1r	Frequency (MHz)	400.13
Nucleus	1H	Number of Transients	16	Origin	AV400	Original Points Count	32768
Owner	Administrator	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	322.00
SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2464.9272	Spectrum Type	STANDARD
Sweep Width (Hz)	8264.21	Temperature (degree C)	21.300				

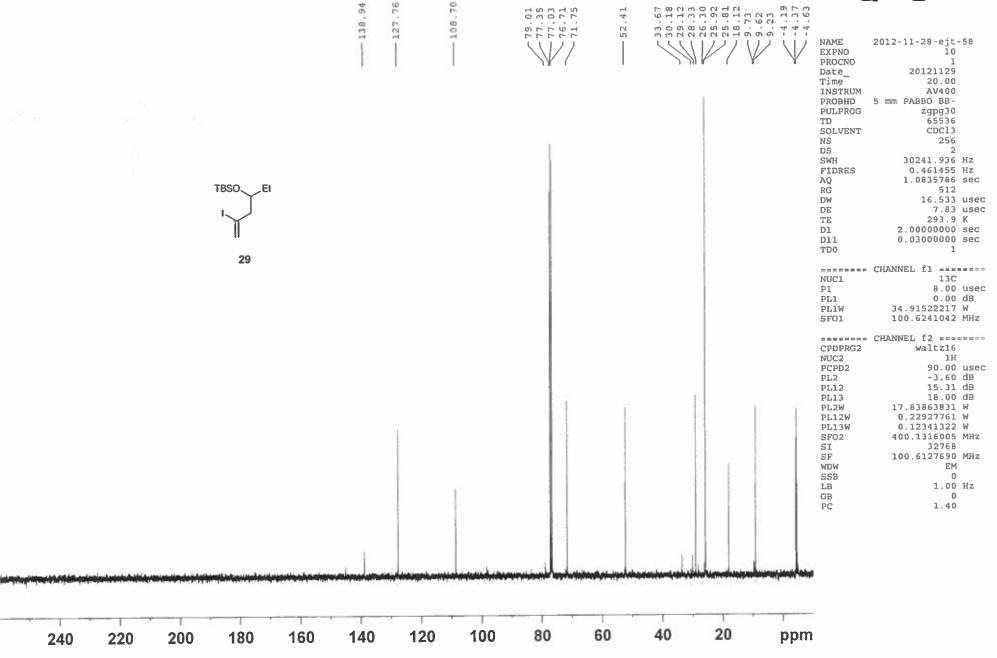
No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	9398 1.04	3.54017091	1.01245312e+8	3.54017091
2	5041 1.60	2.49626207	7.13905760e+7	2.49626207
3	8854 2. 48	1.07680511	3.07955380e+7	1.07680511
4	5 185 2. 63	1.09013748	3.11768320e+7	1.09013748
5	7612 3.88	0.97696531	2.79402220e+7	0.97696531
6	3027 5.94	1.00033140	2.86084700e+7	1.00033140
7	1198 6.23	1.00761056	2.88166460e+7	1.00761056

20/11/2012 17:36:58

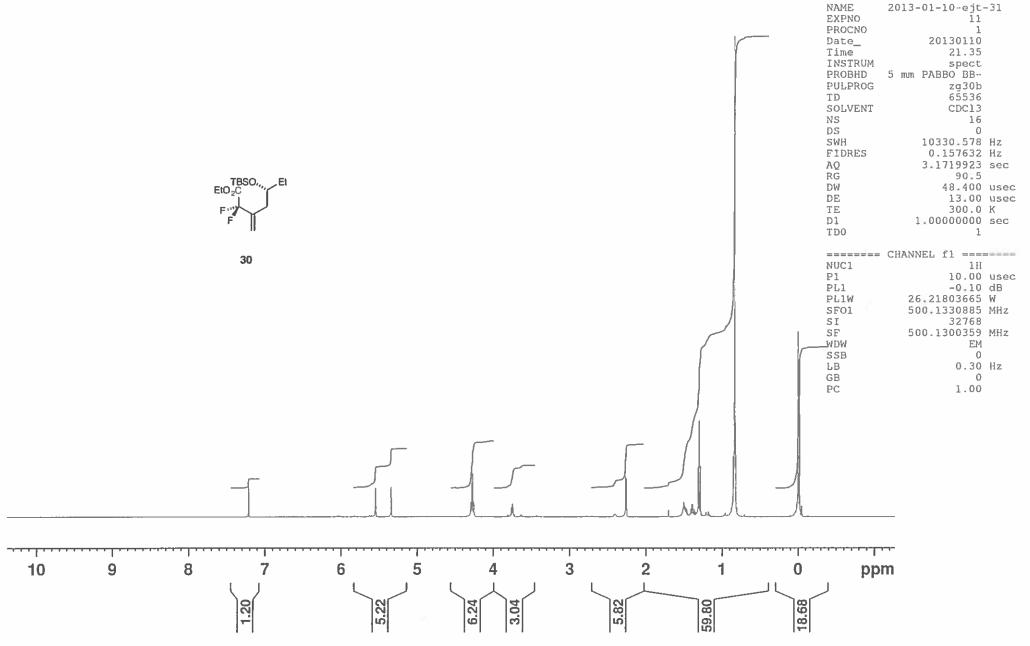

Acquisition Time (sec)	1.0835	Comment	ejt cry iodide 10 mCAR	BONnight CDCl3 {e:\bruk4	00data\2012\Oct} ejt 10	Date	08 Oct 2012 19:35:44	
Date Stamp	08 Oct 2012 19:35:44	File Name	\\ss7a.ds.man.ac.uk\vo	Nss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk400data\2012\Oct\data\ejt\nmr\2012-10-08-ejt-10\12\pdata\1\1r				
Frequency (MHz)	100.61	Nucleus	13C	Number of Transients	800	Origin	AV400	
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30	
Receiver Gain	512.00	SW(cyclical) (Hz)	30241.94	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11332.2295	
Spectrum Type	STANDARD	Sween Width (Hz)	30241 01	Temperature (degree C	22 900			

No.	(ppm)	(Hz)	Height
1	9.87	993.3	0.1460
2	28.86	2903.7	0.1572
3	52.38	5270.1	0.1243
4	71.26	7169.4	0.1335
5	76.68	7714.9	1.0000
6	77.00	7747.2	0.9152
7	77.31	7778.6	0.9874
8	107.65	10830.6	0.0683
9	128.66	12945.0	0.1445

21/11/2012 11:54:23


Acquisition Time (sec)	5.3084	Comment	ejt cry vinyl mPROTO	N CDCl3 (E:\bruk300data\	2012\Nov} ejt 60	Date	21 Nov 2012 10:22:56
Date Stamp	21 Nov 2012 10:22:56						
File Name	\\ss7a.ds.man.ac.uk\v	\\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk300data\2012\Nov\data\ejt\nmr\2012-11-21-ejt-60\10\pdata\1\1r				Frequency (MHz)	299.95
Nucleus	1H	Number of Transients	16	Origin	DPX300	Original Points Count	32768
Owner	Administrator	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	456.10
SW(cyclical) (Hz)	6172.84	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	1848.6169	Spectrum Type	STANDARD
D 145 144 (14)	0470.05	T	1 07 000				

No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	223 0.16	8 .08682 060	4.68993120e+8	8.08682060
2	7955 0.96	7.0270633	9.87480256e+8	17.02706337
3	3579 1.61	2. 785492 66	1.61543936e+8	2.78549266
4	3810 2.56	2. 03447 366	1.17988776e+8	2.03447366
5	7869 3.91	0.98051947	5.68649760e+7	0.98051947
6	5223 5.84	0.99646074	5.77894880e+7	0.99646074
7	9894 6.14	0.99959248	5.79711120e+7	0.99959248


EJT-PRM46 TBS vinyl iodide data mCARBONnight CDCl3 {e:\bruk400data\2012\Nov} ejt 58

EJT-PRM48c f4-5 8mg full data mPROTONnight CDCl3 /opt/bruk500data/2013/Jan ejt 31

20

ppm

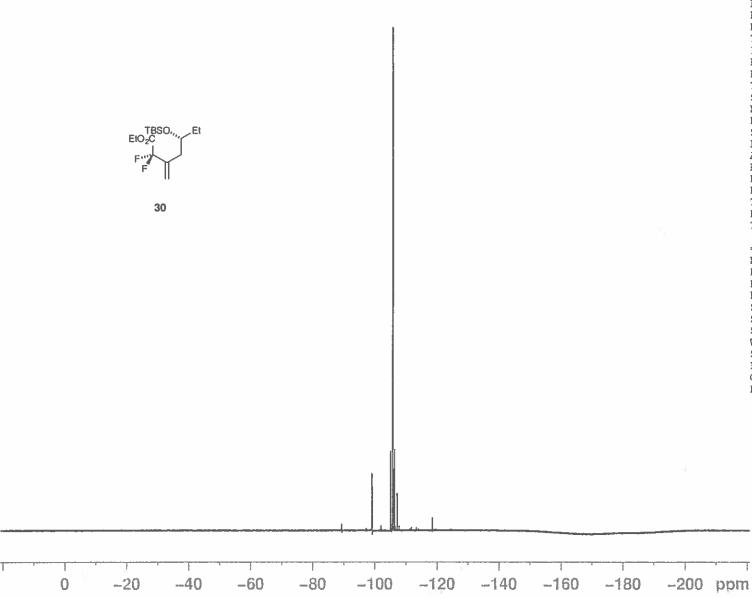
40

120

200

180

160

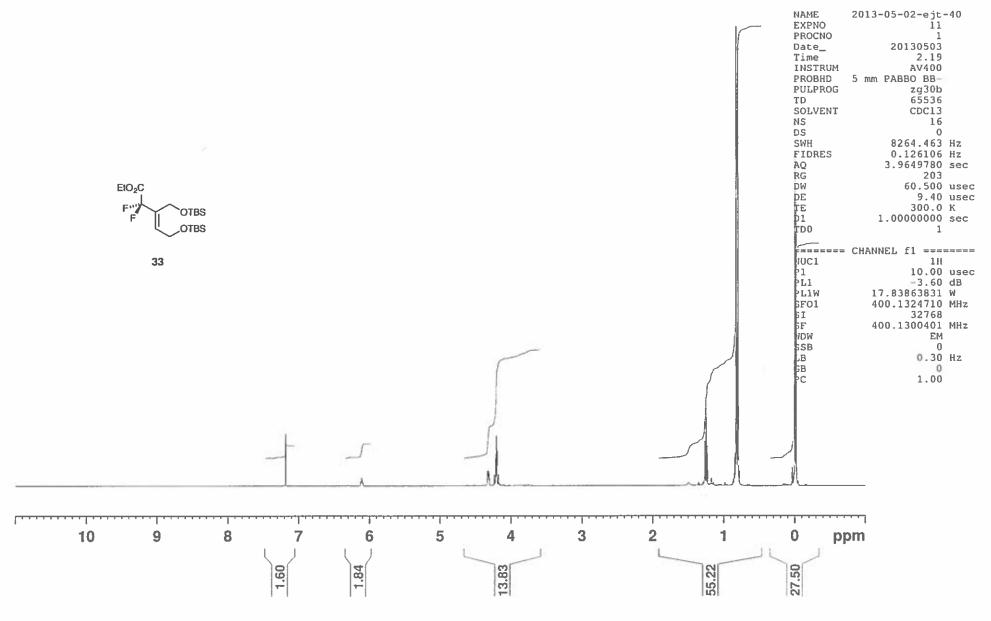

140

100

80

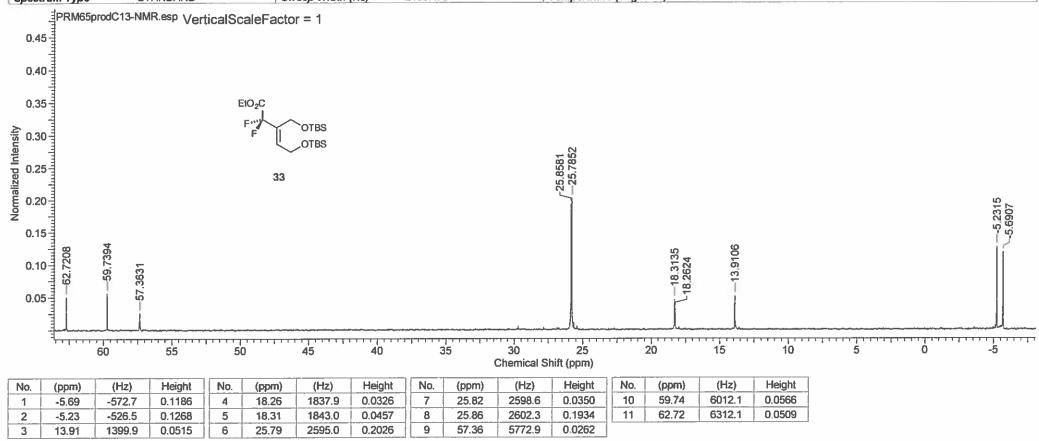
60

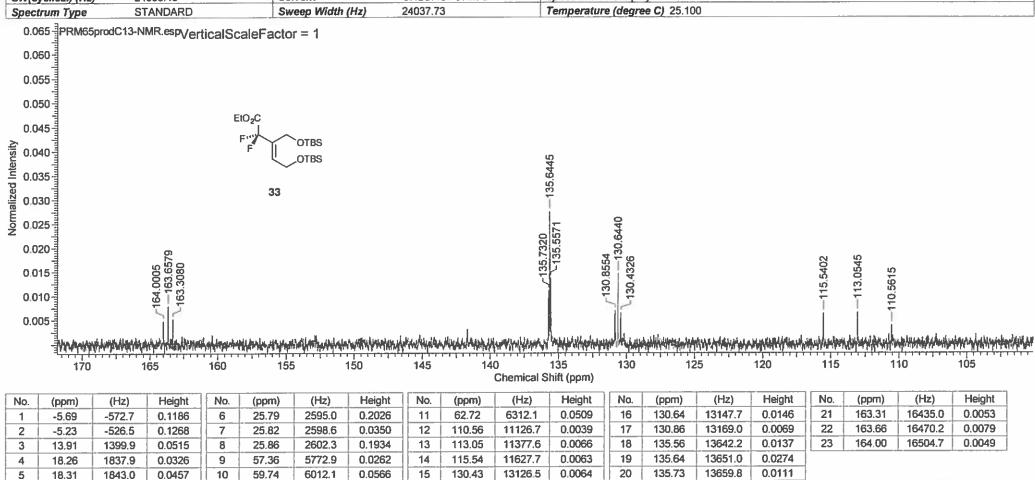
EJT-PRM48c f4-5 8mg m19F CDCl3 /opt/bruk500data/2013/Jan ejt 29

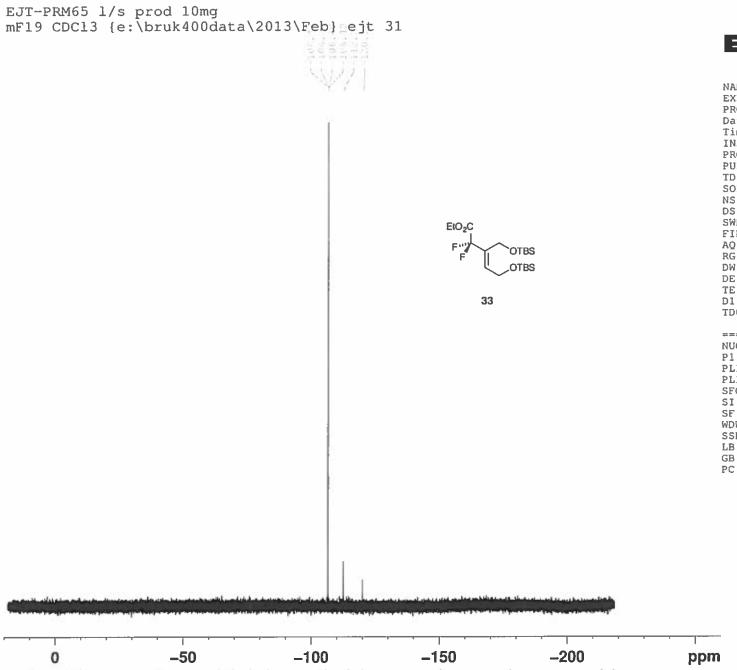


NAME	2013-01-10-ejt-	-29
EXPNO	12	
PROCNO	1	
Date_	20130110	
Time	17.38	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zgflgn	
TD	131072	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	113636.367	Hz
FIDRES	0.866977	Hz
AQ	0.5767668	sec
RG	203	
DW	4.400	usec
DE	6.50	used
TE	300.0	K
D1	1.00000000	sec
TD0	1	

=======	CHANNEL fl ====	
NUC1	19F	
P1	17.50	use
PL1	-2.90	dB
PLIW	48.97788239	W
SF01	470.5453180	MHz
SI	65536	
SF	470.5923770	MHz
WDW	EM	
SSB	0	
LB	0.30	Ηz
GB	0	
PC	1.00	

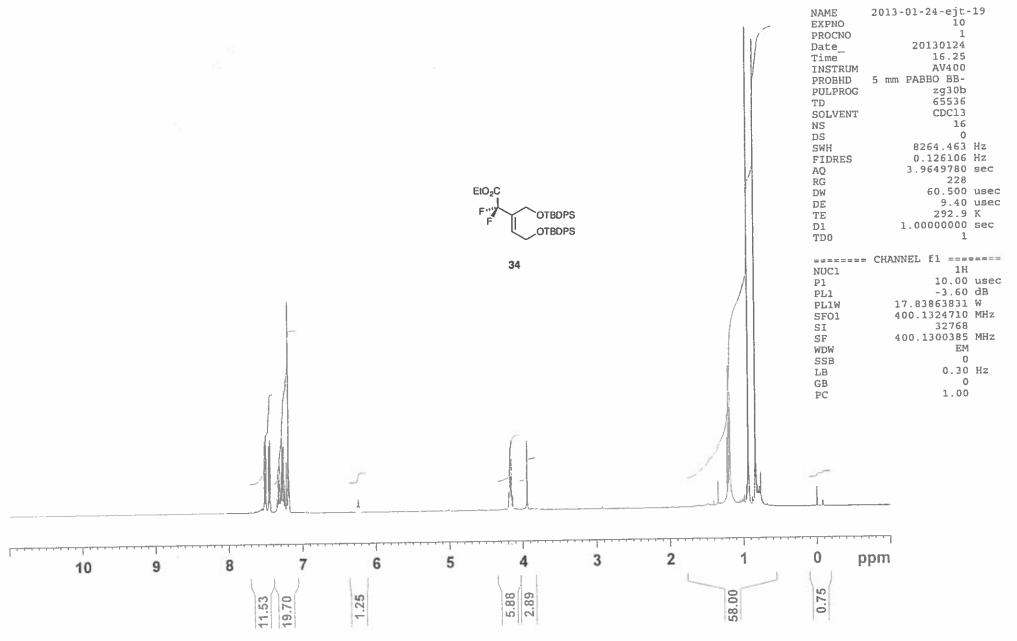

EJT-PRM65 Product data mPROTONnight CDCl3 {e:\bruk400data\2013\May} ejt 40


12/06/2013 18:27:58

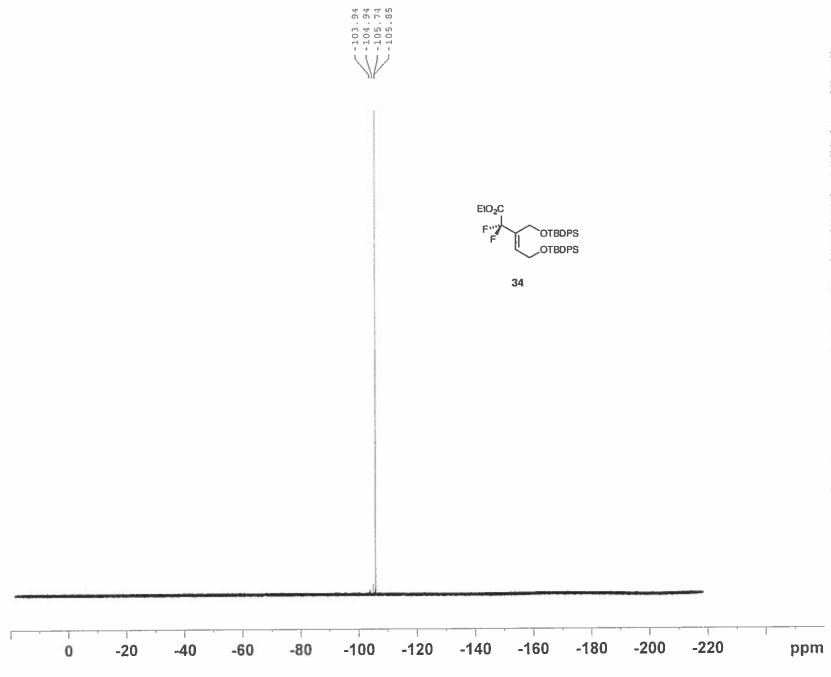

Acquisition Time (sec)	1.3631	Comment	P. Mears EJT-PRM 65 Prod data 0513-008 mCARBON CDCl3 {E:\bruk400service_data\2013\May} Administrator 24		
Date	10 May 2013 09:34:08	Date Stamp	10 May 2013 09:34:08		
File Name	\\ss7a.ds.man.ac.uk\vol5\V	OL3\USERS\SNMRDATA\BF	RUK400SERVICE_DATA\201	3WAYDATA\ADMINISTRA	TOR\NMR\2013-05-09-ADMINISTRATOR-24\12\PDATA\1\1R
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	10240
Origin	AV400_S	Original Points Count	32768	Owner	Administrator
Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	2050.00
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	25.100

12/06/2013 18:28:32

Acquisition Time (sec)	1.3631	Comment	P. Mears EJT-PRM 65 Prod data 0513-008 mCARBON CDCl3 {E:\bruk400service_data\2013\May} Administrator 24		
Date	10 May 2013 09:34:08	Date Stamp	10 May 2013 09:34:08		
File Name	\\ss7a.ds.man.ac.uk\vol5\VO	L3\USERS\SNMRDATA\BF	RUK400SERVICE_DATA\201	3\MAY\DATA\ADMINISTRA	TORWMR\2013-05-09-ADMINISTRATOR-24\12\PDATA\1\1R
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	10240
Origin	AV400_S	Original Points Count	32768	Owner	Administrator
Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	2050.00
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10063.3350
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	25.100

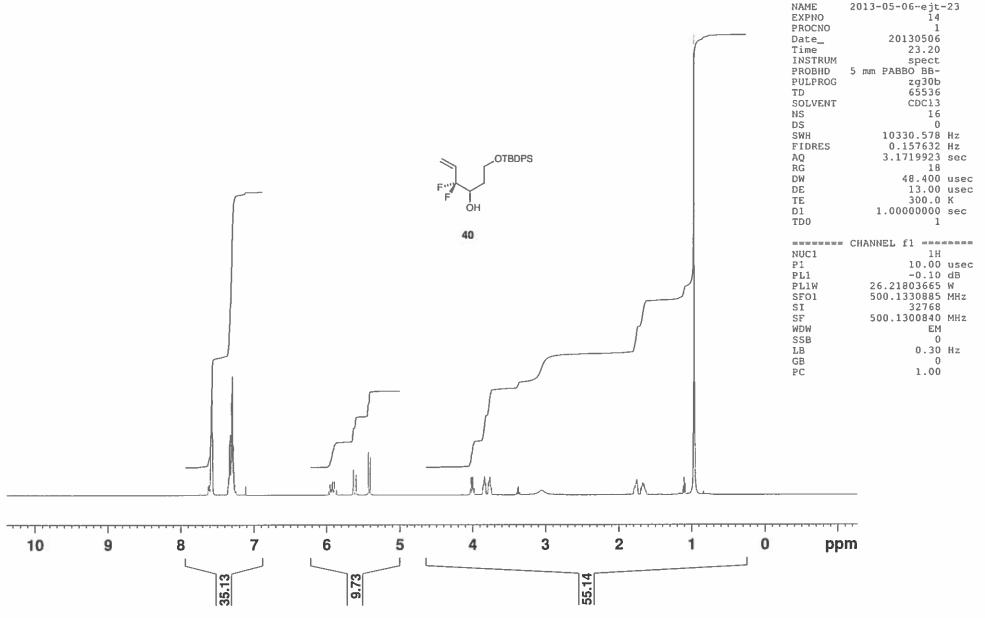


NAME	2013-02-14-ejt-	-31
EXPNO	12	
PROCNO	1	
Date_	20130214	
Time	12.58	
INSTRUM	AV400	
PROBHD	5 mm PABBO BB-	
PULPROG	zq	
TD	131072	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	89285.711	Hz
FIDRES	0.681196	Hz
AQ	0.7340532	sec
RG	4100	
DW	5.600	usec
DE	11.01	usec
TE	292.9	K
D1	1.00000000	sec
TD0	1	

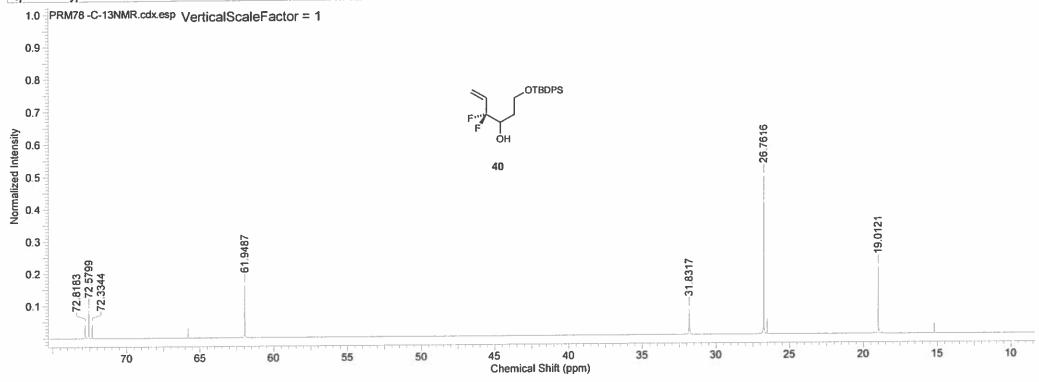

	CHANNEL fl ====	2222
NUC1	19F	
P1	10.70	used
PL1	-5.00	dB
PL1W	27.00716019	W
SFO1	376.4607164	MHz
SI	262144	
SF	376.4983660	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	2.00	

EJT-PRM58 f1-30 4mg mPROTON CDCl3 {e:\bruk400data\2013\Jan} ejt 19

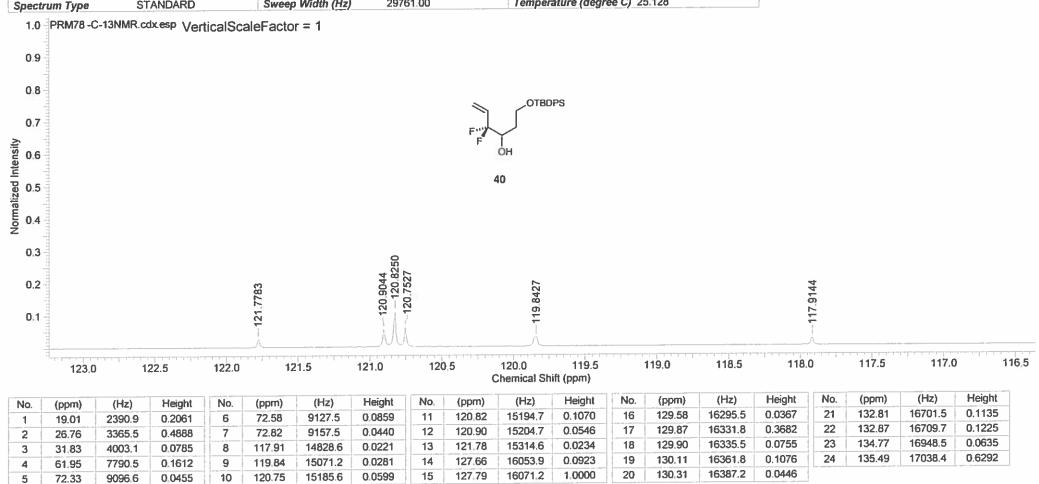
EJT-PRM58 f1-30 4mg mF19CPD CDCl3 {e:\bruk400data\2013\Jan} ejt 19



NAME	2013-01-24-ejt-	19
EXPNO	12	
PROCNO	1	
Date	20130124	
Time	16.28	
INSTRUM	AV400	
PROBHD	5 mm PABBO BB-	
PULPROG	zgig	
TD	131072	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	89285.711	Hz
FIDRES	0.681196	Hz
AQ	0.7340532	sec
RG	4100	
DW	5.600	usec
DE		usec
TE	293.0	K
D1	1.00000000	sec
D11	0.03000000	
TDO	1	
	CHANNEL fl ====	
NUCl	19F	
P1	10.70	usec
PLI	-5.00	ďΒ
PL1W	27.00716019	W
SF01	376.4607164	MHZ
	4. 9100	
	CHANNEL f2	
CPDPRG2	waltz16	
NUC2	1H	
PCPD2	90.00	
PL2	-3.60	
PL12		dB
PL2W	17.83963831	W
PL12W		W
SFO2	400.1316005	MHZ
SI	262144	
SF	376.4983660	MHZ
WDW	EM	
SSB	0	11.00
LB	0.30	HZ
GB	0	
PC	2.00	


EJT-PRM78 Prod data mPROTONnight CDCl3 /opt/oldbruk500data.11vii11/2013/May ejt 23

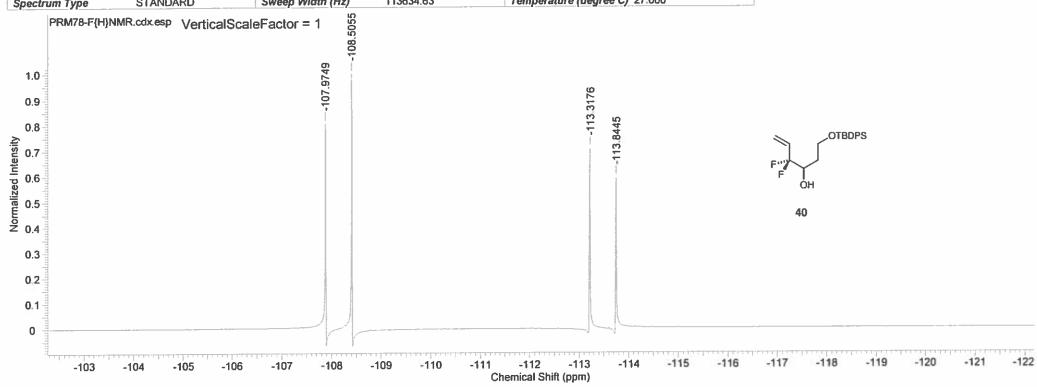
23/05/2014 17:17:55


Acquisition Time (sec)	1.1010	Comment	EJT-PRM78 Prod data m	CARBONnight CDCl3 /opt/	oldbruk500data.11vii11/20	013/May ejt 23	
Date	06 May 2013 22:20:00	Date Stamp	06 May 2013 22:20:00				
File Name	\\ss7a.ds.man.ac.uk\vol5	SIVOL3IUSERSISNMRDA	TA\BRUK500DATA\BRUK50	ODATA\2013\MAY\DATA\E	JT\NMR\2013-05-06-EJ		
Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	3000	Origin	spect
Original Points Count	32768	Owner	vnmr1	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12562.9922
Spactrum Tune	STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C	25.128		

No.	(ppm)	(Hz)	Height
1	19.01	2390.9	0.2061
2	26.76	3365.5	0.4888
3	31.83	4003.1	0.0785
4	61.95	7790.5	0.1612
5	72.33	9096.6	0.0455
6	72.58	9127.5	0.0859
7	72.82	9157.5	0.0440

23/05/2014 17:23:24

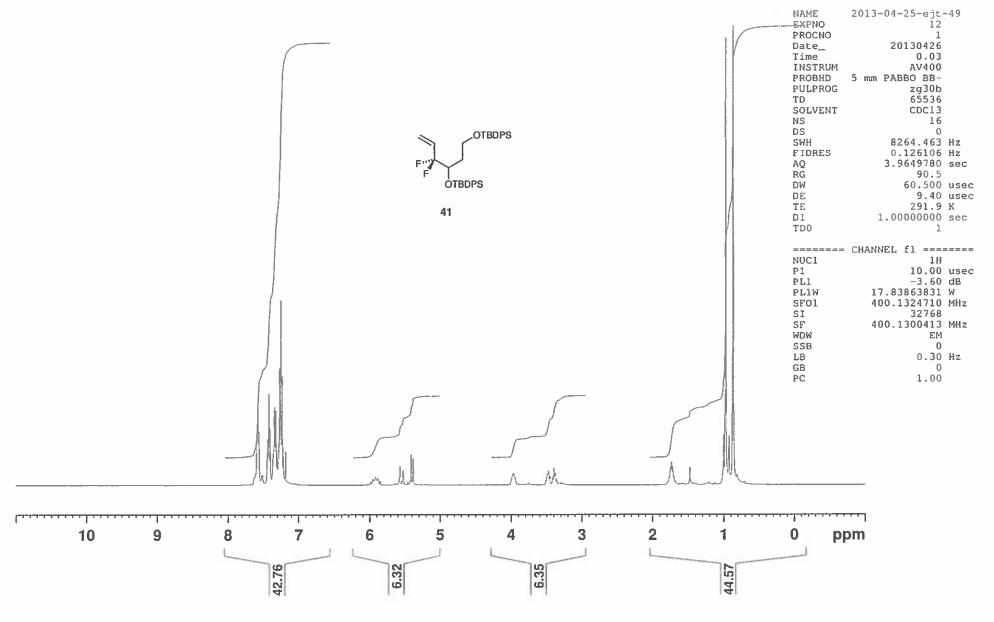
Acquisition Time (sec)	1.1010	Comment	EJT-PRM78 Prod data m	CARBONnight CDCl3 /opt/	oldbruk500data.11vii11/20	13/May ejt 23	
Date	06 May 2013 22:20:00	Date Stamp	06 May 2013 22:20:00				
File Name	\\ss7a.ds.man.ac.uk\vol5	VOL3\USERS\SNMRDA	TA\BRUK500DATA\BRUK50	ODATA\2013\MAY\DATA\E	JT\NMR\2013-05-06-EJT	-23\10\PDATA\1\1R	
Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	3000	Origin	spect
Original Points Count	32768	Owner	vnmr1	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12562.9922
Spectrum Type	STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C	25.128		



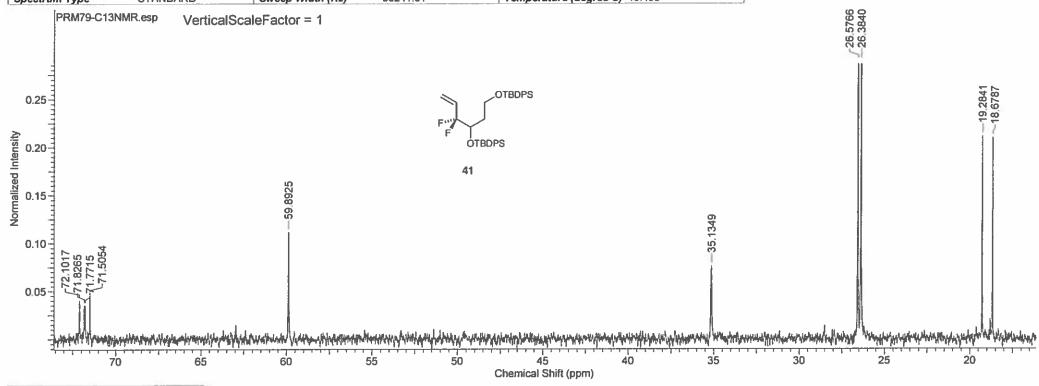
23/05/2014 17:53:06

Acquisition Tim	e (sec) 1.	.1010		Comr	nent					night CDCl3	/opt/old	bruk500data	.11vii11/201	3/May ejt	23			
ate	0(6 May 2013 2	2:20:00	Date	Stamp			3 22:20:00										
ile Name	W:	ss7a.ds.man.	ac.uk\vol	5\VOL3\U	SERS\SNMF			\TA\BRUK	(500DATA\2	D13VMAY\DA			-05-06-EJT-:	23\10\PD/	ATA\1\1R		major og overgeten	
requency (MH:	2) 12	25.76	10.45	Nucle	us	130			Numbe	r of Transie		3000		Origin			pect	
riginal Points		2768		Owne	r	vnm	r1		Points	Count	3	32768			Sequence		pg30	
Receiver Gain		12.00		SW(c	yclical) (Hz)	297	61.90		Solven	t	C	CHLOROFO	RM-d	Spectri	um Offset	(Hz) 12	2562.9922	
pectrum Type		TANDARD			p Width (Hz)	297	61.00		Tempe	rature (degr	ee C) 2	5.128		}				
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0	C-13NMR.c	odx.esp Veri	ticalSca	aleFacto	or = 1		•	F F F	ОТВО ОН 40		6			3				
0.2 response					134.7712			132.8068		130 3078	130.1056	129.5784		-127,6573				· · · · · · · · · · · · · · · · · · ·
139	138	137	1:	36	135	134	133		132 Chemical Sh	131 nift (ppm)	130	129	12	28	127	126	125	124
lo. (ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
1 19.01	2390.9	0.2061	6	72.58	9127.5	0.0859	11	120.82	15194.7	0.1070	16	129.58	16295.5	0.0367	21	132.81	16701.5	0.1135
2 26.76	3365.5	0.4888	7	72.82	9157.5	0.0440	12	120.90	15204.7	0.0546	17	129.87	16331.8	0.3682	22	132.87	16709.7	0.1225
	4003.1	0.0785	8	117.91	14828.6	0.0221	13	121.78	15314.6	0.0234	18	129.90	16335.5	0.0755	23	134.77	16948.5	0.0635
3 31.83	100001	9,0100				0.0281	14	127.66	16053.9	0.0923	19	130.11	16361.8	0.1076	24	135.49	17038.4	0.6292
3 31.83 4 61.95	7790.5	0.1612	9	119.84	15071.2	U.UZBT	19	127.00	10000.0	0.0323	1.0	130.11	10001.0	0,1010			11000.	

23/05/2014 18:08:10


Acquisition Time (sec)	0.5767	Comment	EJT-PRM78 Prod data m	19FCPD CDCl3 /opt/oldbru	ık500data.11vii11/2013/M	ay ejt 23	
Date	06 May 2013 22:24:16	Date Stamp	06 May 2013 22:24:16				
File Name	\\ss7a.ds.man.ac.uk\vol5	VOL3\USERS\SNMRDA	TA\BRUK500DATA\BRUK5	00DATA\2013\MAY\DATA\	EJT\NMR\2013-05-06-EJ	T-23\12\PDATA\1\1R	
Frequency (MHz)	470.59	Nucleus	19F	Number of Transients	16	Origin	spect
Original Points Count	65536	Owner	vnmr1	Points Count	65536	Pulse Sequence	zgfhigqn
Receiver Gain	287.00	SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234
Spectrum Type	STANDARD	Sween Width (Hz)	113634.63	Temperature (degree C	27.000		

No.	(ppm)	(Hz)	Height
1	-113.84	-53574.4	0.5903
2	-113.32	-53326.4	0.7057
3	-108.51	-51061.9	1.0000
4	-107.97	-50812.2	0.8064


EJT-PRM77/79 Prod data mPROTONnight CDCl3 {e:\bruk400data\2013\Apr} ejt 49

12/06/2013 11:53:18

Acquisition Time (sec)	1.0835	Comment	EJT-PRM77/79 Prod dat	EJT-PRM77/79 Prod data mCARBONnight CDCl3 {e:\bruk400data\2013\Apr} ejt 49						
Date	25 Apr 2013 23:47:28	Date Stamp	25 Apr 2013 23:47:28		AND STATE OF THE S					
File Name \\ss7a.ds.man.ac.uk\vol5\VOL3\USERS\SNMRDATA\BRUK400DATA\2013\APR\DATA\EJT\NMR\2013-04-25-EJT-49\10\PDATA\1\1R										
Frequency (MHz)	100.61	Nucleus	13C	Number of Transients	600	Origin	AV400			
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30			
Receiver Gain	512.00	SW(cyclical) (Hz)	30241.94	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11297.1592			
Spectrum Type	STANDARD	Sween Width (Hz)	30241 01	Temperature (degree C	19.400					

No.	(ppm)	(Hz)	Height
1	18.68	1879.3	0.2102
2	19.28	1940.2	0.2114
3	26.38	2654.6	0.5291
4	26.58	2673.9	0.5033
5	35.13	3535.0	0.0761
6	59.89	6026.0	0.1114
7	71.51	7194.4	0.0453
8	71.77	7221.1	0.0348
9	71.83	7226.7	0.0355
10	72.10	7254.3	0.0405

Acquisition Time (sec)	1.0835	Comment	EJT-PRM77/79 Prod dat	a mCARBONnight CDCl3 (e	e:\bruk400data\2013\Ap	or} ejt 49		
Date	25 Apr 2013 23:47:28	Date Stamp	25 Apr 2013 23:47:28					
File Name	\\ss7a.ds.man.ac.uk\vol5	NVOL3/USERS/SNMRDA	TA\BRUK400DATA\2013\A					
Frequency (MHz)	100.61	Nucleus	13C	Number of Transients	600	<u>Origin</u>	AV400	
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30	
Receiver Gain	512.00	SW(cyclical) (Hz)	30241.94	Solvent	CHLOROFORM-d	Spectrum Offset (H.	z) 11297.1592	
Spectrum Type	STANDARD	Sweep Width (Hz)	30241.01	Temperature (degree C)	19.400			
0.15 - 0.10 - 0.05 - 0.05	A September 135,5965	133,216 all and a second a second and cond and ——————————————————————————————————————	127.2124	OTBOPS F OTBOPS		-120.3236 -120.4153		
137 136	135 134	133 132 131		28 127 126 Chemical Shift (ppm)	125 124	123 122 121	120 119	118
137 136				Chemical Shift (ppm)				118
137 136) Height No.	(ppm) (Hz) H	Height No. (ppm)	Chemical Shift (ppm) (Hz) Height I	125 124 No. (ppm) (H	z) Height No.		
137 136 lo. (ppm) (Hz) 1 18.68 1879.) Height No. 3 0.2102 7	(ppm) (Hz) F 71.51 7194.4 0	Height No. (ppm) 1.0453 13 120.51	Chemical Shift (ppm) (Hz) Height 12124.5 0.0424	No. (ppm) (H	z) Height No. 22.5 0.1720 25	(ppm) (Hz)	Height
137 136 No. (ppm) (Hz) 1 18.68 1879. 2 19.28 1940.	Height No. 3 0.2102 7 .2 0.2114 8	(ppm) (Hz) H 71.51 7194.4 0 71.77 7221.1 0	Height No. (ppm) 1.0453 13 120.51 1.0348 14 127.16	Chemical Shift (ppm) (Hz) Height 12124.5 0.0424 12793.7 0.4051	No. (ppm) (H:	z) Height No. 22.5 0.1720 25 51.2 0.0625 26	(ppm) (Hz) 133.34 13415.7	Height 0.1369
137 136 No. (ppm) (Hz) 1 18.68 1879.	Height No. 3 0.2102 7 2 0.2114 8 6 0.5291 9	(ppm) (Hz) H 71.51 7194.4 0 71.77 7221.1 0 71.83 7226.7 0	Height No. (ppm) 1.0453 13 120.51	Chemical Shift (ppm) (Hz) Height 12124.5 0.0424 12793.7 0.4051 12799.2 0.7568	No. (ppm) (H: 19 129.43 1302 20 129.72 1305	z) Height No. 22.5 0.1720 25 51.2 0.0625 26 77.0 0.0402 27	(ppm) (Hz) 133.34 13415.7 135.08 13591.1	Height 0.1369 0.4275

24

133.32

13413.9

0.1326

0.1114

12

120.42

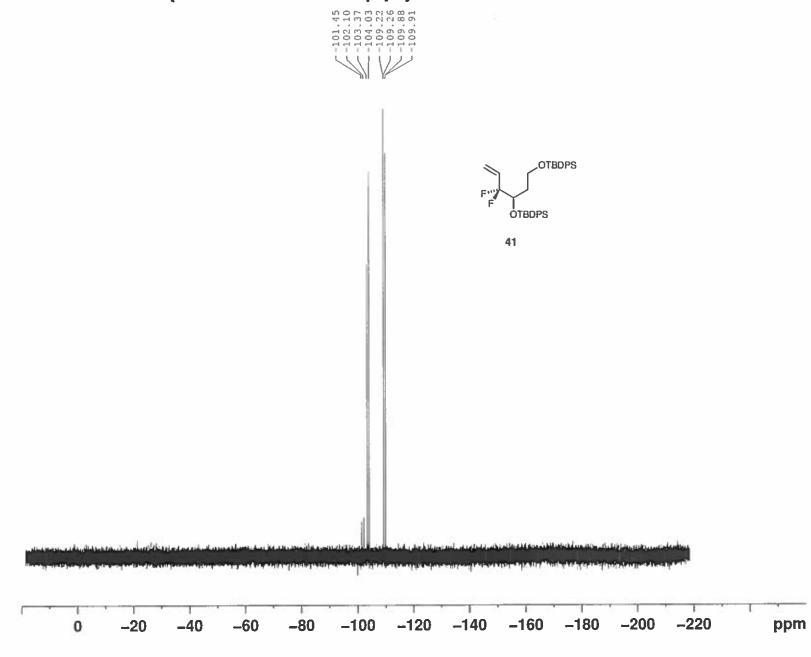
0.0735

12115,3

18

129,31

13010.5

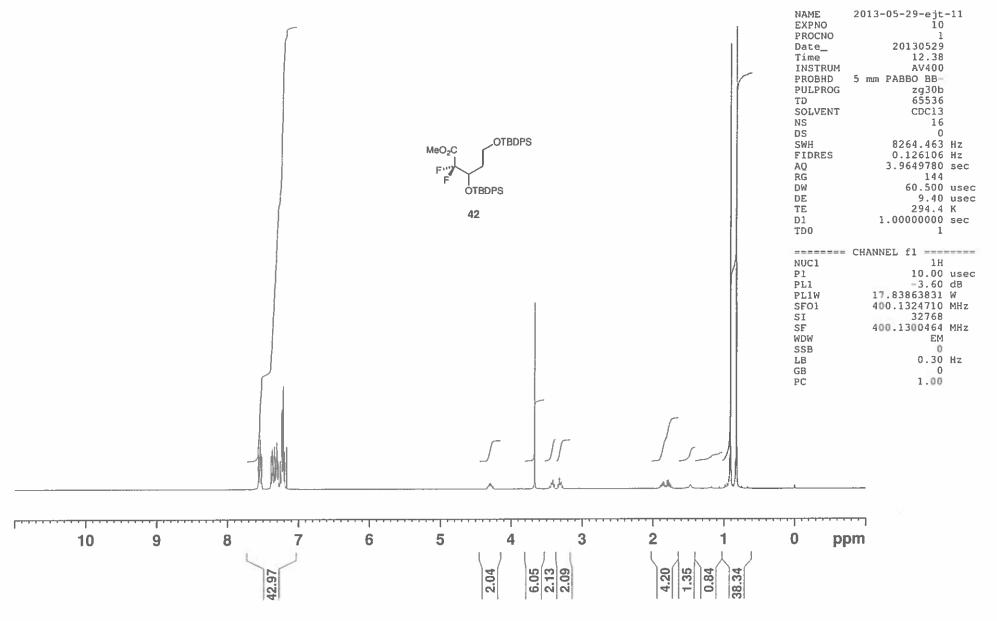

0.1777

6026.0

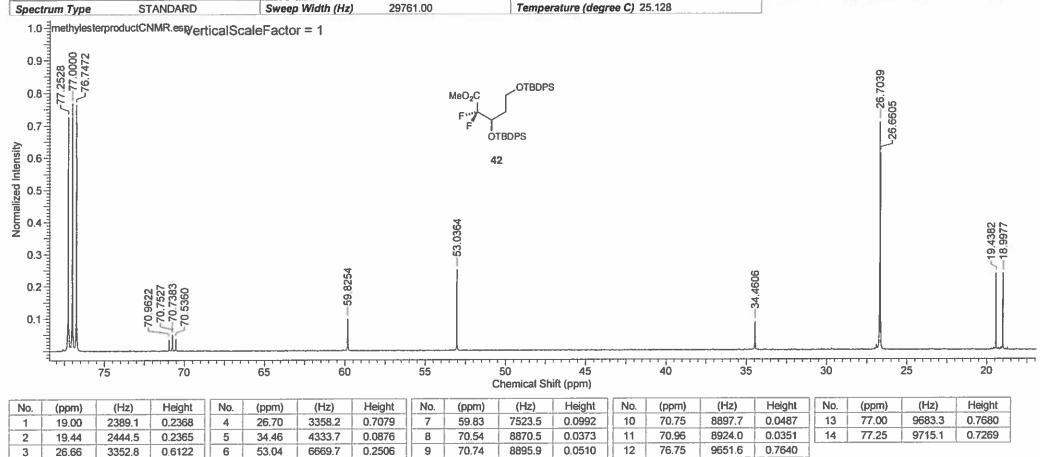
59.89

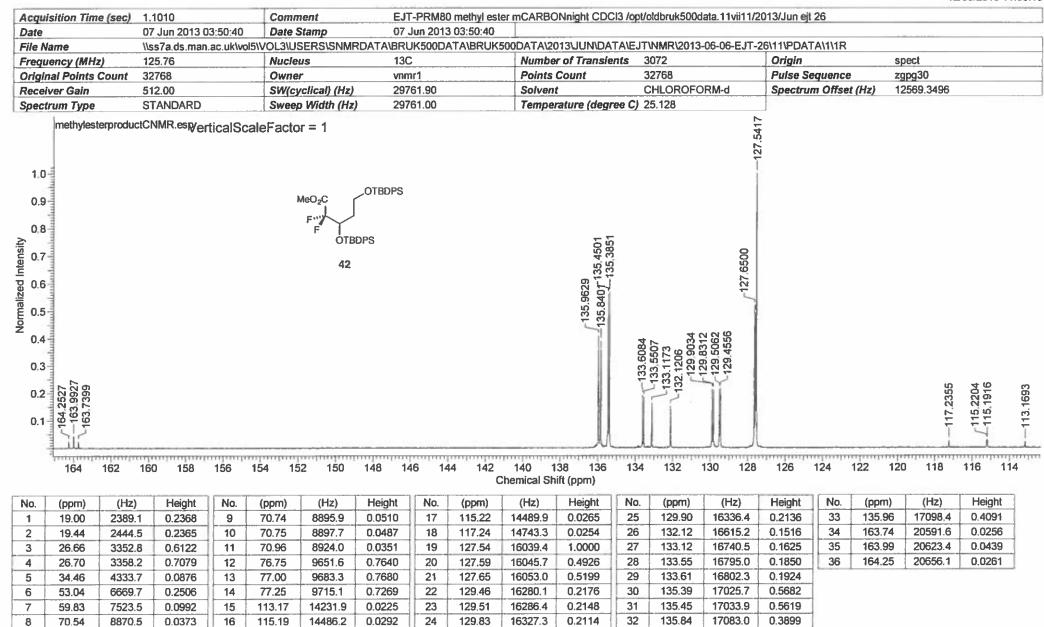
6

EJT-PRM77 f5-11 86mg mF19CPD CDCl3 {e:\bruk400data\2013\Apr} ejt 56

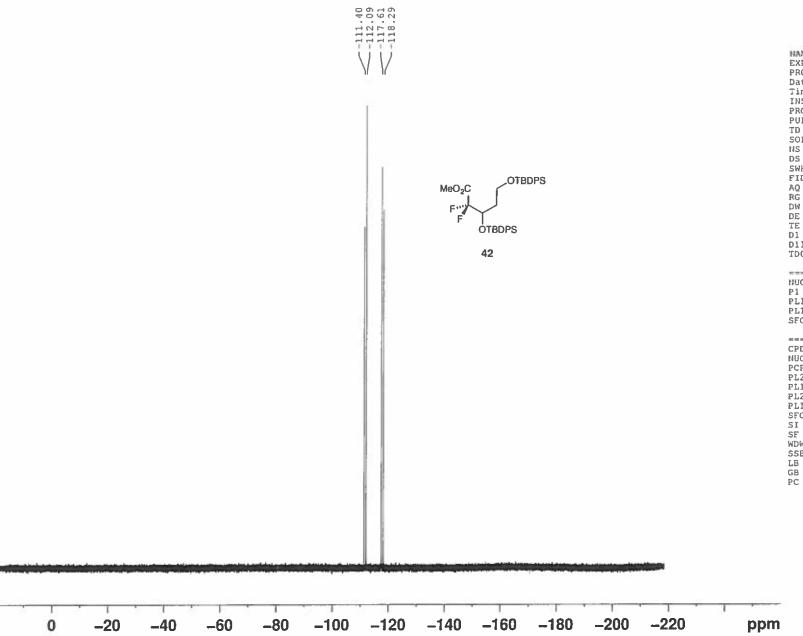


NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG	2013-04-24-ejt- 11 1 20130424 18.18 AV400 5 mm PABBO BB- 29ig 131072	56
SOLVENT NS DS	CDC13 16 4	
SWH FIDRES AQ RG	89285.711 0.681196 0.7340532 4100	Hz Hz sec
DW DE TE D1	5.600 7.51 293.3 1.00000000	used used K sec
D11 TD0	0.03000000	sec
NUC1 P1	CHANNEL fl ==== 19F 10.70	
PL1 PL1W SFO1	-5.00 27.00716019 376.4607164	
CPDPRG2 HUC2	CHANNEL f2 ==== waltz16 1H	-
PCPD2 PL2 PL12 PL2W		used dB dB W
PL12W SFO2 SI	0.22927761 400.1316005 262144	W MHz
SF WDW SSB	376.4983660 EM 0	MHz
LB GB PC	0.30 0 2.00	Hz


EJT-PRM89 f10-24 20mg mPROTON CDCI3 {e:\bruk400data\2013\May} ejt 11

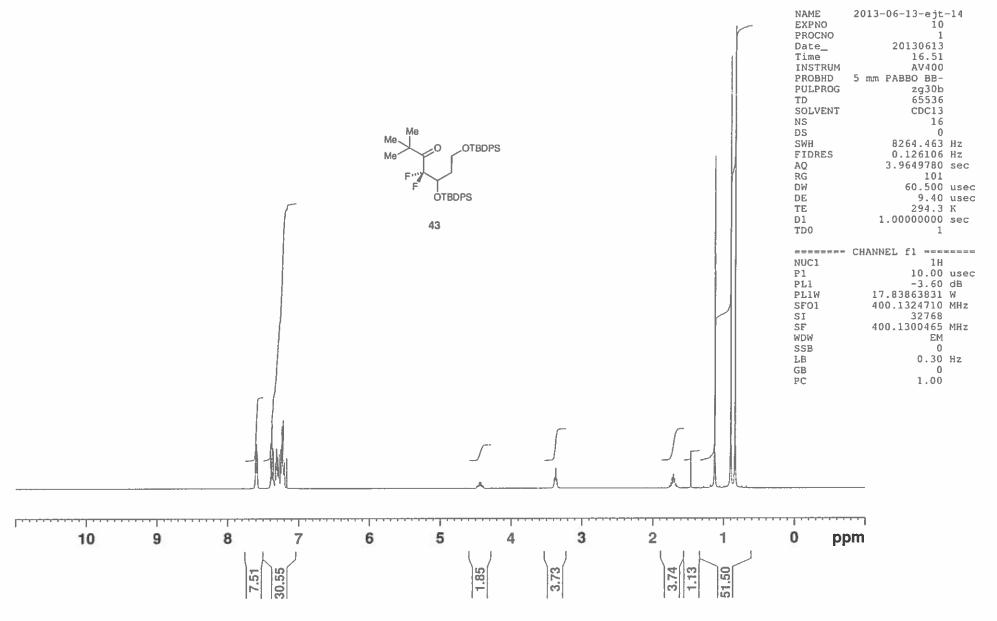


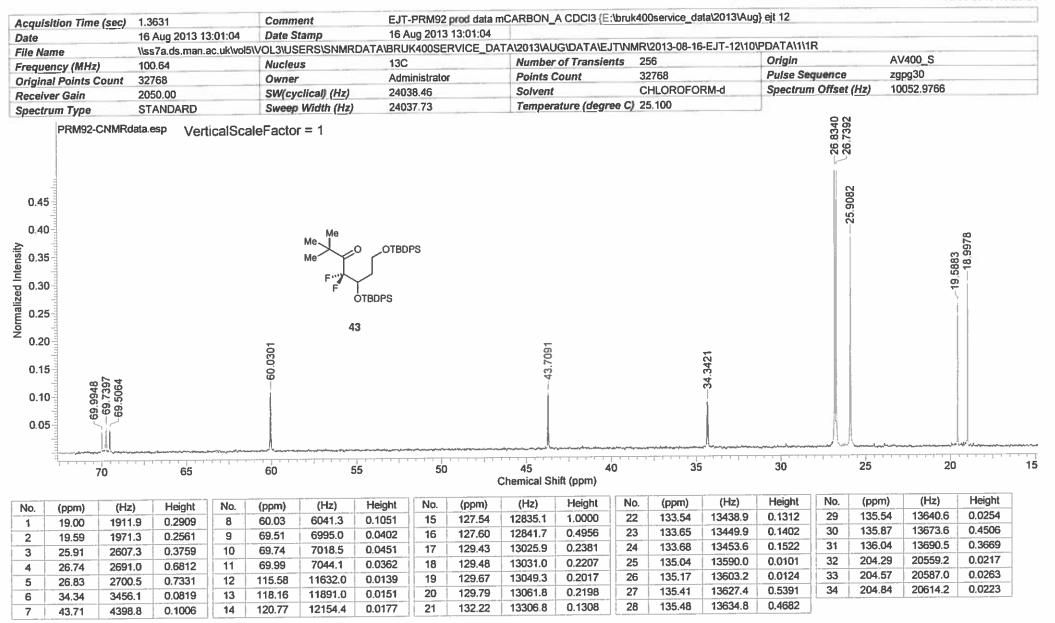
12/06/2013 11:05:49


Acquisition Time (sec)	1.1010	Comment	EJT-PRM80 methyl ester	r mCARBONnight CDCl3 /o	pt/oldbruk500data.11vii11	/2013/Jun ejt 26	
Date	07 Jun 2013 03:50:40	Date Stamp	07 Jun 2013 03:50:40		CONTRACTOR CONTRACTOR CONTRACTOR CO		
File Name	\\ss7a.ds.man.ac.uk\vol5\\	VOL3\USERS\SNMRDAT	ABRUK500DATABRUK50	ODATA\2013\JUN\DATA\E	JTWMR\2013-06-06-EJT	-26\11\PDATA\1\1R	
Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	3072	Origin	spect
Original Points Count	32768	Owner	vnmr1	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12569.3496
Spectrum Type	STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C	25.128		

12/06/2013 11:06:19

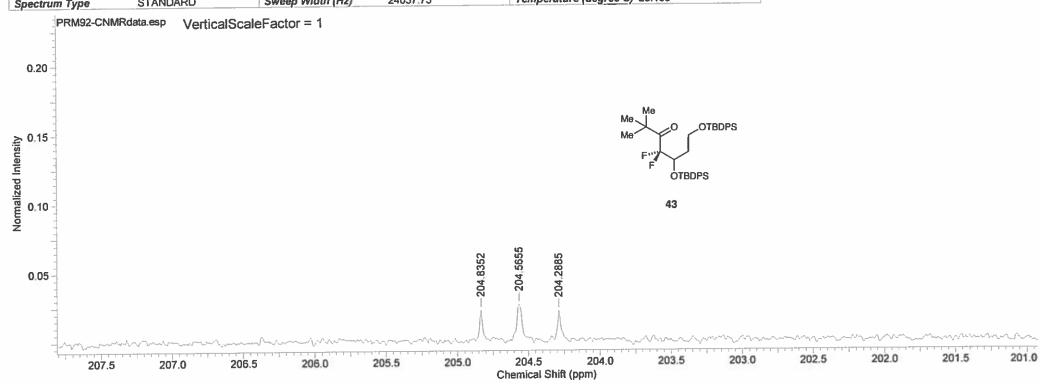
EJT-PRM89 f10-24 20mg mF19CPD CDCl3 {e:\bruk400data\2013\May} ejt 11




NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT INS DS	2013-05-29-ejt- 11 20130529 12.39 AV400 5 mm PABBO BB- 2gig 131072 CDC13 16	-11
SWH FIDRES AQ RG DW	89285.711 0.681196 0.7340532 4100 5.600	Hz Hz sec
DE TE D1 D11 TD0	7.51 294.6 1.0000000 0.03000000	usec usec K sec sec
NUC1 P1 PL1 PL1W SFO1	CHANNEL f1 ==== 19F 10.70 -5.00 27.00716019 376.4607164	usec dB
CPDPRG2 NUC2 PCPD2 PL12 PL12 PL12W SFO2 SI SF WDW SSB LB GB	15.31 17.83863831 0.22927761 400.1316005 262144 376.4983660 EM 0	
PC	2.00	

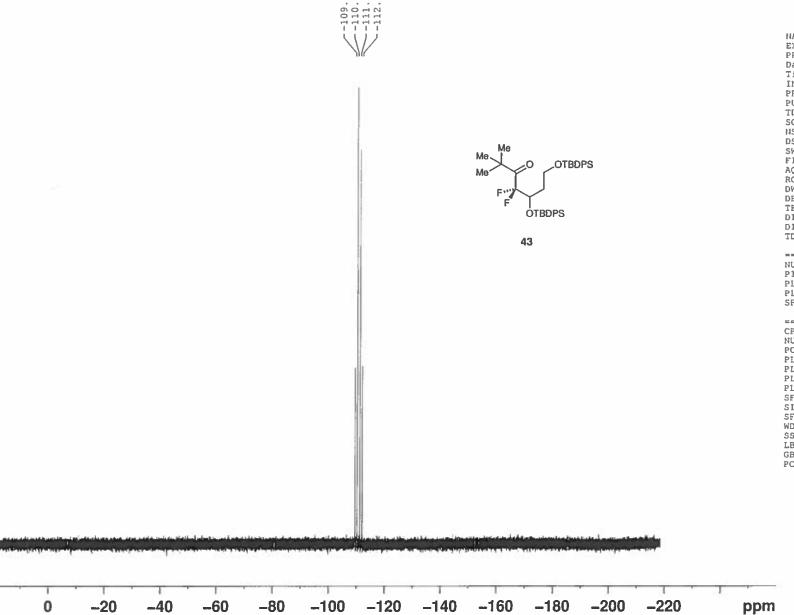
EJT-PRM92 prod fracs 40mg mPROTON CDCI3 {e:\bruk400data\2013\Jun} ejt 14

16/08/2013 13:28:26



16/08/2013 13:27:53

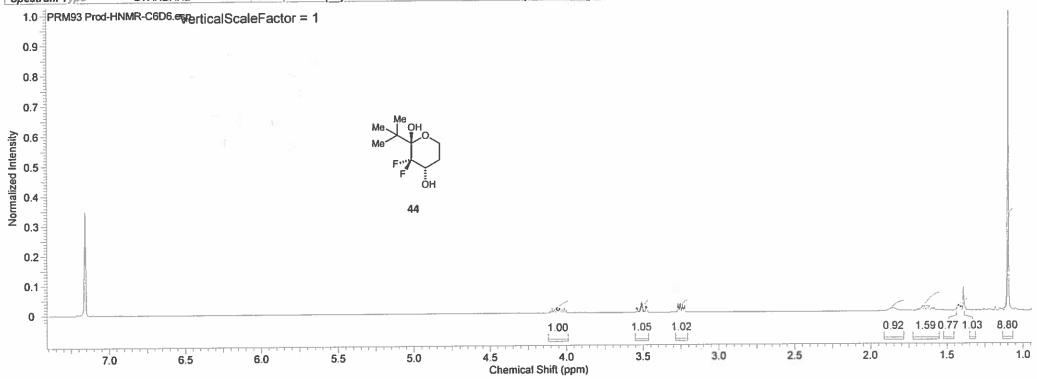
cquisition Time (se	1.3631		Comme	int	EJT-F	PRM92 pro	od data mo	CARBON A	CDCI3 (E:	\bruk400	Oservice_da	ata\2013\Aug	} ejt 12				1100000
ate	16 Aug 2013	13:01:04	Date Sta	amp	16 Au	ig 2013 13	1:01:04					F IT 401451	DDATALCIA	_			
le Name	\\ss7a.ds.ma	n.ac.uk\vol5	SIVOL3IUSE	ERSISNMRE	DATAIBRUK	400SERV	ICE_DAT	A\2013\AU	G\DATA\EJ	TWMRV	2013-08-16	5-EJT-12\10\	PDATA\1\1	R		4400.0	
requency (MHz)	100.64		Nucleus		13C			Number	of Transien	nts 25	6		Origin			/400_S	
riginal Points Coun	32768		Owner		Admii	nistrator		Points C	ount		768		Pulse Sec			pg30	
eceiver Gain	2050.00		SW(cyc	lical) (Hz)	24038			Solvent			HLOROFO	RM-d	Spectrum	Offset (Hz) 10	052.9766	
pectrum Type	STANDARD		Sweep	Width (Hz)	24037	7.73		Tempera	ture (degre	ee C) 25	5.100		J				
0.15 0.10	136.0363 1135.5416	135.0387 135.0387	133,6828 electric	132.2249	129.7902	129,433		for a now and a not a not a not a not a not a not a not a not a not a not a not a not a not a not a not a not a	h ha ha do marche de si de parache de si	Me Me Me Fi	OTBDF	-120.7732	~. 257 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-118.1563	a contract of the contract of	-115.5831	standing in
138	137 136			minamina ina	131 130	129		127 126 hemical Sh		124		22 121	120 1	19 11			115 114
138	137 136	411111111111111	34 133	minnimin	131 130	129				124 No.	(ppm)	22 121 (Hz)	120 1 Height	19 11 No.	(ppm)	(Hz)	Height
138 o. (ppm)	137 136 Hz) Height	135 1	34 133 (ppm)	132	131 130	129 No.	С	hemical Sh	ift (ppm)			(Hz) 13627.4	120 1 Height 0.5391	No. 21	(ppm) 204.29	(Hz) 20559.2	Height 0.0217
0. (ppm) 0 1 115.58 11	137 136 Hz) Height 532.0 0.0139	135 1 No. 6	(ppm) 129.43	132 (Hz)	131 130 Height	129 No.	(ppm)	hemical Sh (Hz)	ift (ppm) Height	No.	(ppm)	(Hz) 13627.4 13634.8	120 1 Height 0.5391 0.4682	No. 21 22	(ppm) 204.29 204.57	(Hz) 20559.2 20587.0	Height 0.0217 0.0263
o. (ppm) 0 1 115.58 11 2 118.16 11	137 136 Hz) Height 532.0 0.0139 391.0 0.0151	135 1 No. 6	(ppm) 129.43 129.48	132 (Hz) 13025.9 13031.0	Height 0.2381 0.2207	No. 11 12	(ppm) 133.54 133.65	(Hz) 13438.9	ift (ppm) Height 0.1312	No.	(ppm) 135.41	(Hz) 13627.4	120 1 Height 0.5391	No. 21	(ppm) 204.29	(Hz) 20559.2	Height 0.0217
138 lo. (ppm) (1 115.58 11 2 118.16 11 3 120.77 12	137 136 Hz) Height 532.0 0.0139	135 1 No. 6	(ppm) 129.43	132 (Hz) 13025.9	131 130 Height 0.2381	No. 11 12 13	(ppm) 133.54	(Hz) 13438.9 13449.9	Height 0.1312 0.1402	No. 16 17	(ppm) 135.41 135.48	(Hz) 13627.4 13634.8	120 1 Height 0.5391 0.4682	No. 21 22	(ppm) 204.29 204.57	(Hz) 20559.2 20587.0	Height 0.0217 0.0263


16/08/2013 13:27:10

Acquisition Time (sec)	1.3631	Comment	EJT-PRM92 prod data mC	CARBON_A CDC13 (E:\bru	k400service_data\2013\Aug	} ejt 12	
Data	16 Aug 2013 13:01:04	Date Stamp	16 Aug 2013 13:01:04				
File Name	\\ss7a.ds.man.ac.uk\vol5\	VOL3\USERS\SNMRDATA	NBRUK400SERVICE_DATA		MR\2013-08-16-EJT-12\10\	PDATA\1\1R	11100 0
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	256	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10052.9766
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C) 25.100		

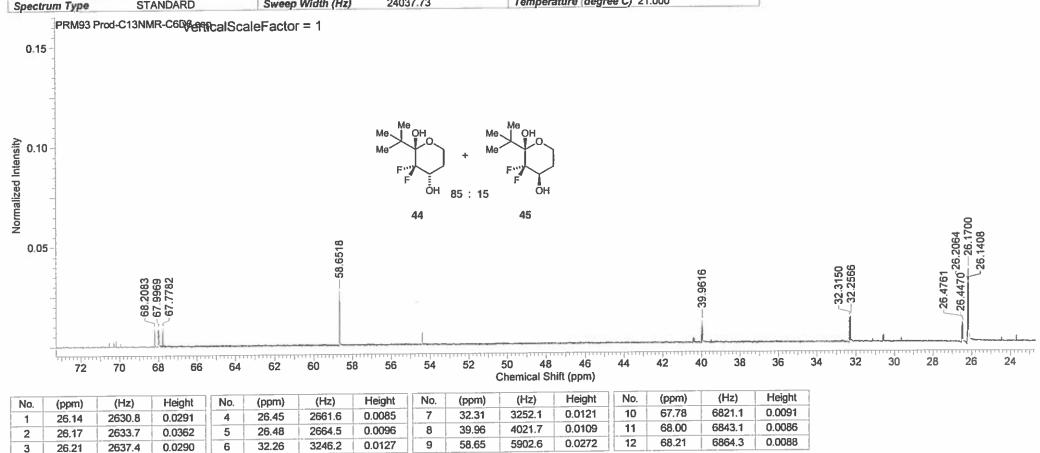
No.	(ppm)	(Hz)	Height
1	204.29	20559.2	0.0217
2	204.57	20587.0	0.0263
3	204.84	20614.2	0.0223

EJT-PRM92 prod fracs 40mg mF19CPD CDCl3 {e:\bruk400data\2013\Jun} ejt 14

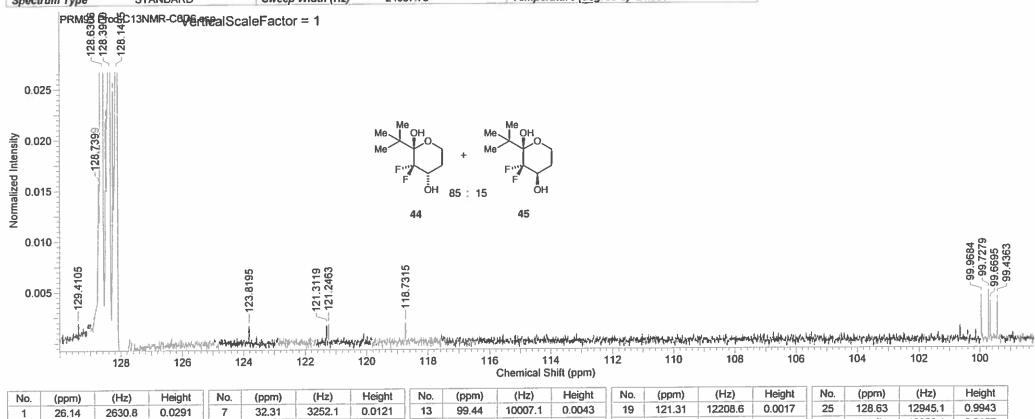


NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT HS	2013-06-13-ejt- 11 20130613 16.53 AV400 5 mm PABBO BB- 2gig 131072 CDC13	-14
DS SWH FIDRES AQ RG DW DE TE D1 D1 TD0	4 89285.711 0.681196 0.7340532 4100 5.600 7.51 294.5 1.00000000 0.03000000	used K
NUC1 P1 PL1 PL1W SFOI	CHANNEL fl ===== 19F 10.70 -5.00 27.00716019 376.4607164	used dB W
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12W PL12W SFO2 SI SF WDW	17.83863831	usec
SSB LB GB PC	0 0.30 0	Hz

17/09/2013 11:11:49

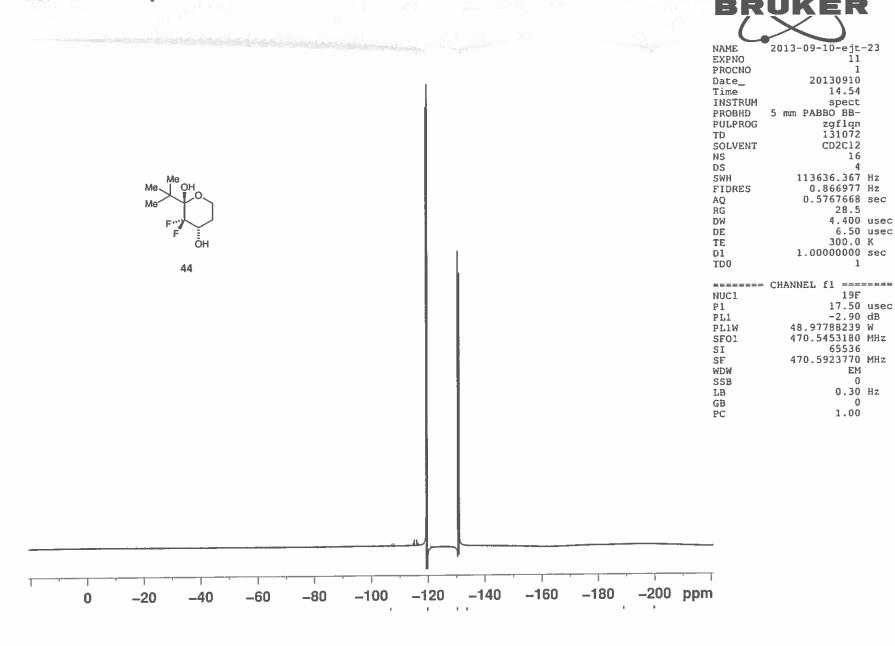

Acquisition Time (sec)	3.9846	Comment	EJT-PRM93 Product data	C-13 mPROTON C6D6 {	E:\bruk400service_data\20	13\Sep} Administrator 4	
Date	16 Sep 2013 13:05:20	Date Stamp	16 Sep 2013 13:05:20				
File Name	\\ss7a.ds.man.ac.uk\vol5\	vol3\users\snmrdata\bruk4	00service_data\2013\Sep\d	ata\Administrator\nmr\2013	1-09-16-Administrator-4\10\	īd	
Frequency (MHz)	400.23	Nucleus	1H	Number of Transients	16	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	181.00	SW(cyclical) (Hz)	8223.68	Solvent	BENZENE-d6	Spectrum Offset (Hz)	2424.5730
Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree C	21.000		

No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	0663 1.13	8.79730225	3.25690757e+10	8.79730225
_2	3673 1.40	1.02738047	3.80353306e+9	1.02738047
3	1051 1.47	0.77102357	2.85445734e+9	0.77102357
4	5520 1.72	1.59436548	5.90260582e+9	1.59436548
5	7838 1.91	0.91760439	3.39712384e+9	0.91760439
6	2054 3.28	1.02023995	3.77709773e+9	1.02023995
7	4649 3.55	1.04753137	3.87813530e+9	1.04753137
8	9897 4.11	0.99798036	3.69468902e+9	0.99798036


17/09/2013 19:18:31

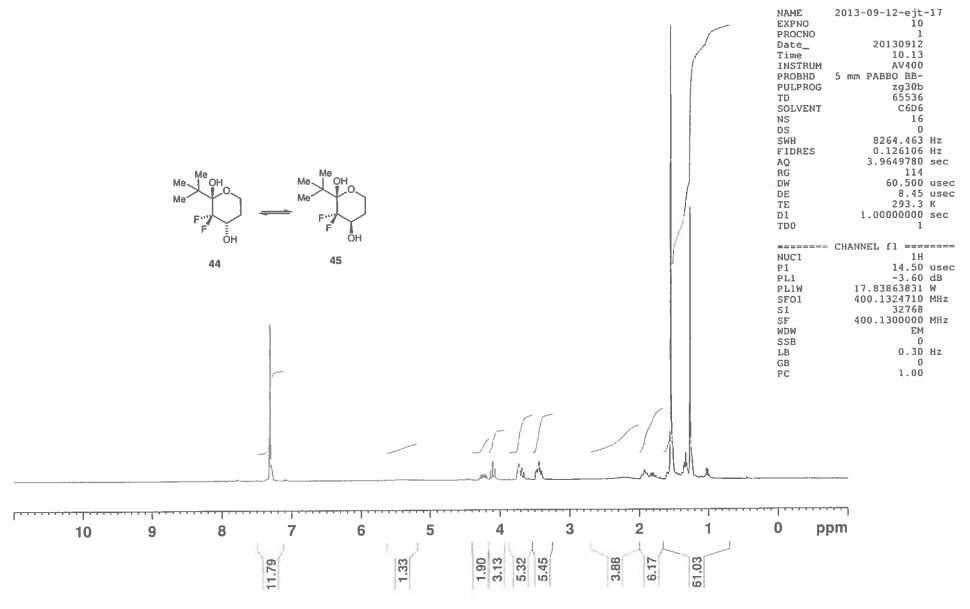
Acquisition Time (sec)	1.3631	Comment	EJT-PRM93 Product dat	a C-13 mCARBON C6D6 (E	:\bruk400service_data	(2013\Sep) Administrator 4	
Date	16 Sep 2013 13:56:32	Date Stamp	16 Sep 2013 13:56:32				
File Name	\\ss7a.ds.man.ac.uk\vol5	/vol3/users/snmrdata/bruk	400service_data\2013\Sep\d	ata\Administrator\nmr\2013-	09-16-Administrator-4\1	3\fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	12000	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	10119.6650
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	21.000		

17/09/2013 19:19:15


Acquisition Time (sec)	1.3631	Comment	EJT-PRM93 Product dat	a C-13 mCARBON C6D6 {E	E:\bruk400service_data	\2013\Sep} Administrator 4	
Date	16 Sep 2013 13:56:32	Date Stamp	16 Sep 2013 13:56:32				
File Name	\\ss7a.ds.man.ac.uk\vol5	\vol3\users\snmrdata\bruk	400service_data\2013\Sep\d	ata\Administrator\nmr\2013-	09-16-Administrator-4\	13\fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	12000	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	10119.6650
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	21.000		

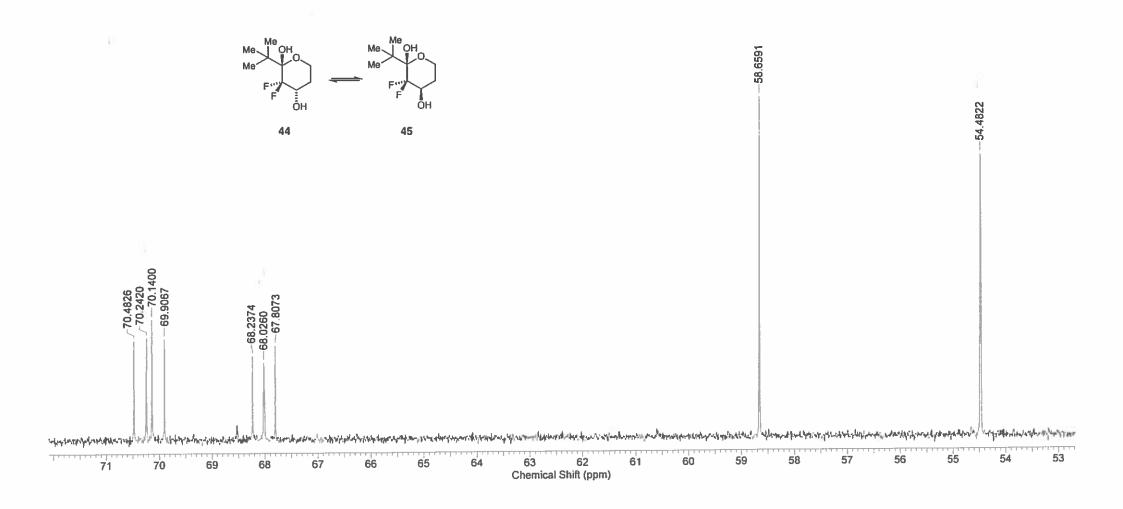
(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.
	2630.8	0.0291	7	32.31	3252.1	0.0121	13	99.44	10007.1	0.0043	19	121.31	12208.6	0.0017	25
		0.0362	8	39.96	4021.7	0.0109	14	99.67	10030.5	0.0039	20	123.82	12460.9	0.0016	26
		0.0290	9	58.65	5902.6	0.0272	15	99.73	10036.4	0.0049	21	128.15	12896.7	0.9836	27
			10	67.78	6821.1	0.0091	16	99.97	10060.6	0.0045	22	128.27	12909.2	0.0249	
					6843.1	0.0086	17	118.73	11948.9	0.0019	23	128.39	12920.9	1.0000	
32.26	3246.2	0.0127	12	68.21	6864.3	0.0088	18	121.25	12202.0	0.0018	24	128.51	12932.6	0.0222	
_	(ppm) 26.14 26.17 26.21 26.45 26.48	26.14 2630.8 26.17 2633.7 26.21 2637.4 26.45 2661.6 26.48 2664.5	26.14 2630.8 0.0291 26.17 2633.7 0.0362 26.21 2637.4 0.0290 26.45 2661.6 0.0085 26.48 2664.5 0.0096	26.14 2630.8 0.0291 7 26.17 2633.7 0.0362 8 26.21 2637.4 0.0290 9 26.45 2661.6 0.0085 10 26.48 2664.5 0.0096 11	26.14 2630.8 0.0291 7 32.31 26.17 2633.7 0.0362 8 39.96 26.21 2637.4 0.0290 9 58.65 26.45 2661.6 0.0085 10 67.78 26.48 2664.5 0.0096 11 68.00	26.14 2630.8 0.0291 7 32.31 3252.1 26.17 2633.7 0.0362 8 39.96 4021.7 26.21 2637.4 0.0290 9 58.65 5902.6 26.45 2661.6 0.0085 10 67.78 6821.1 26.48 2664.5 0.0096 11 68.00 6843.1	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 13 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 14 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 15 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 16 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086 17	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 13 99.44 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 14 99.67 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 15 99.73 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 16 99.97 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086 17 118.73	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 13 99.44 10007.1 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 14 99.67 10030.5 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 15 99.73 10036.4 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 16 99.97 10060.6 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086 17 118.73 11948.9	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 13 99.44 10007.1 0.0043 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 14 99.67 10030.5 0.0039 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 15 99.73 10036.4 0.0049 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 16 99.97 10060.6 0.0045 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086 17 118.73 11948.9 0.0019	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 13 99.44 10007.1 0.0043 19 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 14 99.67 10030.5 0.0039 20 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 15 99.73 10036.4 0.0049 21 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 16 99.97 10060.6 0.0045 22 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086 17 118.73 11948.9 0.0019 23	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 13 99.44 10007.1 0.0043 19 121.31 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 14 99.67 10030.5 0.0039 20 123.82 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 15 99.73 10036.4 0.0049 21 128.15 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 16 99.97 10060.6 0.0045 22 128.27 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086 17 118.73 119.78.9 0.0019 24 428.51	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 13 99.44 10007.1 0.0043 19 121.31 12208.6 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 14 99.67 10030.5 0.0039 20 123.82 12460.9 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 15 99.73 10036.4 0.0049 21 128.15 12896.7 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 16 99.97 10060.6 0.0045 22 128.27 12909.2 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086 17 118.73 118.73 118.78 0.0019 24 128.39 12920.9	26.14 2630.8 0.0291 7 32.31 3252.1 0.0121 13 99.44 10007.1 0.0043 19 121.31 12208.6 0.0017 26.17 2633.7 0.0362 8 39.96 4021.7 0.0109 14 99.67 10030.5 0.0039 20 123.82 12460.9 0.0016 26.21 2637.4 0.0290 9 58.65 5902.6 0.0272 15 99.73 10036.4 0.0049 21 128.15 12896.7 0.9836 26.45 2661.6 0.0085 10 67.78 6821.1 0.0091 16 99.97 10060.6 0.0045 22 128.27 12909.2 0.0249 26.48 2664.5 0.0096 11 68.00 6843.1 0.0086 17 118.73 11948.9 0.0019 23 128.39 12920.9 0.0022

No.	(ppm)	(Hz)	Height
25	128.63	12945.1	0.9943
26	128.74	12956.1	0.0157
27	129.41	13023.6	0.0020

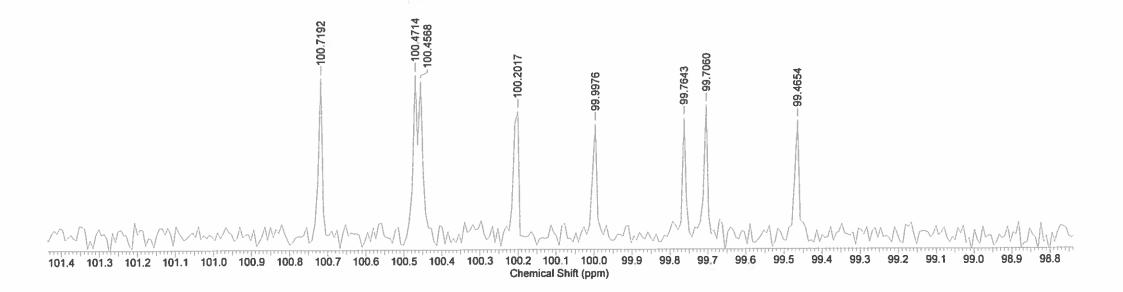

EJT-PRM93 Prod crystals CD2Cl2 m19F CD2Cl2 /opt/oldbruk500data.11vii11/2013/Sep ejt 23

EM

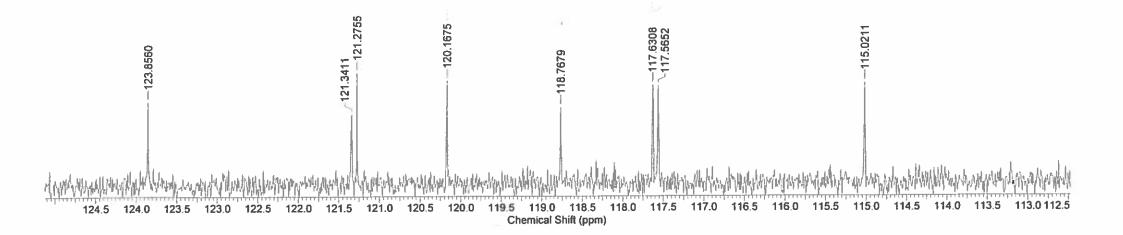
EJT-PRM93 Prod crystals in C6D6 2*o/n mPROTON C6D6 {e:\bruk400data\2013\Sep} ejt 17



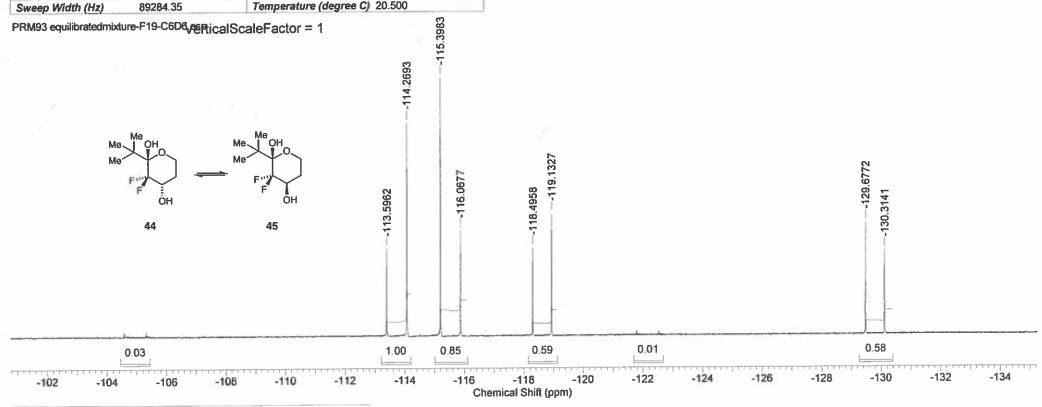
Date 12 Sep 2013 0.60.048 Date Stamp 12 Sep 2013 0.60.048	quisition Time (sec)		Comment	EJT-PRM93 Prod cr	vatals mCARBON C6D	6 (E:\bruk40	Oservice_data\2013	3\Sep) Administrator 10		
New New		12 Sen 2013 06:00:48	Date Stamp	12 Sep 2013 06:00:4	8					
100.64 Nucleus 13C Number of Translents 12000 Origin Pulse Sequence 2 120 12		\\ss7a ds man ac.uk\vo	15\vol3\users\snmrdata\bruk	(400service data\2013\S	ep\data\Administrator\n	mr\2013-09-	11-Administrator-10)\10\fid		
Total Points Count 32768					Number of Trai	nsients 1	2000	Origin	AV400_S	
Section 2050.00 SW(cyclical) (Hz) 24038.46 Solvent BENZENE-46 Spectrum Offset (Hz) 1					Points Count				zgpg30	
Pectrum Type STANDARD Sweep Width (Hz) 24037.73 Temperature (degree C) 18.900 IM93 equilibratedmixture-C13-C606(APA)icalScaleFactor = 1 When the standard of								Spectrum Offset (Hz)	10119,6650	
178 8077 178 8077				24037.73	Temperature (d	legree C) 1	8.900			
40.428 0.0126 9616 39.990	м93 equilibratedmixtur	Me Me Me F ""	OH Me Me F"					26.2064		
book withough with the state of	40.0126	39.9616	ولار منز کو اور در از او از مواد مود در آن و در اور در در در در در در در در در در در در در	ند المؤولة بالعالم الإنوان الإندان عود الدورية المراجع والإندان المراجع والمراجع المراجع 32.2421		29.6179	from no not negligible his his second since to be second	stile angustrykthekrisolaw	-24.4351	


Acquisition Time (sec)	1.3631	Comment	EJT-PRM93 Prod crysta	ls mCARBON C6D6 (E:\bru	k400service_data\2013	3\Sep} Administrator 10	
Date	12 Sep 2013 06:00:48	Date Stamp	12 Sep 2013 06:00:48				
File Name	\\ss7a.ds.man.ac.uk\vol5	/vol3/users/snmrdata/brul	400service_data\2013\Sep\d	ata\Administrator\nmr\2013-	09-11-Administrator-10	0\10\fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients		Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	10119.6650
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	18.900		

PRM93 equilibratedmixture-C13-C6D6/efficalScaleFactor = 1

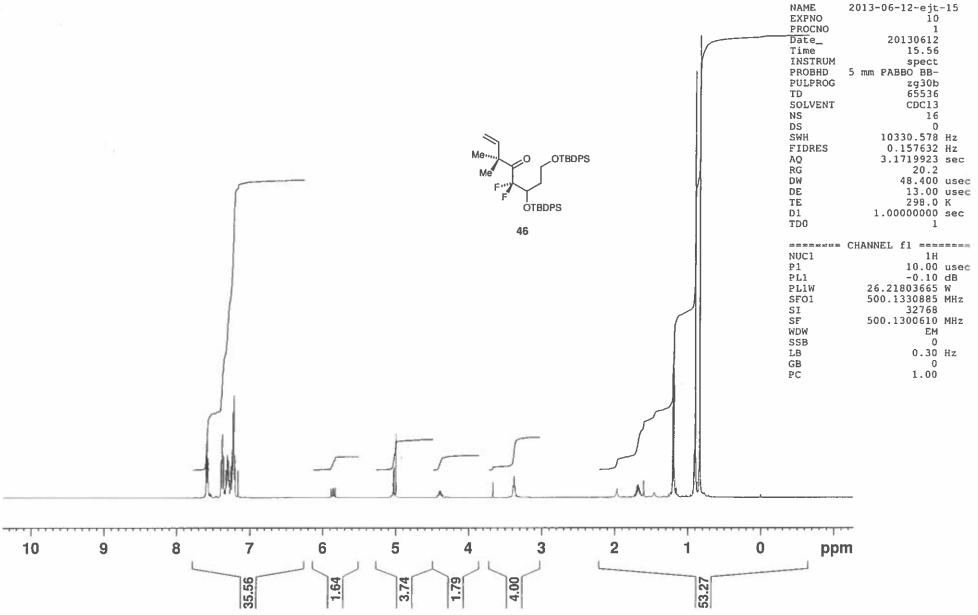

Acquisition Time (sec)	1.3631	Comment	EJT-PRM93 Prod crysta	is mCARBON C6D6 (E:\bru	k400service_data\2013\Se	p) Administrator 10	
Date	12 Sep 2013 06:00:48	Date Stamp	12 Sep 2013 06:00:48				
File Name	\\ss7a.ds.man.ac.uk\vol5	\vol3\users\snmrdata\bruk	<400service_data\2013\Sep\d	lata\Administrator\nmr\2013-	09-11-Administrator-10\10\	fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	12000	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	10119.6650
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C) 18.900		

PRM93 equilibratedmixture-C13-C6D6.esp

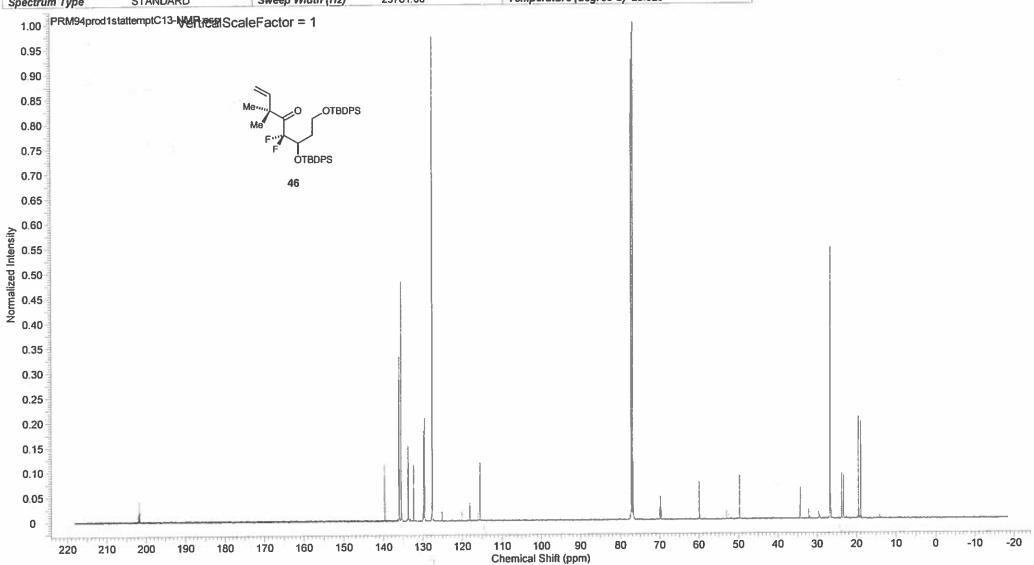


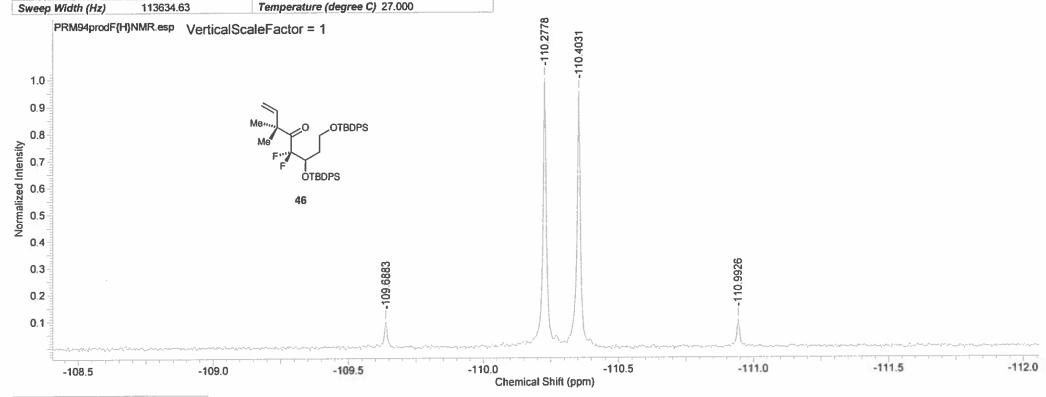
Acquisition Time (sec)	1.3631	Comment	EJT-PRM93 Prod crysta	is mCARBON C6D6 (E:\bru	k400service_data\2013\	Sep} Administrator 10	
Date	12 Sep 2013 06:00:48	Date Stamp	12 Sep 2013 06:00:48				
File Name	\\ss7a.ds.man.ac.uk\vol5	\vol3\users\snmrdata\bruk	<400service_data\2013\Sep\d	lata\Administrator\nmr\2013-	09-11-Administrator-10\	10\fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	12000	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	10119.6650
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	18.900		

PRM93 equilibratedmixture-C13-C6D6.esp


Acquisition Time (sec)	0.7340	Comment	EJT-PRM93 Prodicrys	tals in C6D6 2*o/n mF19C	PD C6D6 (e:\bruk400	Odata\2013\Sep} ejt 17	
Date		Date Stamp	12 Sep 2013 10:14:40				
	\\ss7a.ds.man.ac.uk\vo	15\vol3\users\snmrdata\brul	<400data\2013\Sep\data\	ejt\nmr\2013-09-12-ejt-17\	1Vid	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients	16	Origin	AV400	Original Points Count	65536
Owner	Administrator	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	4100.00
SW(cyclical) (Hz)	89285.71	Solvent	BENZENE-d6	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
		T	20 500				

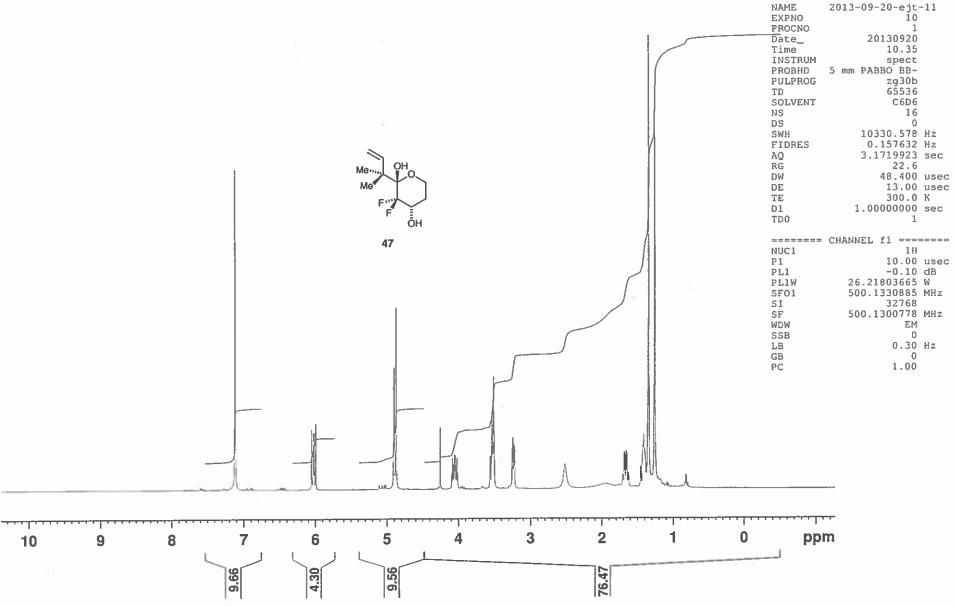
No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	5932129	0.57895821	1.36767340e+7	0.57895821
2	3756121	0.00921777	2.17751453e+5	0.00921777
3	3266118	0.59456044	1.40453060e+7	0.59456044
4	3128115	0.84520292	1.99662340e+7	0.84520292
5	3975113	1.00384212	2.37137700e+7	1,00384212
6	5377104	0.02603587	6.15045438e+5	0.02603587


EJT-PRM94 f7-16 47mg mPROTON CDCl3 /opt/oldbruk500data.11vii11/2013/Jun ejt 15

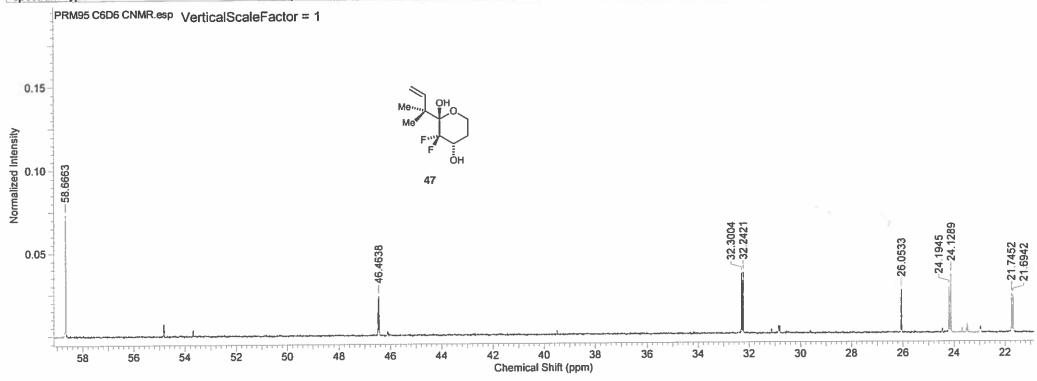

26/07/2013 11:08:37

Acquisition Time (sec)	1.1010	Comment	EJT-PRM94 Prod data r	mCARBONnight CDCl3 /opt/	oldbruk500data.11vii11/2	013/Jun ejt 15	
Date	13 Jun 2013 04:54:40	Date Stamp	13 Jun 2013 04:54:40				10.00
File Name	\\ss7a.ds.man.ac.uk\vol5	SVOL3/USERS/SNMRDA	TA\BRUK500DATA\BRUK5	00DATA\2013\JUN\DATA\E	JT\NMR\2013-06-12-EJ		
Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	3072	Origin	spect
Original Points Count	32768	Owner	vnmr1	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12571.1670
Spectrum Type	STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C	25.029		

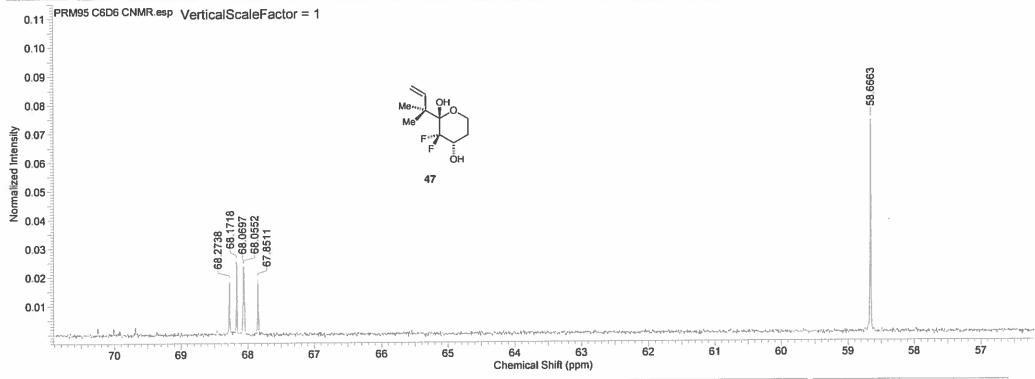
29/05/2014 15:09:13


Acquisition Time (sec)	0.5767	Comment	ETJ-PRM94 prod fracs	354mg m19FCPD CDCl3	opt/oldbruk500data.1	1vii11/2013/Aug ejt 1	
Date	24 Aug 2013 18:04:00	Date Stamp	24 Aug 2013 18:04:00				
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500data\bruk500data\201	3\Aug\data\ejt\nmr\2013-08	l-24-ejt-1\12\fid	Frequency (MHz)	470.59
Nucleus	19F	Number of Transients	16	Origin	spect	Original Points Count	65536
Owner	vnmr1	Points Count	65536	Pulse Sequence	zgfhigan	Receiver Gain	32.00
SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234	Spectrum Type	STANDARD
011/0/01/01/01			. 07.000				

No.	(ppm)	(Hz)	Height
1	-110.99	-52232.3	0.1008
2	-110.40	-51954.8	0.9523
3	-110.28	-51895.9	1.0000
4	-109.69	-51618.5	0.0963

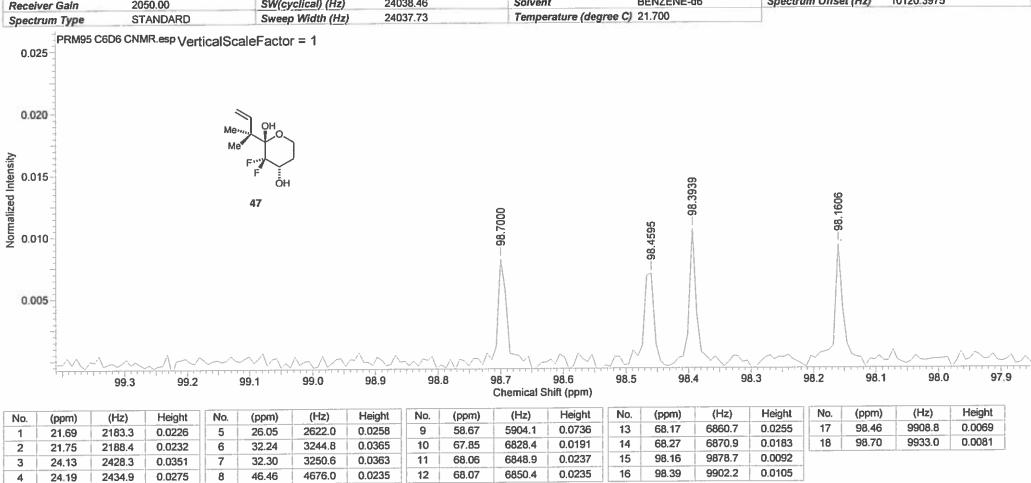

EJT-PRM95 Product data mPROTON C6D6 /opt/oldbruk500data.11vii11/2013/Sep ejt 11

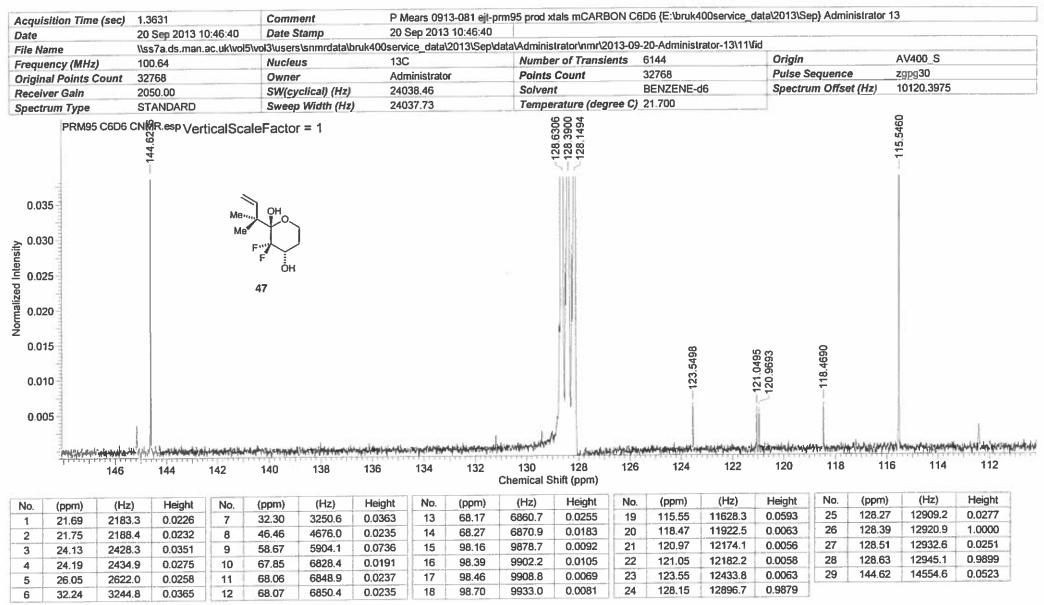
23/09/2013 18:37:19


Acquisition Time (sec)	1.3631	Comment	P Mears 0913-081 ejt-pri	m95 prod xtals mCARBON C	C6D6 (E:\bruk400servic	e_data\2013\Sep} Administrator	13
Date	20 Sep 2013 10:46:40	Date Stamp	20 Sep 2013 10:46:40				
File Name	\\ss7a.ds.man.ac.uk\vol5	\vol3\users\snmrdata\bruk	400service_data\2013\Sep\da	nta/Administrator\nmr\2013-0	9-20-Administrator-13\	11\fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	6144	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	10120.3975
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	21.700		

No.	(ppm)	(Hz)	Height
1	21.69	2183.3	0.0226
2	21.75	2188.4	0.0232
3	24.13	2428.3	0.0351
4	24.19	2434.9	0.0275
5	26.05	2622.0	0.0258
6	32.24	3244.8	0.0365
7	32.30	3250.6	0.0363
8	46.46	4676.0	0.0235
9	58.67	5904.1	0.0736

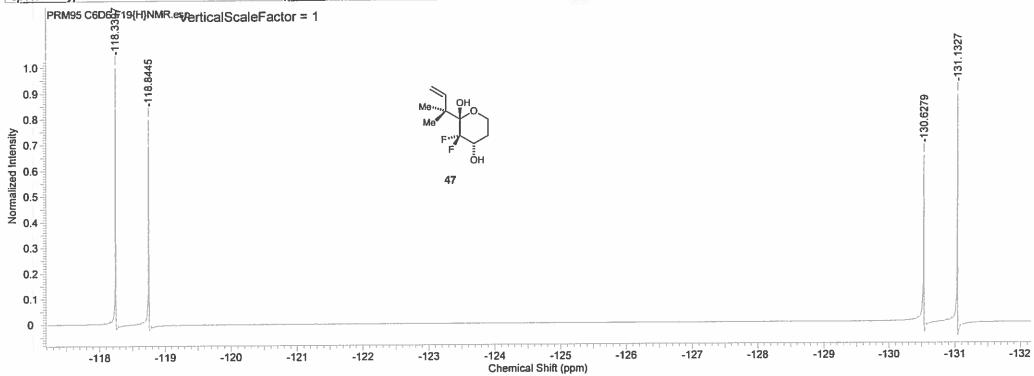
23/09/2013 18:40:51


Acquisition Time (sec)	1.3631	Comment	P Mears 0913-081 ejt-pm	n95 prod xtals mCARBON C	C6D6 {E:\bruk400servic	e_data\2013\Sep} Administrator	13
Date	20 Sep 2013 10:46:40	Date Stamp	20 Sep 2013 10:46:40				
File Name	\\ss7a.ds.man.ac.uk\vol5	/vol3/users/snmrdata/bruk	400service_data\2013\Sep\da	ta\Administrator\nmr\2013-0	9-20-Administrator-13\	11\fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	6144	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	10120.3975
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	21.700		


No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
1	21.69	2183.3	0.0226	4	24.19	2434.9	0.0275	7	32.30	3250.6	0.0363	10	67.85	6828.4	0.0191	13	68.17	6860.7	0.0255
2	21.75	2188.4	0.0232	5	26.05	2622.0	0.0258	8	46.46	4676.0	0.0235	11	68.06	6848.9	0.0237	14	68.27	6870.9	0.0183
3	24.13	2428.3	0.0351	6	32.24	3244.B	0.0365	9	58.67	5904.1	0.0736	12	68.07	6850.4	0.0235				

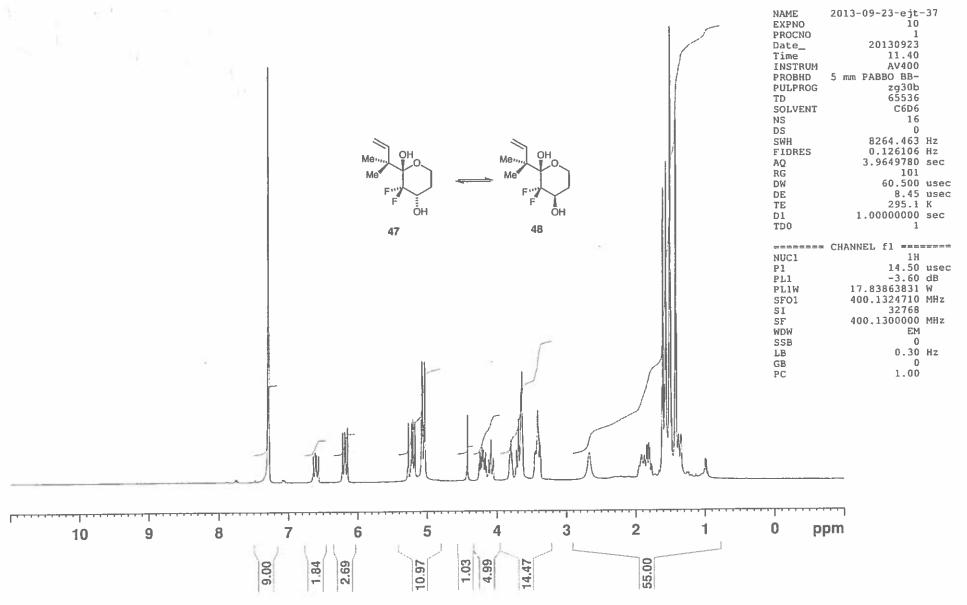
23/09/2013 18:43:57

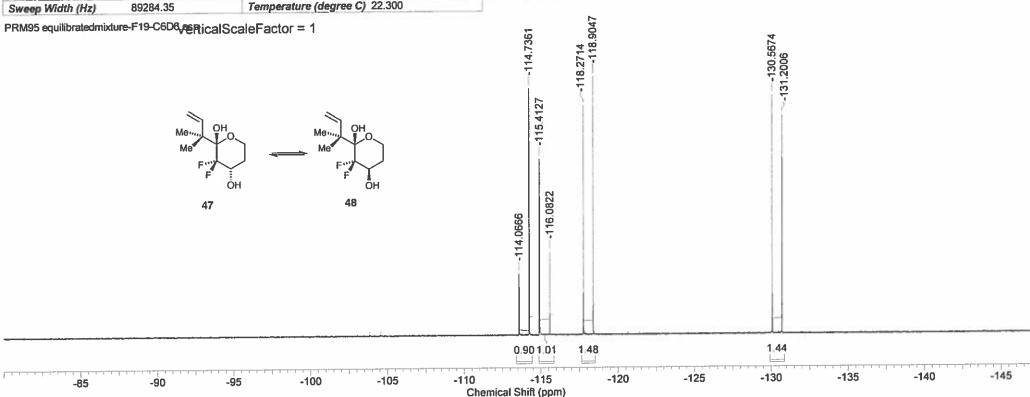
Acquisition Time (sec)	1.3631	Comment	P Mears 0913-081 ejt-pri	n95 prod xtals mCARBON C	C6D6 (E:\bruk400servic	e_data\2013\Sep) Administrator	13
Date	20 Sep 2013 10:46:40	Date Stamp	20 Sep 2013 10:46:40				
File Name	\\ss7a.ds.man.ac.uk\vol5	\vol3\users\snmrdata\bruk	400service_data\2013\Sep\da	ta\Administrator\nmr\2013-0	9-20-Administrator-13\	11\fid	
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	6144	Origin	AV400_S
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	2050.00	SW(cyclical) (Hz)	24038.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	10120.3975
Spectrum Type	STANDARD	Sweep Width (Hz)	24037.73	Temperature (degree C	21.700		



23/09/2013 18:46:37

20/09/2013 11:40:52


Acquisition Time (sec)	0.5767	Comment	EJT-PRM95 Product data	m19FCPD C6D6 /opt/oldb	oruk500data.11vii11/2013/S	ep ejt 11	
Date	20 Sep 2013 10:40:16	Date Stamp	20 Sep 2013 10:40:16				
File Name	\\ss7a,ds.man.ac.uk\vol5\	VOL3\USERS\SNMRDATA	NBRUK500DATA\BRUK50	ODATA\2013\SEP\DATA\	EJT\NMR\2013-09-20-EJT	11\12\PDATA\1\1R	
Frequency (MHz)	470.59	Nucleus	19F	Number of Transients	16	Origin	spect
Original Points Count	65536	Owner	vnmr1	Points Count	65536	Pulse Sequence	zgfhigan
Receiver Gain	32.00	SW(cyclical) (Hz)	113636.37	Solvent	BENZENE-d6	Spectrum Offset (Hz)	-47059.0234
Spectrum Type	STANDARD	Sweep Width (Hz)	113634.63	Temperature (degree C	27.000	j	


1	No.	(ppm)	(Hz)	Height
	1	-131.13	-61710.1	0.8834
İ	2	-130.63	-61472.5	0.6455
1	3	-118.84	-55927.3	0.7986
1	4	-118.34	-55689.8	1.0000

EJT-PRM95 prod crystals over weekend equilibrated mPROTON C6D6 {e:\bruk400data\2013\Sep} ejt 37

	Tillo toport mad or						
Acquisition Time (sec)	0.7340	Comment	EJT-PRM95 prod crysta	als over weekend equilibrate	ed mF19CPD C6D6 (e:\bruk400data\2013\Sep) ejt 3	
The second secon	23 Sep 2013 11:42:08	Date Stamp	23 Sep 2013 11:42:08				
File Name	\\ss7a ds man.ac.uk\vol	5\vol3\users\snmrdata\bruk	400data\2013\Sep\data\e	t\nmr\2013-09-23-ejt-37\11	l\fid	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients	16	Origin	AV400	Original Points Count	65536
Owner	Administrator	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	4100.00
	89285.71	Solvent	BENZENE-d6	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
SW(cyclical) (Hz)	09203.71	30ivent					

Non-Negative Value

1.44295704

1.48149800

1.00809872 0.89820582

Value

(ppm)

3493 .. -1301.44295704

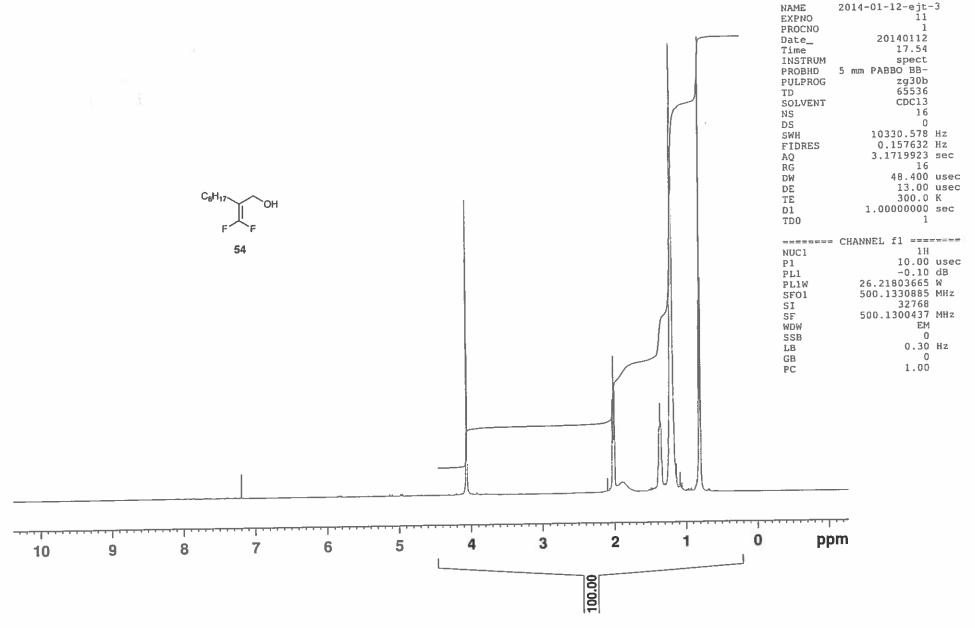
9284 ... -1130.89820582

2 0336 .. -1181.48149800

3 2540 .. -1151.00809872

Absolute Value

2.36217000e+7


2.42526280e+7

1.65029200e+7

1.47039360e+7

EJT-PRM115 product data allylic alcohol mPROTONnight CDCl3 /opt/oldbruk500data.11vii11/2014/Jan ejt 3

Acquisition Time (se) 1.1010	Com	ment	EJ.	T-PRM1	15 product of	data allylic a	Icohol mCARI	BONn	ight CDCI3	/opt/oldbruk	500data	a.11vii11/	2014/Jan ejt 3	}		
Date	12 Jan 2014 17:5	50:56 Date	Stamp			4 17:50:56					- 11						
ile Name	\\ss7a.ds.man.ac	.uk\vol5\VOL3\L	SERS\SNMR	DATA\BRL	JK500DA	TABRUKS	00DATAV20	14\JAN\DAT	A\EJT	WMR\2014	I-01-12-EJT-	3\10\PI	DATA\1\1	R			
requency (MHz)	125.76	Nuci		130				er of Transie		3072		0	rigin		spect		
Original Points Coun	32768	Own	er	VIII			Points	s Count		32768			Pulse Seq		zgpg30		
Receiver Gain	512.00	SW(cyclical) (Hz)	297	761.90		Solve			CHLORO	FORM-d	S	pectrum	Offset (Hz)	12571.	1670	
pectrum Type	STANDARD	Swe	ep Width (Hz,	297	761.00		Temp	erature (degi	ree C)	20.099							
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	56 54 52	C ₈ H ₁₇ F 54	ОН 3 46	44 4		40 38	36 Chemical Sh	34 32 nift (ppm)		29.3183 82 29.1956	95	-24.4361	22,6233	20 1	8 16	14.0432	12
											41.1						
	Jay Listaba	No (non)	(H-)	Height	i Na i	(nnm)	/H=\	Height	N∩	(nnm)	(H2)	He	iant i				
Vo. (ppm) (Hz) Height 66.0 0.7988	No. (ppm) 4 27.50	(Hz) 3458.1	Height 0.2238	No.	(ppm) 29.22	(Hz) 3675.2	Height 0.7842	No.	(ppm) 57.66	(Hz) 7251.0	Heig 0.15					

29.20

0.4542

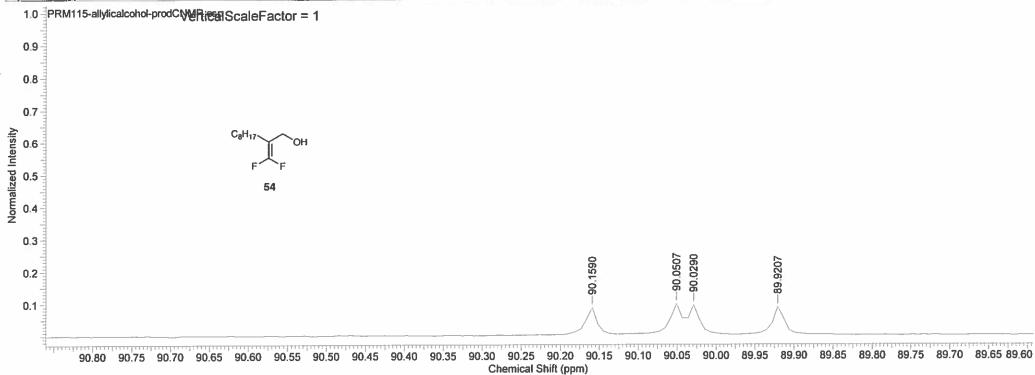
3073.0

24.44

3671.6

0.7282

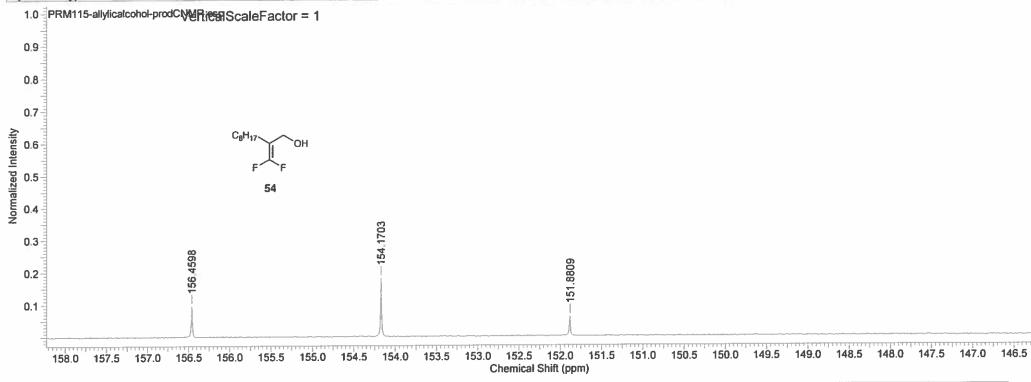
31.82


9

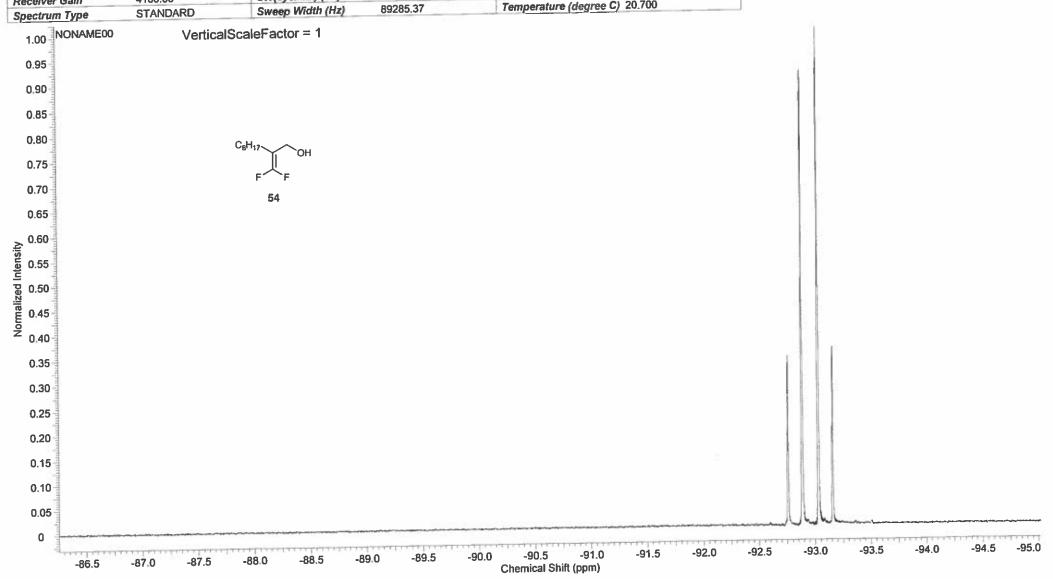
0.8907

4001.3

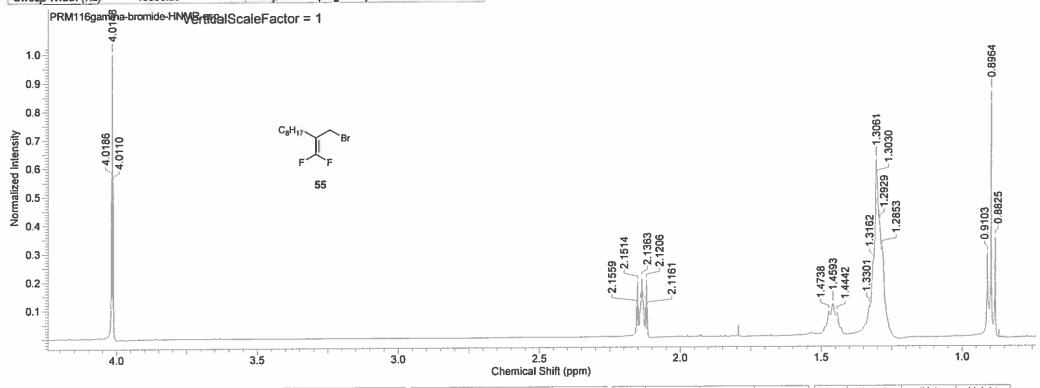
15/01/2014 15:52:04


Acquisition Time (sec)	1.1010	Comment	EJT-PRM115 product date	ta allylic alcohol mCARBONi	night CDCl3 /opt/oldbruk5	00data.11vii11/2014/Jan ejt 3	
Date	12 Jan 2014 17:50:56	Date Stamp	12 Jan 2014 17:50:56				
File Name	\\ss7a.ds,man.ac.uk\vol5	VOL3\USERS\SNMRDAT	AIBRUK500DATAIBRUK500	DATA\2014\JAN\DATA\EJ	TVNMR\2014-01-12-EJT-	3\10\PDATA\1\1R	
Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	3072	Origin	spect
Original Points Count	32768	Owner	vnmr1	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12571.1670
Spectrum Type	STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C	20.099		

No.	(ppm)	(Hz) Heigh	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No. (ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
1	14.04	1766.0 0.798	4	27.50	3458.1	0.2238	7	29.22	3675.2	0.7842	10 57.66	7251.0	0.1504	13	90.03	11321.9	0.0938
2	22.62	2845.1 1.000	5	27.52	3460.9	0.3816	8	29.32	3687.0	0.8407	11 57.70	7256.5	0.1568	14	90.05	11324.6	0.0980
3	24.44	3073.0 0.454	6	29.20	3671.6	0.7282	9	31.82	4001.3	0.8907	12 89.92	11308.2	0.0872	15	90.16	11338.2	0.0866


15/01/2014 15:52:22

Acquisition Time (sec)	1.1010	Comment	EJT-PRM115 product dat	a allylic alcohol mCARBON	night CDCI3 /opt/oldbruk5	00data.11vii11/2014/Jan ejt 3	
Date	12 Jan 2014 17:50:56	Date Stamp	12 Jan 2014 17:50:56				
File Name	\\ss7a.ds.man.ac.uk\vol5\	VOL3\USERS\SNMRDAT	A\BRUK500DATA\BRUK500	DATA\2014\JAN\DATA\EJ	F\NMR\2014-01-12-EJT-:	3\10\PDATA\1\1R	
Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	3072	Origin	spect
Original Points Count	32768	Owner	vnmr1	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	512.00	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12571.1670
Spectrum Type	STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C	20.099		


No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
1	14.04	1766.0	0.7988	5	27.52	3460.9	0.3816	9	31.82	4001.3	0.8907	13	90.03	11321.9	0.0938	17	154.17	19388.1	0.1808
2	22.62	2845.1	1.0000	6	29.20	3671.6	0.7282	10	57.66	7251.0	0.1504	14	90.05	11324.6	0.0980	18	156.46	19676.0	0.0960
3	24.44	3073.0	0.4542	7	29.22	3675.2	0.7842	11	57.70	7256.5	0.1568	15	90.16	11338.2	0.0866				
4	27.50	3458.1	0.2238	8	29.32	3687.0	0.8407	12	89.92	11308.2	0.0872	16	151.88	19100.2	0.0602				

		Comment	F.IT-PRM115E prod fra	cs 94mg mF19CPD CDCl3	(e:\bruk400data\2013\D	ec) ejt 9	
Acquisition time (ecc)		Data Ctowns	18 Dec 2013 12:50:08				
Date File Name	\\ss7a.ds,man.ac.uk\vol	SIVOL3IUSERSISNMRD		DEC\DATA\EJT\NMR\2013	16 16-12-18-EJT-9\11\PDAT	Origin	AV400
Frequency (MHz)	376.50	Nucleus	19F	Number of Transients Points Count	262144	Pulse Sequence	zgig
Original Points Count	65536	Owner (H=)	Administrator 89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977
Receiver Gain	4100.00 STANDARD	SW(cyclical) (Hz)	89285.37	Temperature (degree C	20.700		

20/01/2014 16:07:15

Acquisition Time (sec)	3.1719	Comment	EJT-PRM116 gamma-l	oromide data mPROTONn	ight CDCI3 (F:\bruks	500_b_data\2014\Jan} eit 15	
Date		Date Stamp	13 Jan 2014 16:08:32				
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	:500bdata\2014\Jan\data\	ejt\nmr\2014-01-13-ejt-15\	10\fid	Frequency (MHz)	500.13
Nucleus	1H	Number of Transients	16	Origin	spect	Original Points Count	32768
Owner	Administrator	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	20.20
SW(cyclical) (Hz)	10330.58	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	3079.6614	Spectrum Type	STANDARD
Sweep Width (Hz)	10330.26	Temperature (degree C	25.000				

No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height
1	0.88	441.4	0.3473	6	1.30	651.7	0.5638	11	1.46	729.8	0.1155	16	2.13	1066.2	0.1312	21	2.15	1076.0	0.1937
2	0.90	448.3	0.8616	7	1.31	653.2	0.6235	12	1.47	737.1	0.0883	17	2.13	1067.2	0.1312	22	2.16	1078.2	0.1086
3	0.91	455.2	0.2924	8	1.32	658.3	0.2676	13	2.12	1058.3	0.1030	18	2.14	1068.4	0.2079	23	4.01	2006.0	0.5535
4	1.29	642.8	0.3156	9	1.33	665.2	0.1092	14	2.12	1060.6	0.2010	19	2.14	1070.6	0.1279	24	4.01	2007.9	1.0000
5	1.29	646.6	0.4054	10	1.44	722.3	0.0831	15	2.12	1062.8	0.1131	20	2.15	1073.8	0.1106	25	4.02	2009.8	0.5684
9	1.25	040.0	0.4034	10	1,7474	722.0	0.0001			1000.0						1			

15/01/2014 10:25:12

Table 13 Jan 2014 20:50.08 Date Stamp 13 Jan 2014 20:50.08				15	014\Jan} ejt	00_b_data\2	(F:\bruk50	ght CDCI3	nCARBONni	omide data π	gamma-br	PRM116	EJT	nt	Comme		0912	(sec) 1.	sition Time	Acquis
Second S																		13	-0=	
Section Sect								11Vid	11-13-ejt-15\1	\nmr\2014-0	lan\data\ejt	ata\2014\J	bruk500bd	s\snmrdata\t	l5\vol3\user	ac.uk\vol	ss7a.ds.man.	lls	ame	ile Na
were Administrator Points Count 32768 Pulse Sequence zepg30 Receiver Gain 4597.60 Pulse Sequence zepg30 Pulse Sequence zepg30 Receiver Gain 4597.60 Pulse Sequence zepg30 Pulse				Count									nts 309	of Transien	Number		3C	13	us	ucleu
No. Copm (Hz) Height No. Copm CH2 Height Ch2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2					eiver Gain	Rec		zgpg30	uence	Pulse Sequ		8	327	Count	Points C		dministrator	A		
1.0 2014-01-13-ejt-15.011.esp Verical Scale Factor = 1 2014-01-13-ejt-15.011.esp Verical Scale Factor = 1 2014-01-13-ejt-15.011.esp Verical Scale Factor = 1 2014-01-13-ejt-15.011.esp Verical Scale Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp Verical Factor = 1 2014-01-13-ejt-15.011.esp 2014-		}	STANDAR		ctrum Type	Spec	715	12574.2	Offset (Hz)	Spectrum (lM-d	OROFOR	CHL		Solvent		0030.03) 30		
2014-01-13-ejt-15.011.esp Verifical Scale Factor = 1 1.0												00	ee C) 25.0	ature (degre	Tempera		0029.11			
Chemical Shift (ppm) No. (ppm) (Hz) Height No. (ppm) (Hz) Height No. (ppm) (Hz) Height No. (ppm) (Hz) Height No. (ppm) (Hz) Height No. (ppm) (Hz) Height No. (ppm) (Hz) Height No. (ppm) (Hz) Height No. (ppm) (Hz) 1 14.04 1766.2 0.3511 6 27.07 3404.8 0.2039 11 29.05 3653.1 0.5937 16 88.84 11172.6 0.0722 21 153.90 19354.6		15	7 16	1	18	19		F.			24		26	27.795 27.0 27.0378 27	27.8685 27.8540 27.8102	29.0491		21	Tour hard bardard traduction from the content of th	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
1 14.04 1766.2 0.3511 6 27.07 3404.8 0.2039 11 29.05 3653.1 0.5937 16 88.84 11172.6 0.0722 21 153.90 19354.6		13	, 10	,	10	13	20	۷1				∠5	20	21	28	29	30	31	32	
1 14.04 1766.2 0.3511 6 27.07 3404.8 0.2039 11 29.05 3653.1 0.5937 16 88.84 11172.6 0.0722 21 153.90 19354.6				Nto 1	Majorhi	(Hz)	(ppm)	No.	Height	(Hz)	(ppm)	No.	Height	(Hz)	(ppm)	No.	Height	(Hz)	(mag)	lo.
	Height			NO.	neignt	(*/	/bbitti													
2 22,04 2040.7 0.0050 7 27.00 0435.5 0.1040	Height 0.0672	9354.6	153.90			11172.6	88.84	16	0.5937	3653.1	29.05	11	0.2039			6				1
	Height 0.0672 0.0605	9354.6 9356.4	153.90 1 153.92				88.84	16	0.5937 0.0268	3653.1 3661.4				3404.8	27.07		0.3511	1766.2	14.04	_
4 27.04 3400.2 0.0841 9 27.85 3502.9 0.1310 14 29.26 3679.7 1.0000 19 89.13 11208.3 0.0664	Height 0.0672	9354.6 9356.4	153.90 1 153.92	21 22	0.0722 0.0809	11172.6 11186.3	88.84 88.95	17	0.0268	3661.4	29.11	12	0.1549	3404.8 3495.5	27.07 27.80	7	0.3511 0.6830	1766.2 2846.7	14.04 22.64	2

15

0.1670

31.83

4002.3

20

0.8875

151.60

19065.0

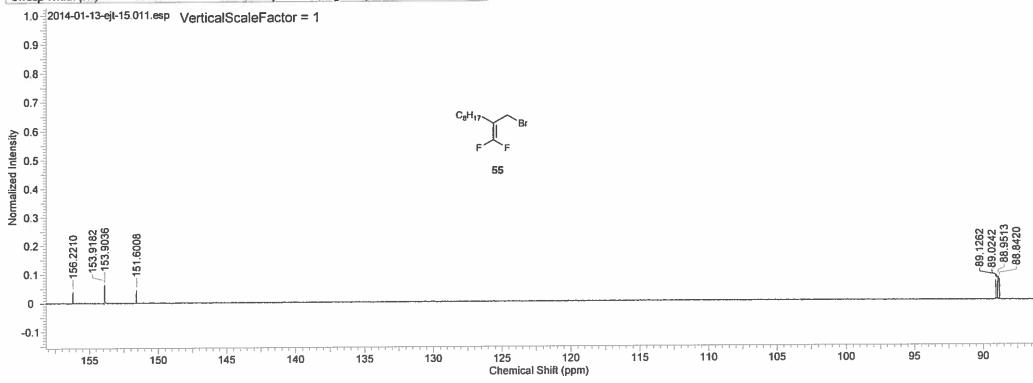
0.0455

27.05

5

3402.0

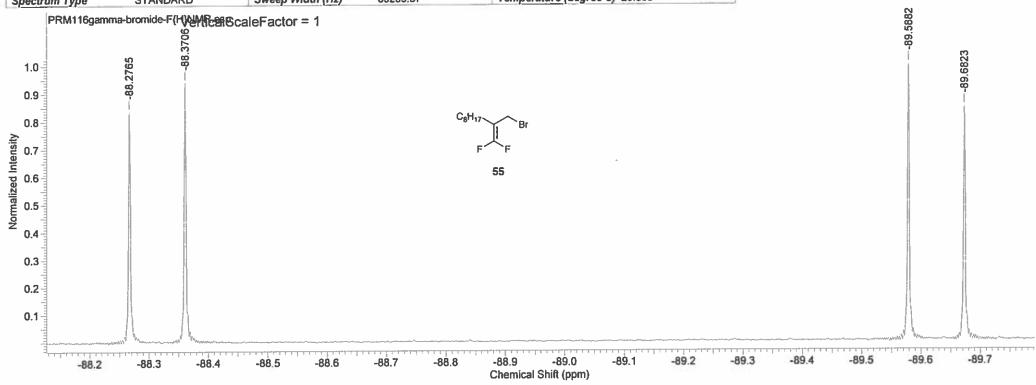
10


27.87

3504.7

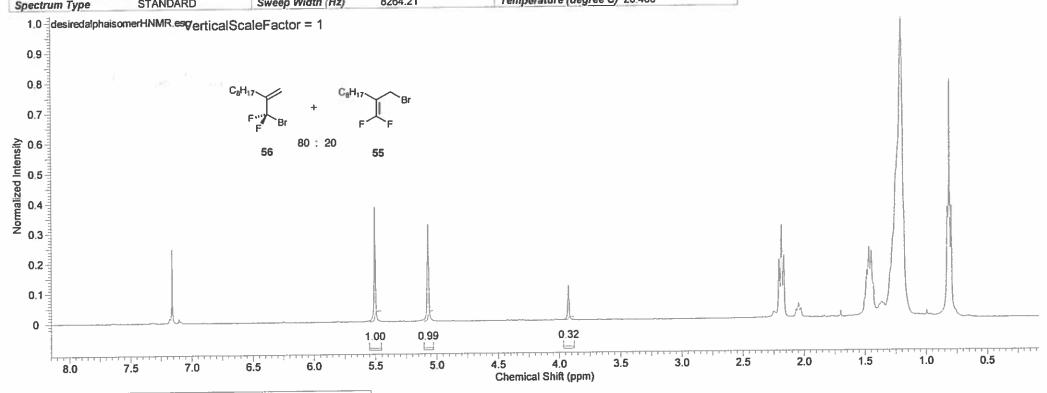
0.2455

15/01/2014 10:24:55


Acquisition Time (sec)	1.0912	Comment	EJT-PRM116 gamma-b	romide data mCARBONni	ght CDCl3 (F:\bruk50	00_b_data\2014\Jan}_ejt 15	
Date	13 Jan 2014 20:50:08	Date Stamp	13 Jan 2014 20:50:08				
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500bdata\2014\Jan\data\e	jl\nmr\2014-01-13-ejt-15\1	1\fid	Frequency (MHz)	125,76
Nucleus	13C	Number of Transients	3096	Origin	spect	Original Points Count	32768
Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	4597.60
SW(cyclical) (Hz)	30030.03	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12574.2715	Spectrum Type	STANDARD
Sweep Width (Hz)	30029.11	Temperature (degree C	25.000				

No.	(ppm)	(Hz)	Height
1	88.84	11172.6	0.0722
2	88.95	11186.3	0.0809
3	89.02	11195.5	0.0630
4	89.13	11208.3	0.0664
5	151.60	19065.0	0.0455
6	153.90	19354.6	0.0672
7	153.92	19356.4	0.0605
8	156.22	19646.0	0.0411

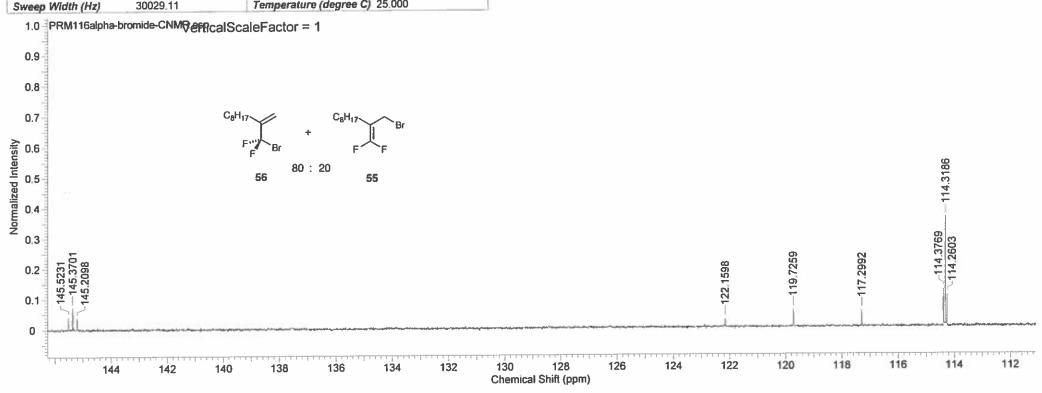
20/01/2014 15:51:13


Acquisition Time (sec)	0.7340	Comment	EJT-PRM116 f3+4 117	mg mF19CPD CDCl3 (e:\bi	uk400data\2014\Jan} ejt	42	
Date	13 Jan 2014 12:33:04	Date Stamp	13 Jan 2014 12:33:04				
File Name	\\ss7a.ds.man.ac.uk\vol	5\VOL3\USERS\SNMRD	ATA\BRUK400DATA\2014\	JANIDATA/EJT/NMR/2014	L-01-13-EJT-42\11\PDA	TA\1\1R	
Frequency (MHz)	376.50	Nucleus	19F	Number of Transients	16	Origin	AV400
Original Points Count	65536	Owner	Administrator	Points Count	262144	Pulse Sequence	zgig
Receiver Gain	4100.00	SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977
Spectrum Type	STANDARD	Sweep Width (Hz)	89285.37	Temperature (degree C	20.800		

No.	(ppm)	(Hz)	Height
1	-89.68	-33765.3	0.8449
2	-89.59	-33729.8	1.0000
3	-88.37	-33271.4	0.9398
4	-88.28	-33236.0	0.8364

13/01/2014 13:10:24

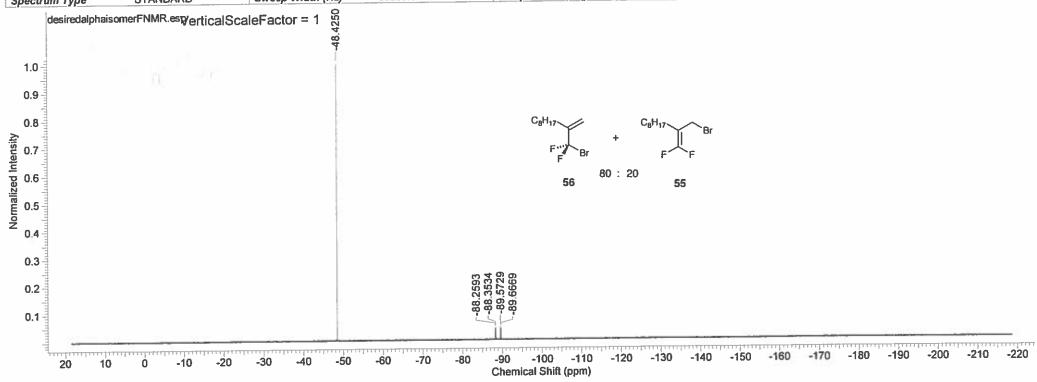
Acquisition Time (sec)	3.9649	Comment	EJT-PRM120 reflux o/n tol-d8 mPROTON CDCl3 {e:\bruk400data\2014\Jan} ejt 28						
Date	10 Jan 2014 10:46:24	Date Stamp	10 Jan 2014 10:46:24						
File Name	\\ss7a.ds.man.ac.uk\vol	5\VOL3\USERS\SNMRD	ATA\BRUK400DATA\2014	VAN/DATA/EJTWMR/2014		TA\1\1R			
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	16	Origin	AV400		
Original Points Count		Owner	Administrator	Points Count	32768	Pulse Sequence	zg3 0b		
Receiver Gain	128.00	SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2421.3662		
Cantrum Tuna	STANDARD	Sweep Width (Hz)	8264.21	Temperature (degree C	20,400				


No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	3791 3. 96	0.31848073	6.23530000e+6	0.31848073
2	0303 5.10	0.99194330	1.94205280e+7	0.99194330
3	4545 5 .55	0.99989295	1.95761680e+7	0.99989295

15/01/2014 12:18:01

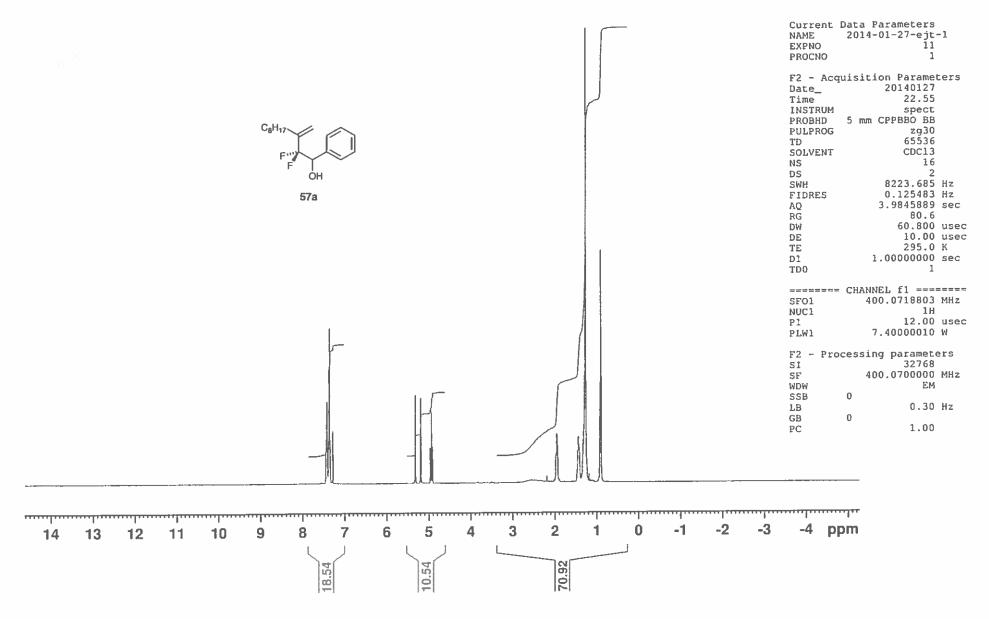
Acquisition Time (sec)	1.0912	Comment	EJT-PRM116l	alpha-bror	nide data mC	ARBONnig	ht CDC	CI3 (F:\bruk5	00_b_data\2	014\Jan} ejt	16				
Date	14 Jan 2014 01:48:48	Date Stamp	14 Jan 2014 01												
ile Name	\\ss7a.ds.man.ac.uk\vc	l5\vol3\users\snmrdata\bruk	500bdata\2014\Ja	in\data\ejt	\nmr\2014-01	<u>-13-ej</u> t-16\1	1\fid			quency (Mi		125.76_			
lucieus	13C	Number of Transients	3096		Origin		spe		Ori	ginal Points	s Count	32768			
Owner	Administrator	Points Count	32768		Pulse Seque	ence	zgp			ceiver Gain		4096.00			
SW(cyclical) (Hz)	30030.03	Solvent	CHLOROFORM	VI-d	Spectrum O	ffset (Hz)	125	74.2715	Sp	ectrum Type	8	STANDA	RD		
Sweep Width (Hz)	30029.11	Temperature (degree C	25.000												
0.9 0.8 0.5 0.4 0.3 0.9 0.2 0.1 0.1 0.9 0.9 0.2 0.1 0.1 0.9 0.9 0.2 0.1 0.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	comide-CNMP €FRCalSo	C ₈ H ₁₇ F Br F 80: 20	Br 55		***************************************	31.8256 31.8402	-29.7268				711111111	minifim	herri la central de la central	14,0663	
54 52	50 48	46 44 42	40 38	36	34 Chemical Sh		30	28	26 2	4 22	20	18	16	14	1
			*-T-1A A4		/LI=\	Llaiabi	N/m	(nnm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	-
lo. (ppm) (Hz			feight No.	(ppm)	(Hz)	Height	No.		6714.1	0.1016	21	119.73	15056.5	0.0576	\dashv
1 14.07 1768			.0437 11	29.27	3680.6	0.1341			14369.1	0.1016	22	122.16	15362.6	0.0376	
2 22.64 2846			.4405 12	29.36	3691.6	0.9545	17				1		18261.3	0.0288	\dashv
3 22.65 2848			.1222 13	29.73	3738.4	0.3351	18		14376.5	0.3611	23	145.21			\dashv
4 25.19 3167	7.4 0.0763 9		.6740 14	31.83	4002.3	0.1738	19		14383.8 14751.3	0.1226	24 25	145.37 145.52	18281.4 18300.7	0.0736	
		29.21 3673.3 0	.5448 15	31.84	4004.1	0.9721	20								

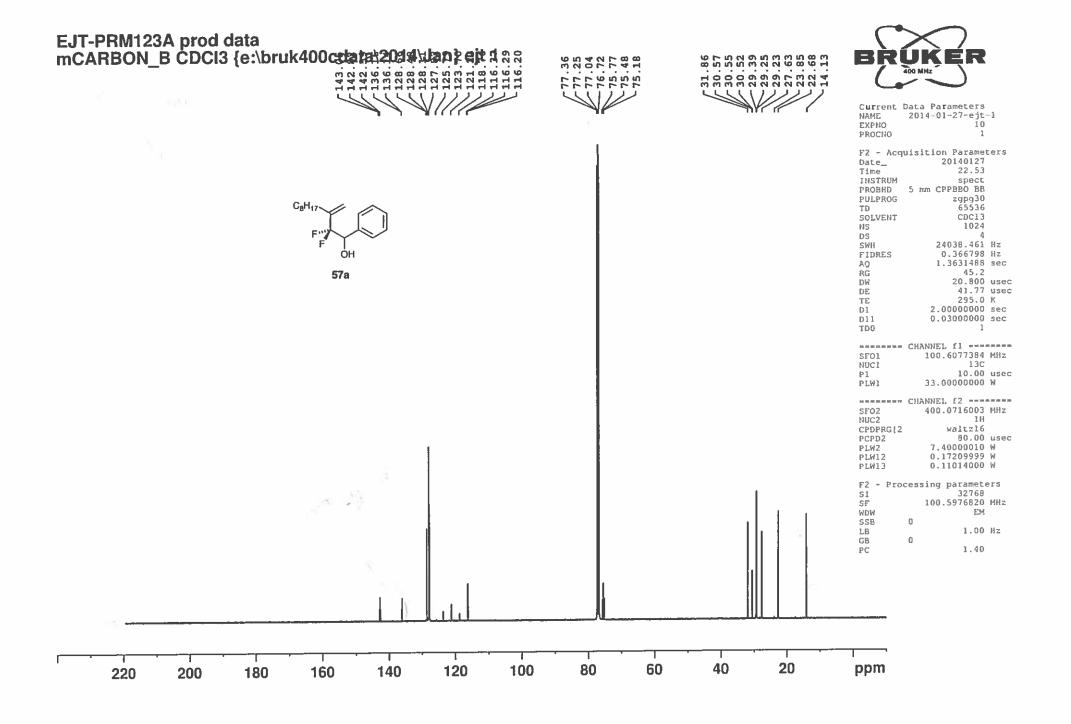
15/01/2014 12:16:32


Acquisition Time (sec)	1.0912	Comment	EJT-PRM116I alpha-bromide data mCARBONnight CDCl3 {F:\bruk500_b_data\2014\Jan} ejt 16					
Date	14 Jan 2014 01:48:48	Date Stamp	14 Jan 2014 01:48:48					
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500bdata\2014\Jan\data\	ejt\nmr\2014-01-13-ejt-16\1	1\fid	Frequency (MHz)	125.76	
Nucleus	13C	Number of Transients	3096	Origin	spect	Original Points Count	32768	
Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	4096.00	
SW(cyclical) (Hz)	30030.03	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12574.2715	Spectrum Type	STANDARD	
Sweep Width (Hz)	30029.11	Temperature (degree C	25.000					

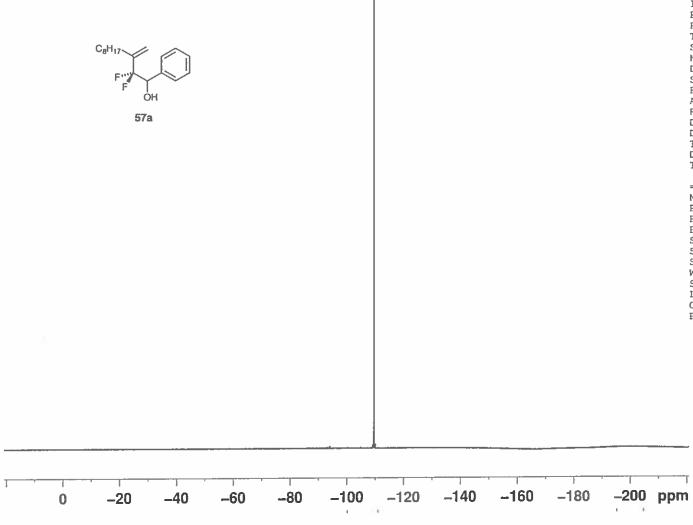
No.	(ppm)	(Hz)	Height
1	114.26	14369.1	0.1056
2	114.32	14376.5	0.3611
3	114.38	14383.8	0.1226
4	117.30	14751.3	0.0533
5	119.73	15056.5	0.0576
6	122.16	15362.6	0.0286
7	145.21	18261.3	0.0397
8	145.37	18281.4	0.0736
9	145.52	18300.7	0.0430

13/01/2014 13:10:16

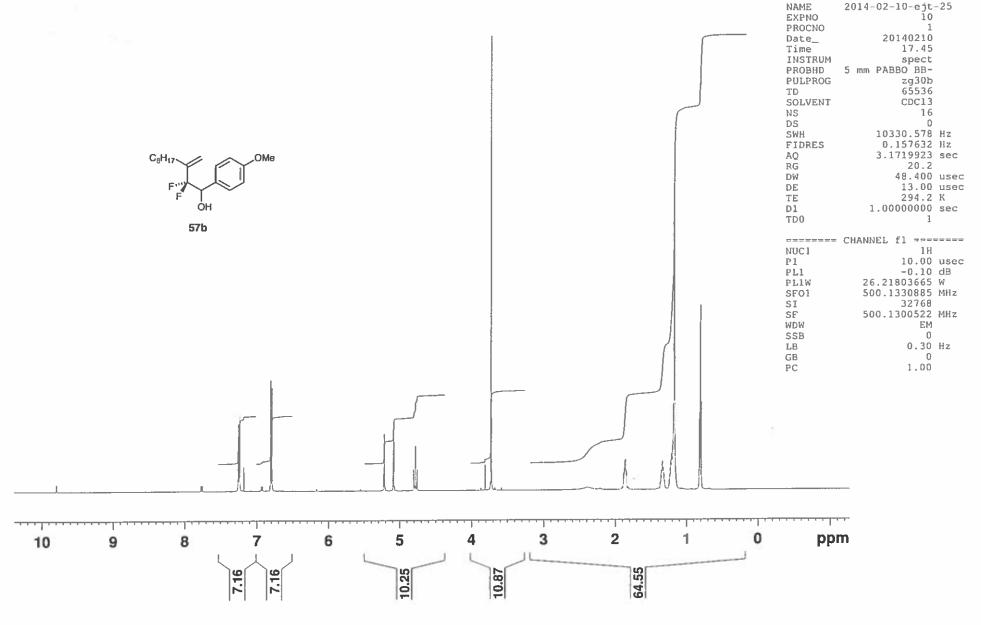

AV400
zgig
-37649.5977

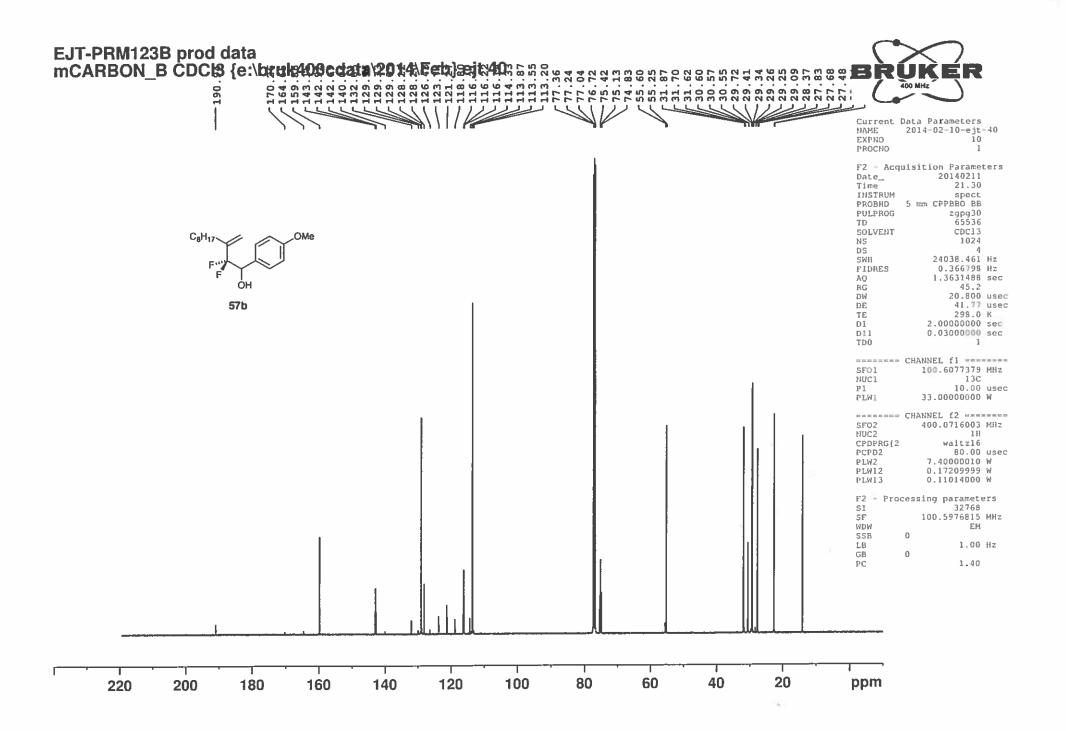


No.	(ppm)	(Hz)	Height
1	-89.67	-33759.5	0.0402
2	-89.57	-33724.0	0.0467
3	-88.35	-33264.9	0.0441
4	-88.26	-33229.5	0.0391
5	-48.43	-18231.9	1.0000


EJT-PRM123A prod data mPROTON_A_night CDCl3 {e:\bruk400cdata\2014\Jan} ejt 1

EJT-PRM123A f25-43 29mg m19F CDC13 /opt/oldbruk500data.11vii11/2014/Jan ejt 34




NAME	2014-01-27-ejt	-34
EXPNO	11	
PROCNO	1	
Date_	20140127	
Time	14.55	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zgflqn	
TD	131072	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	113636.367	Hz
FIDRES	0.866977	Ηz
AQ	0.5767668	sec
RG	203	
DW	4.400	use
DE	6.50	
TE	300.0	
D1	1.00000000	sec
TD0	1	

=======	CHANNEL fl ====	
NUC1	19F	
P1	12.38	used
PL1	-0.10	dB
PL1W	25.70395851	W
SFO1	470.5453180	MHz
51	65536	
SF	470.5923770	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

EJT-PRM123B prod data mPROTON CDCl3 /opt/oldbruk500data.11vii11/2014/Feb ejt 25

EJT-PRM123B prod data m19FCPD CDC13 /opt/oldbruk500data.11vii11/2014/Feb ejt 25 2014-02-10-ejt-25 NAME 12 EXPNO PROCNO 1 20140210 Date_ 17.50 Time INSTRUM spect PROBHD 5 mm PABBO BB-PULPROG zgfhigqn TD 131072 SOLVENT CDC13 NS 16 DS 4 SWH 113636.367 Hz 0.866977 Hz FIDRES 0.5767668 sec AQ RG 32 57b DW 4.400 usec 6.50 usec DE 294.3 K ΤE 1.00000000 sec D1 0.03000000 sec D11 0.00002000 sec D12 TDO ====== CHANNEL f1 ====== NUC1 12.38 usec P1 -0.10 dB PL1 25.70395851 W PL1W SF01 470.5453180 MHz ====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H 80.00 usec PCPD2 PL2 0.00 dB 17.23 dB PL12 PL2W 25.62124252 W PL12W 0.48484197 W SFO2 500.1320005 MHz 65536 SI 470.5923770 MHz SF WDW EM SSB 0 0.30 Hz LB GB

-140

-160

-180

-80

-60

-40

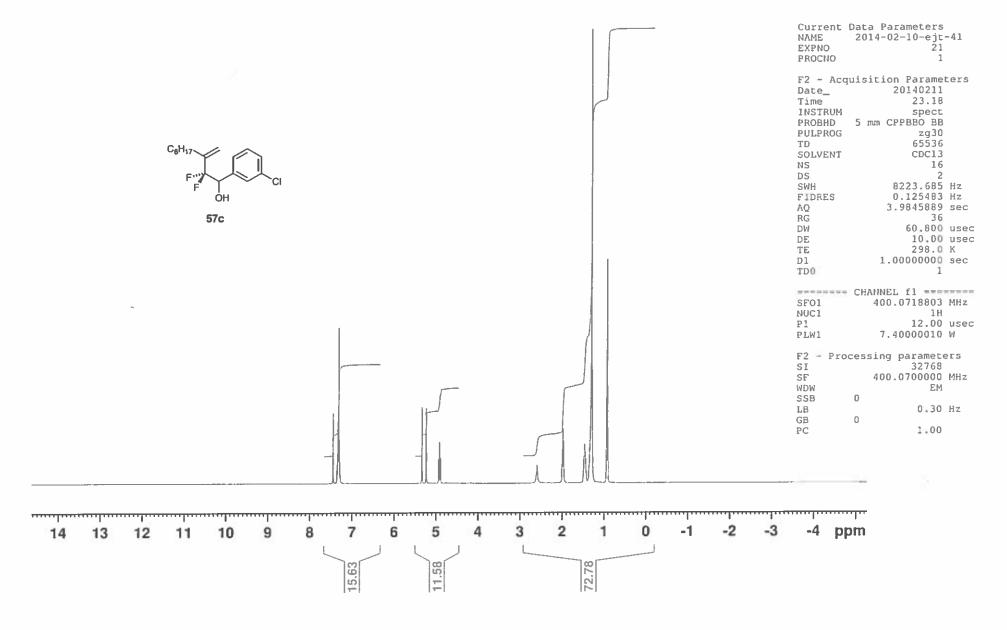
-20

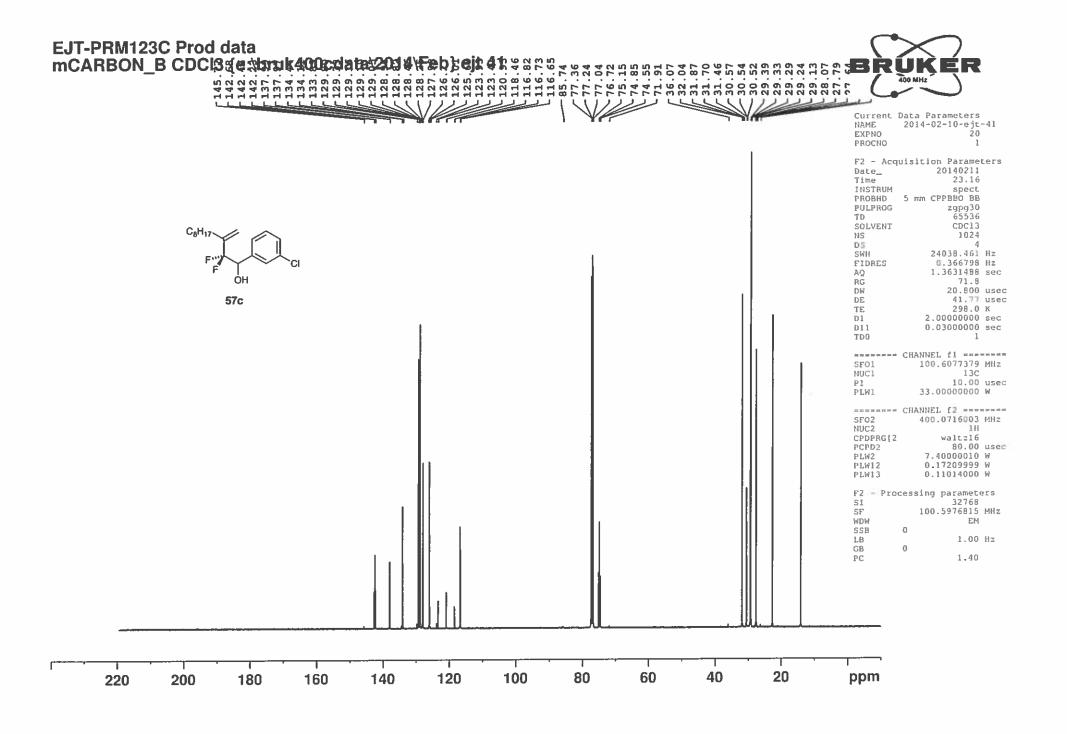
0

-100

-120

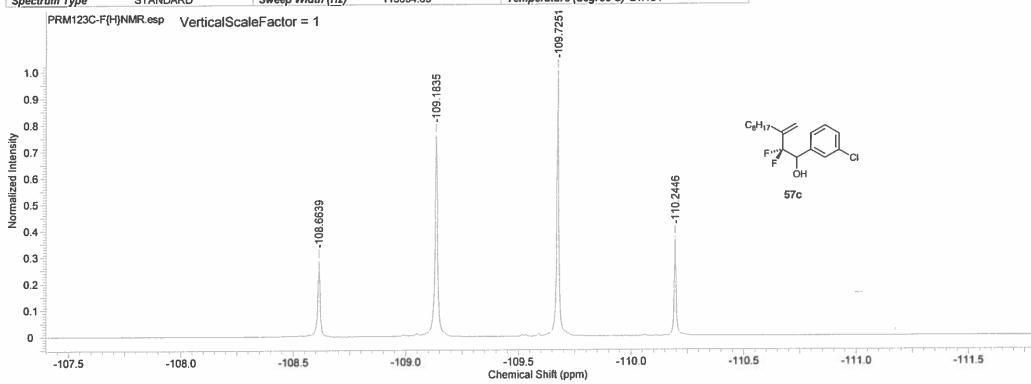
1.1


-PC

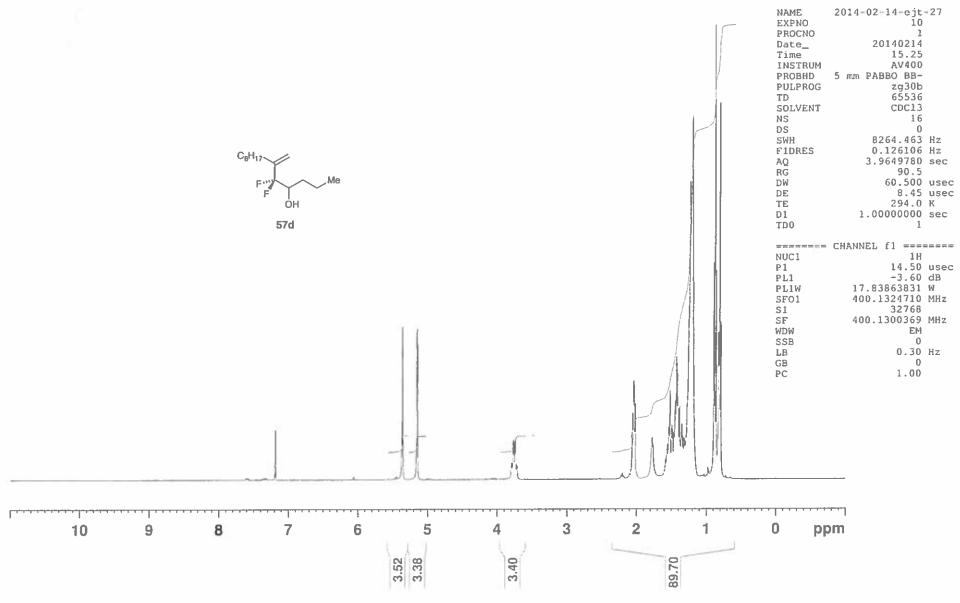

-200 ppm

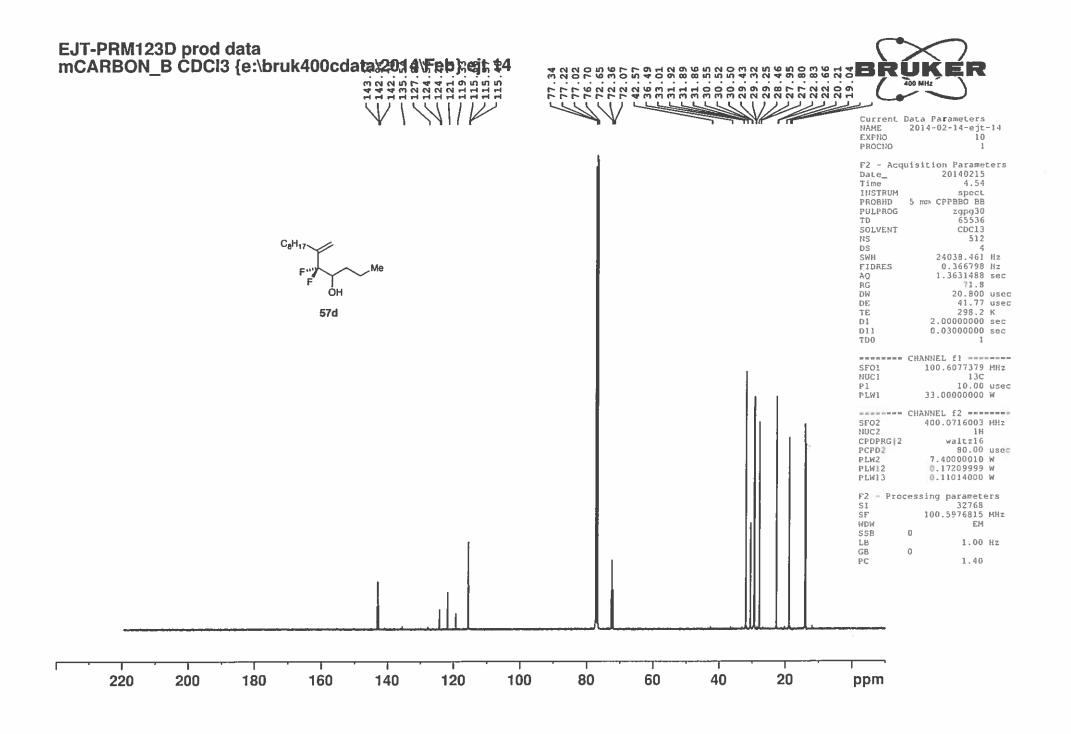
1.00

EJT-PRM123C Prod data mPROTON_A_night CDCl3 {e:\bruk400cdata\2014\Feb} ejt 41



18/02/2014 16:44:47

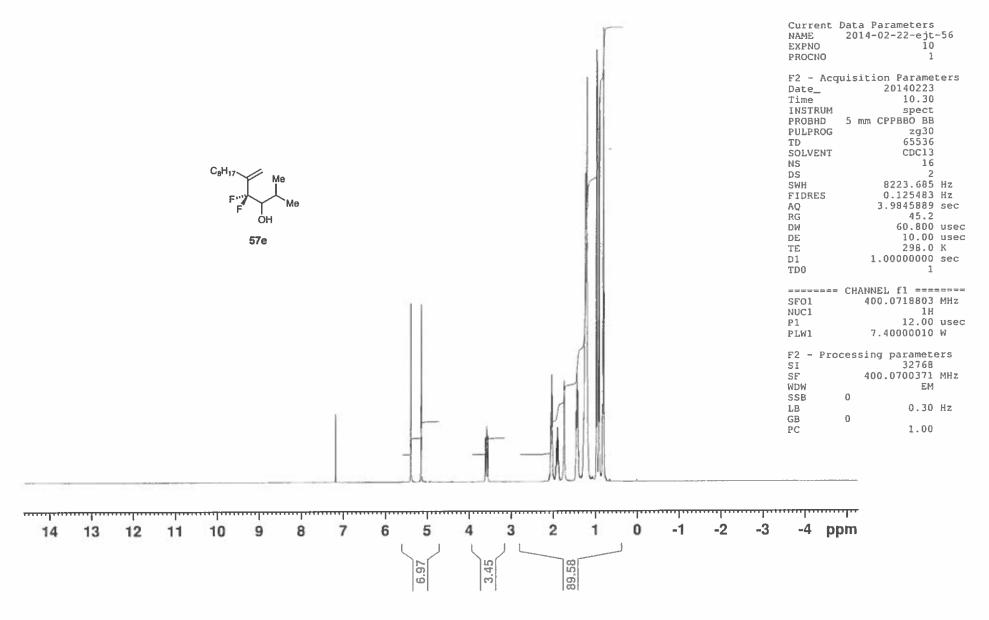

Acquisition Time (sec)	0.5767	Comment	DIT-PRM123C prod m19FCPD CDCl3 /opt/oldbruk500data.11vii11/2014/Feb ejt 10				
Date	11 Feb 2014 09:33:52	Date Stamp	11 Feb 2014 09:33:52				
File Name	\\ss7a.ds.man.ac.uk\vol5	SVOL3\USERS\SNMRDA	TA\BRUK500DATA\BRUK5	00DATA\2014\FEB\DATA\E	EJT\NMR\2014-02-11-EJ	T-10\12\PDATA\1\1R	
Frequency (MHz)	470.59	Nucleus	19F	Number of Transients	16	Origin	spect
Original Points Count	65536	Owner	vnmr1	Points Count	65536	Pulse Sequence	zgfhigan
Receiver Gain	32.00	SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234
Spectrum Type	STANDARD	Sween Width (Hz)	113634.63	Temperature (degree C)	21.184		

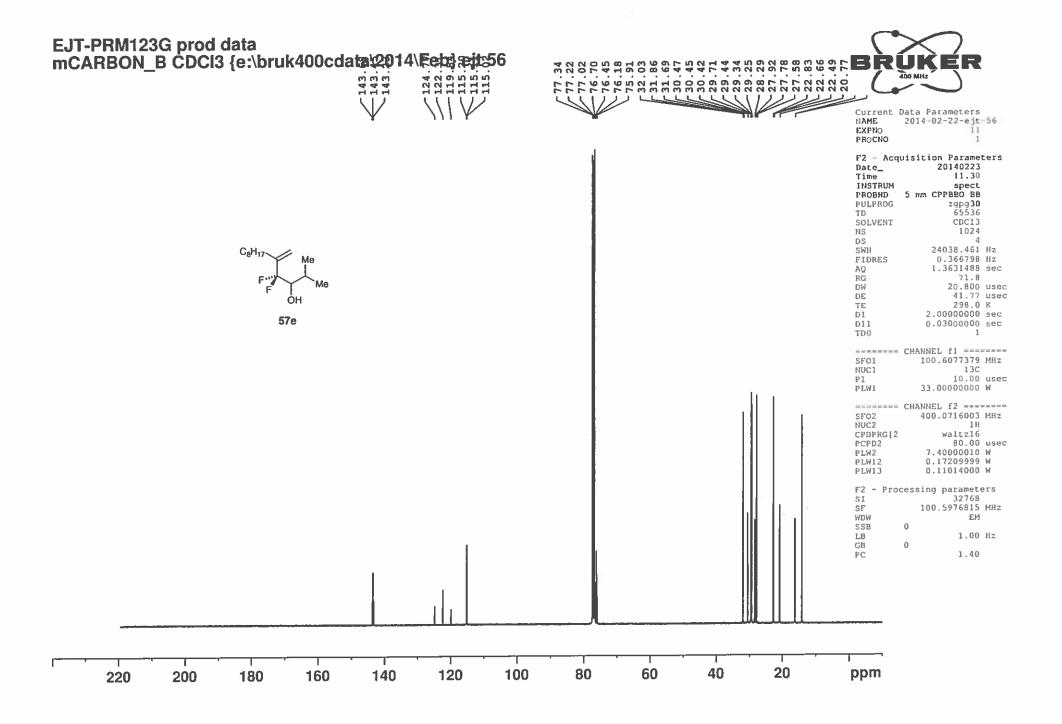


No.	(ppm)	(Hz)	Height
1	-110.24	-51880.3	0.3719
2	-109.73	-51635.8	1.0000
3	-109.18	-51380.9	0.7599
4	-108.66	-51136.4	0.2865

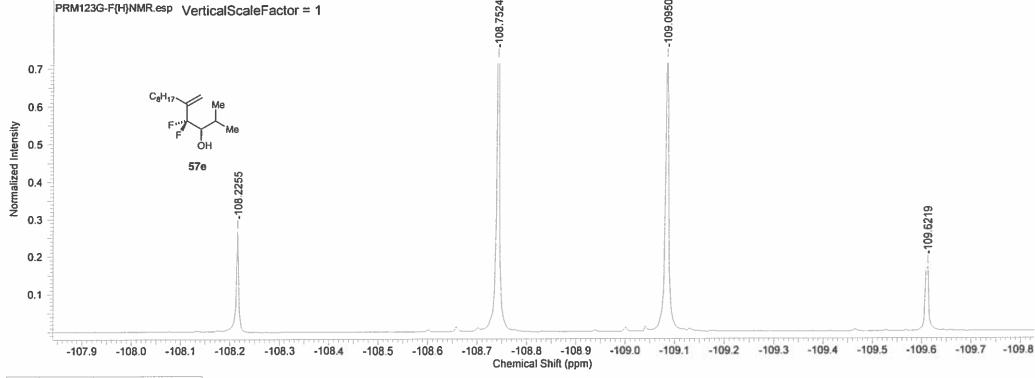
EJT-PRM123D prod f12-26 48mg mPROTON CDCl3 {e:\bruk400data\2014\Feb} ejt 27

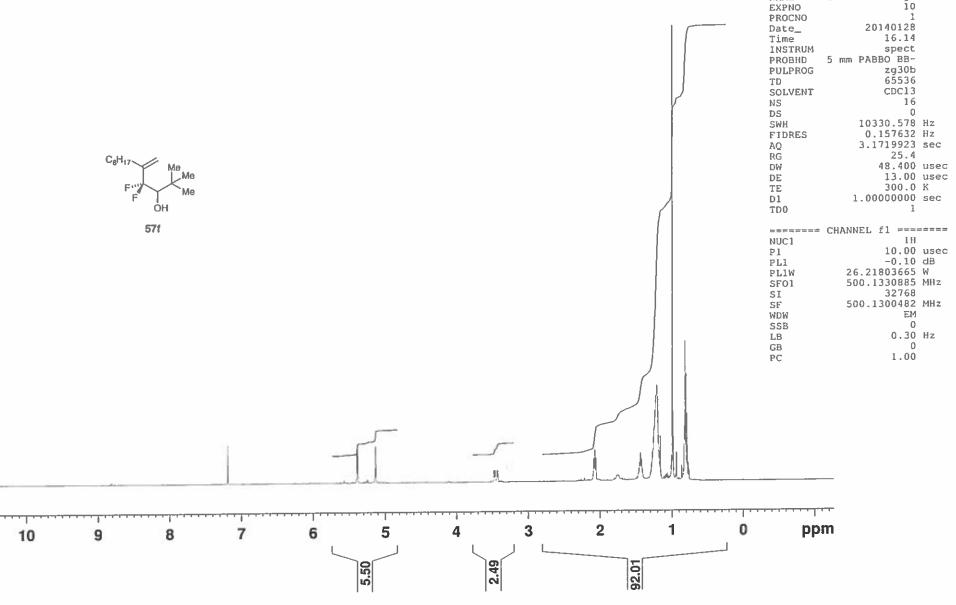
EJT-PRM123D crude 60mg m19F CDC13 /opt/oldbruk500data.11vii11/2014/Feb ejt 3 C₈H₁₇ 57d -100 -120 -160 -180 -20 -40 -60 -80 -140 -200 ppm 0

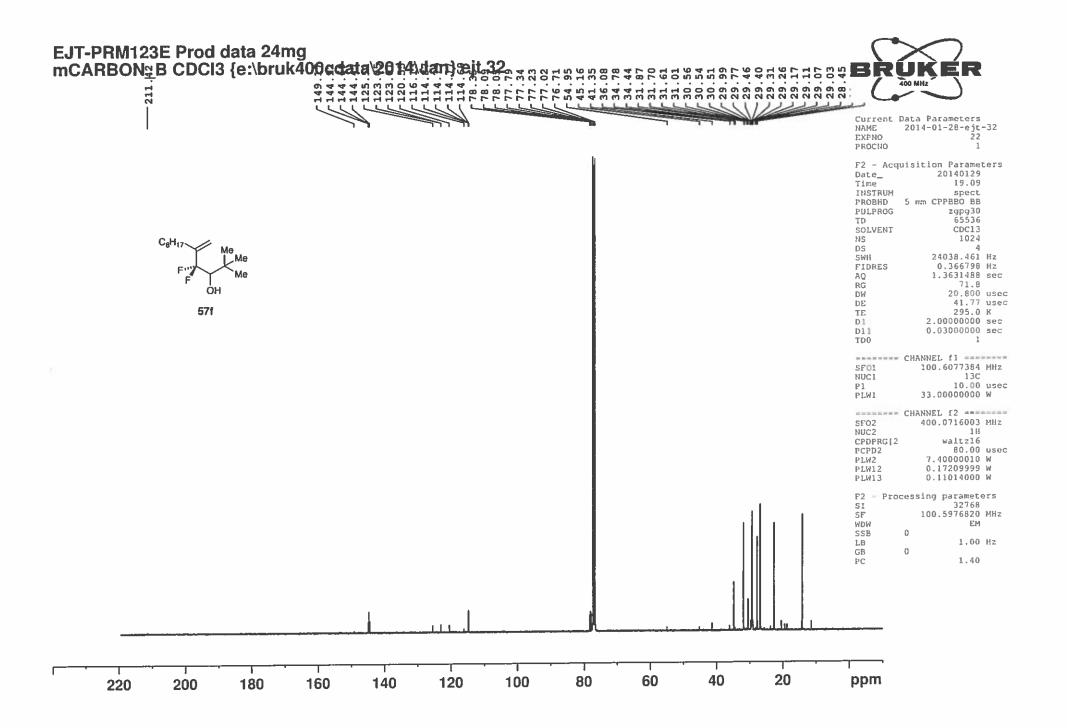



NAME	2014-02-14-ejt-	-3
EXPNO	11	
PROCNO	1	
Date_	20140214	
Time	11.18	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zgflan	
TD	131072	
SOLVENT	CDC13	
NS	16	
DS	4	
SWH	113636.367	Hz
FIDRES	0.866977	Ηz
AQ	0.5767668	sec
RG	203	
DW	4.400	used
DE	6.50	
TE	300.0	
D1	1.00000000	sec
TD0	1	

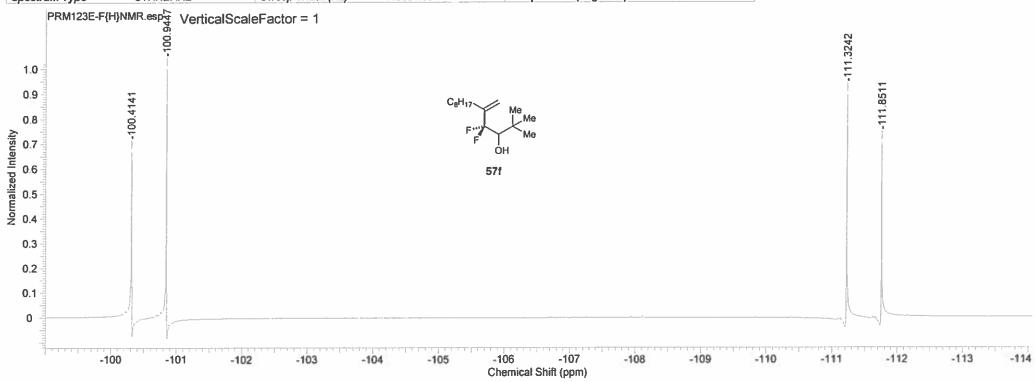
=	CHANNEL	£	1	===:	
NUC1				19F	
P1			12	.38	use
PL1			-0	.10	dB
PL1W	25.7	03	95	851	W
SF01	470.	54	53	180	MHz
SI			65	536	
SF	470.	59	23	770	MHz
WDW				EM	
SSB				- 0	
LB			0	.30	Hz
GB				0	
PC			1	.00	


EJT-PRM123G prod data mPROTON_A_night CDCl3 {e:\bruk400cdata\2014\Feb} ejt 56

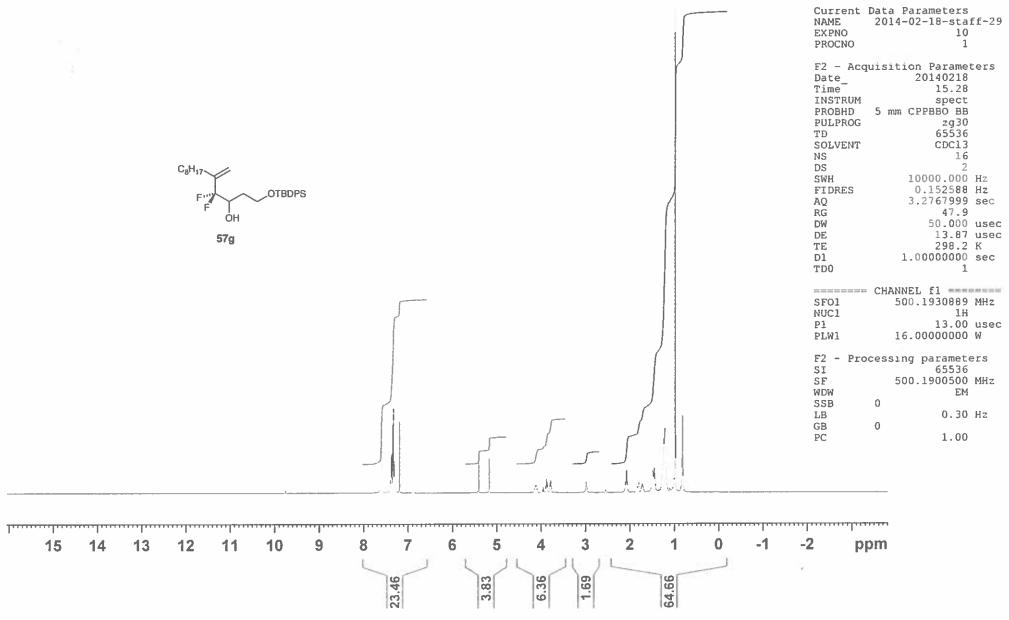

							24/	02/2014 15:06:4
Acquisition Time (sec)	0.5767	Comment	EJT-PRM123G prod n	n19FCPD CDCl3 /opt/oldbr	uk500data.11vii11/201	14/Feb ejt 56		
Date	23 Feb 2014 18:54:56	Date Stamp	23 Feb 2014 18:54:56					
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bru	k500data\bruk500data\20	14\Feb\data\ejt\nmr\2014-0)2-23-ejt-56\12\fid	Frequency (MHz)	470.59	
Nucleus	19F	Number of Transients	16	Origin	spect	Original Points Count	65536	
Owner	vnmr1	Points Count	65536	Pulse Sequence	zgfhigqn	Receiver Gain	32.00	
SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234	Spectrum Type	STANDARD	
Sweep Width (Hz)	113634.63	Temperature (degree C	27.000					
PRM123G-F{H}	NMR.esp VerticalSc	aleFactor = 1		108.7524	109,0950			
0.7								
0.6	C ₈ H ₁₇ Me							



No.	(ppm)	(Hz)	Height
1	-109.62	-51587.2	0.1688
2	-109.10	-51339.3	0.8761
3	-108.75	-51178.0	1.0000
4	-108.23	-50930.1	0.2675



30/01/2014 11:37:52


Acquisition Time (sec)	0.5767	Comment	EJT-PRM123E f8-15 24mg m19FCPD CDCl3 /opt/oldbruk500data.11vii11/2014/Jan ejt 29					
Date	28 Jan 2014 16:19:12	Date Stamp	28 Jan 2014 16:19:12					
File Name	\\ss7a.ds.man.ac.uk\vol5	IVOL3\USERS\SNMRDA	TA\BRUK500DATA\BRUK5	500DATA\2014\JAN\DATA\E	JT\NMR\2014-01-28-EJ	T-29\12\PDATA\1\1R		
Frequency (MHz)	470.59	Nucleus	19F	Number of Transients	16	Origin	spect	
Original Points Count	65536	Owner	vnmr1	Points Count	65536	Pulse Sequence	zgfhigqn	
Receiver Gain	32.00	SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234	
Spectrum Type	STANDARD	Sweep Width (Hz)	113634.63	Temperature (degree C	27.000			

No.	(ppm)	(Hz)	Height
1	-111.85	-52636.3	0.7016
2	-111.32	-52388.3	0.8938
3	-100.94	-47503.8	1.0000
4	-100.41	-47254.1	0.6694

P. Mears
EJT-PRM 120 prod F31-41
0214-029
mPROTON CDCI3 {E:\bruk500cdata\2014\Feb} staff 29

220

200

180

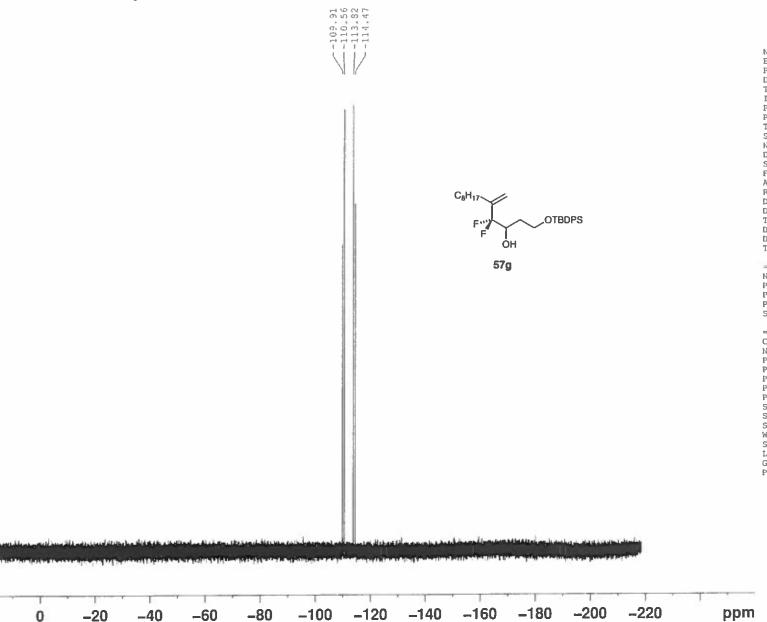
160

140

120

100

80

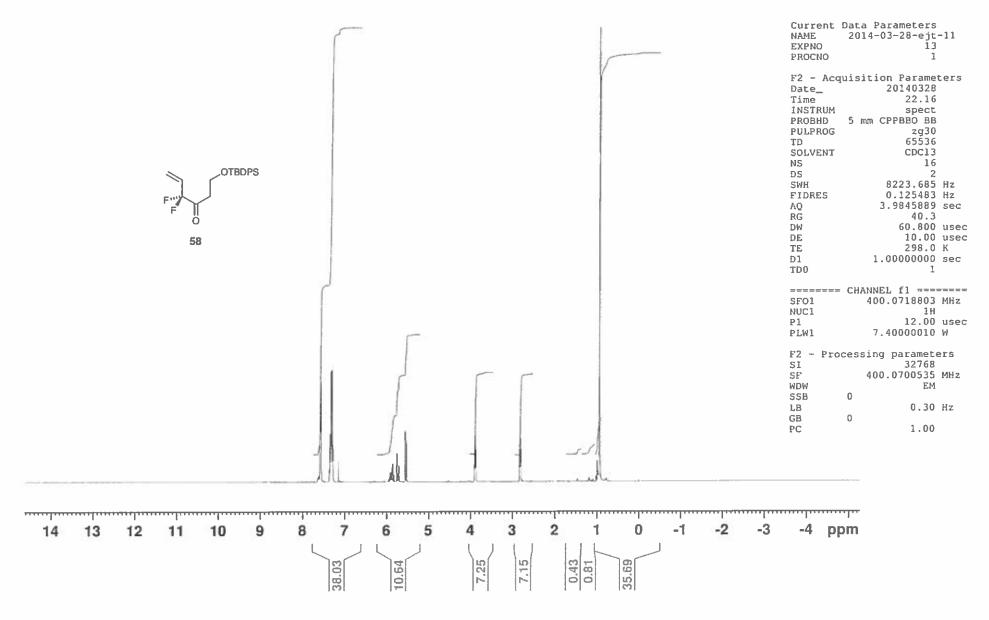

60

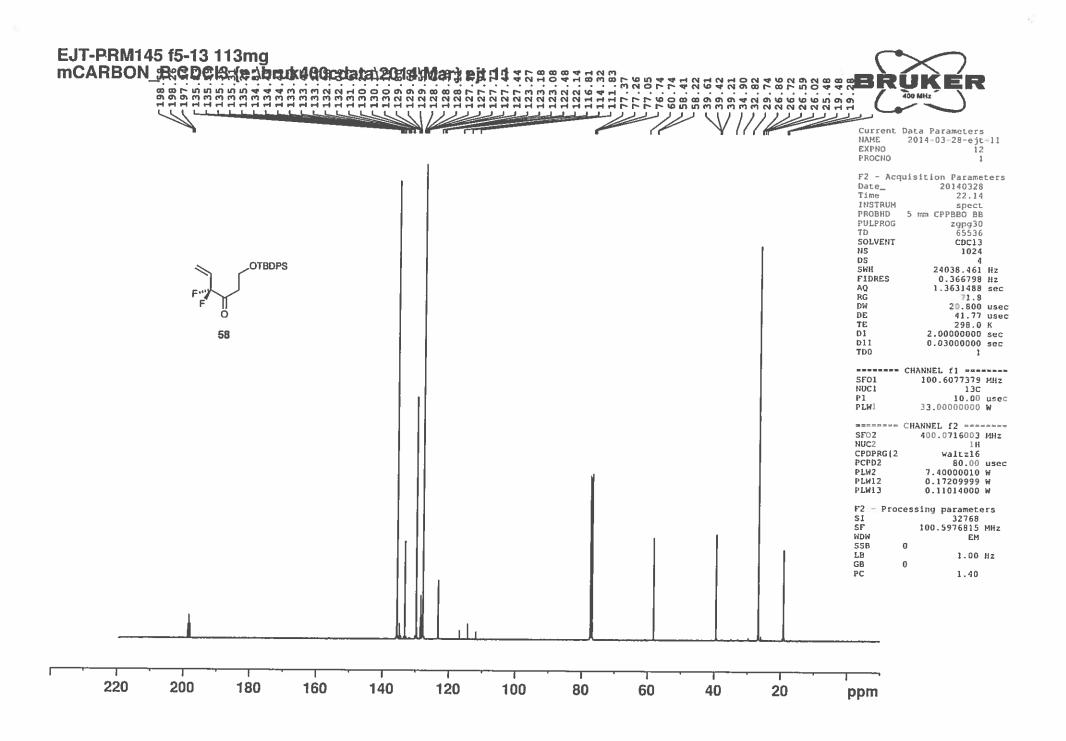
40

20

ppm

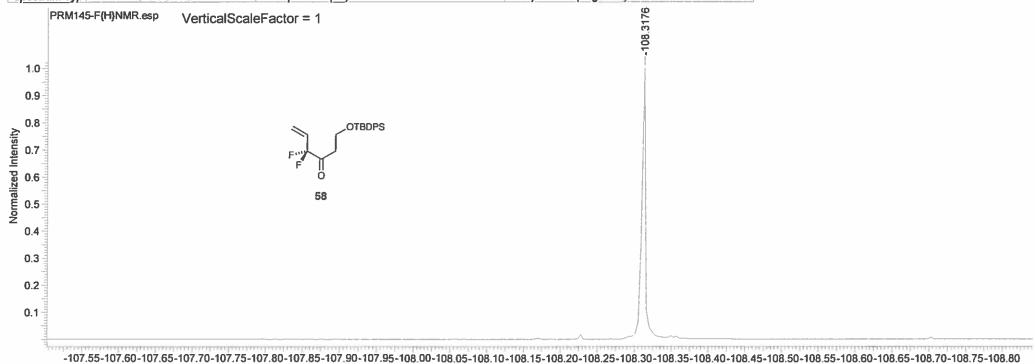
EJT-PRM120 f95-113 24mg mF19CPD CDCl3 {e:\bruk400data\2014\Feb} ejt 1





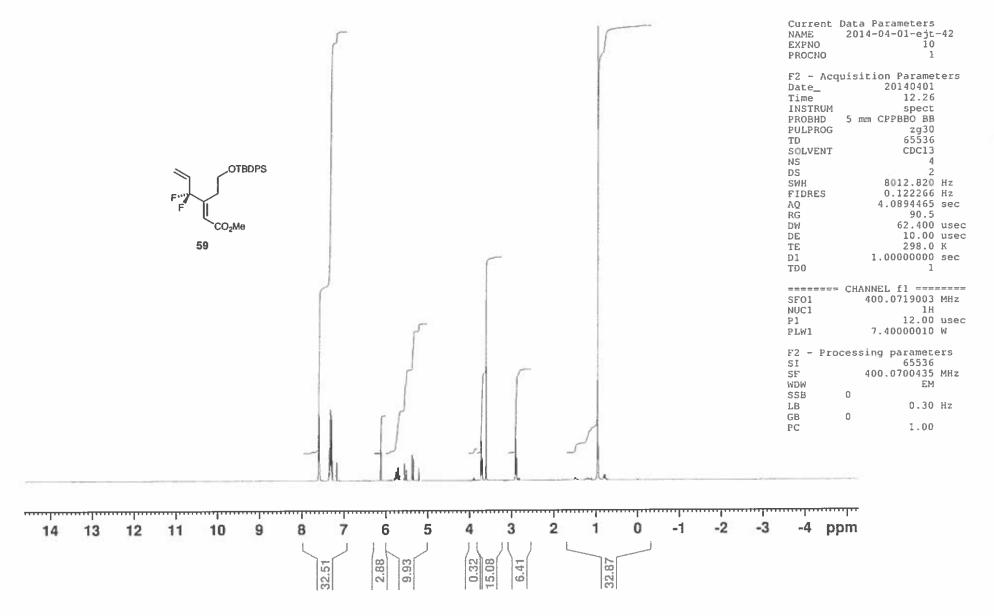
NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SSWH FIDRES AQ RG DW DE TE TE TE TE TE TE TE TE TE TE TE TE TE	294.3 1.00000000	Hz Hz sec usec K sec sec
TDO	1	
NUC1 P1 PL1 PL1W SFOI	CHANNEL fl 19F 10.70 -5.00 27.00716019 376.4607164	usec dB W
CPDPRG2 NUC2 PLC2 PL12 PL12 PL12W SFO2 SI SF NDW SSB LB GB GB	CHANNEL f2 ====	

EJT-PRM145 f5-13 113mg mPROTON_A_night CDCl3 {e:\bruk400cdata\2014\Mar} ejt 11



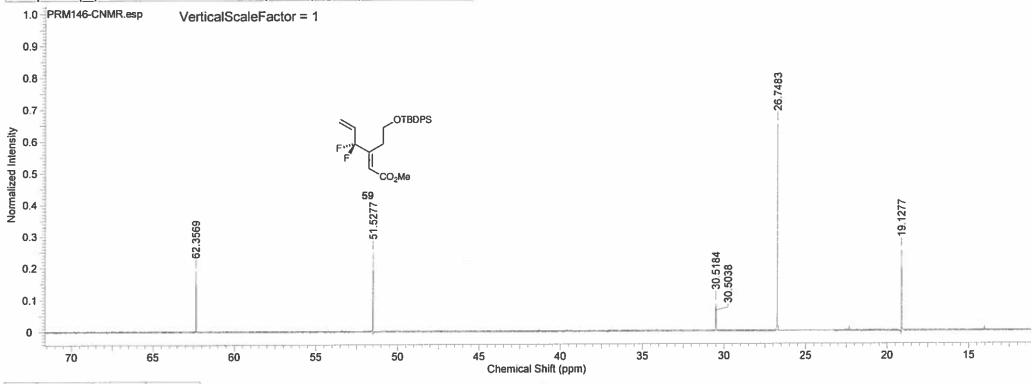
07/04/2014 13:54:05

Acquisition Time (sec)	0.5767	Comment	EJT-PRM145 f3-7 40mg m19FCPD CDCl3 /opt/oldbruk500data.11vii11/2014/Mar ejt 5					
Date	26 Mar 2014 14:26:08	Date Stamp	26 Mar 2014 14:26:08					
File Name	\\ss7a.ds.man.ac.uk\vol5\\	Nss7a.ds.man.ac.uk/vol5\VOL3\USERS\SNMRDATA\BRUK500DATA\BRUK500DATA\2014\MAR\DATA\EJT\NMR\2014-03-26-EJT-5\12\PDATA\1\1R						
Frequency (MHz)	470.59	Nucleus	19F	Number of Transients	16	Origin	spect	
Original Points Count	65536	Owner	vnmr1	Points Count	65536	Pulse Sequence	zgfhigqn	
Receiver Gain	575.00	SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234	
Spectrum Type	STANDARD	Sweep Width (Hz)	113634.63	Temperature (degree C)	27.000			

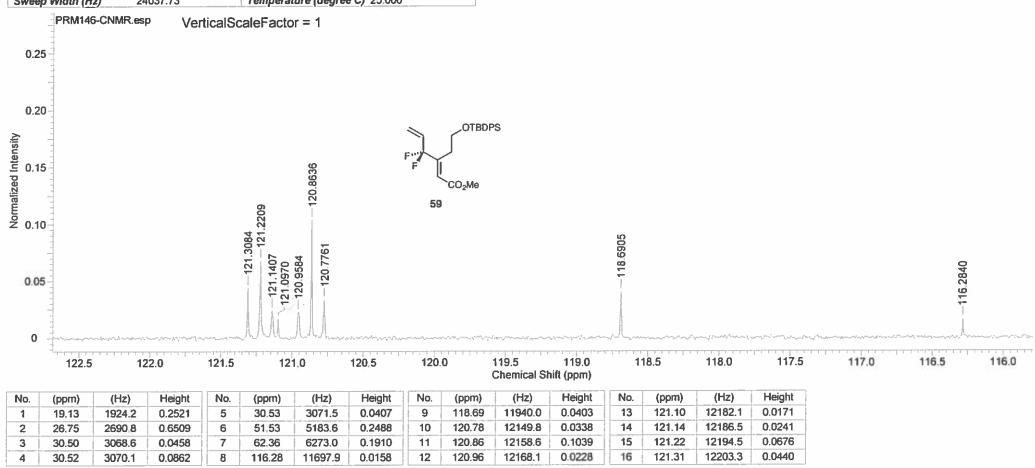


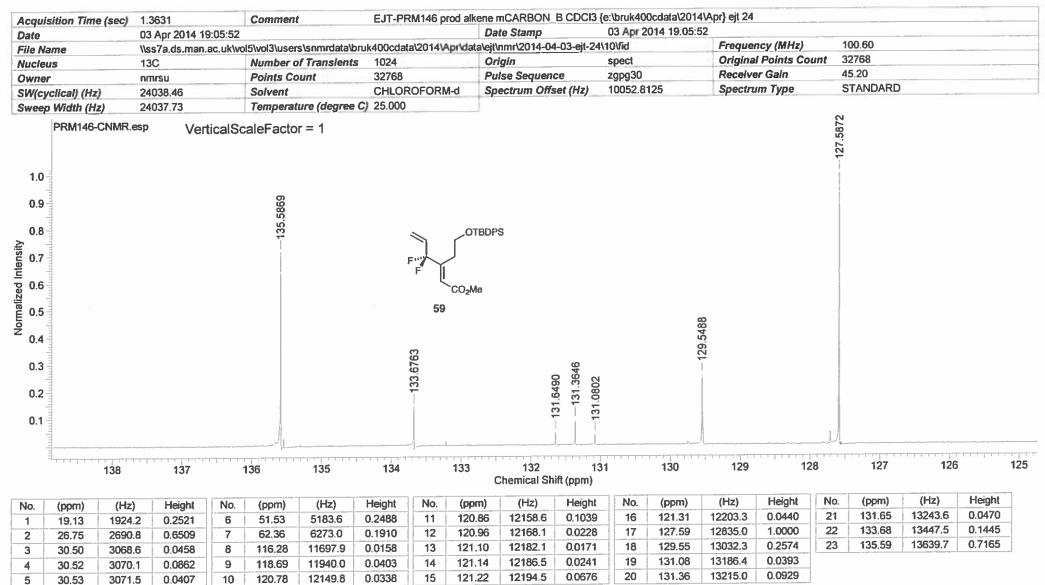
Chemical Shift (ppm)

No.	(ppm)	(Hz)	Height
1	-108.32	-50973.4	1.0000


EJT-PRM146 phosphoranylidene f14-24 20mg mPROTON_A CDCl3 {e:\bruk400cdata\2014\Apr} ejt 42

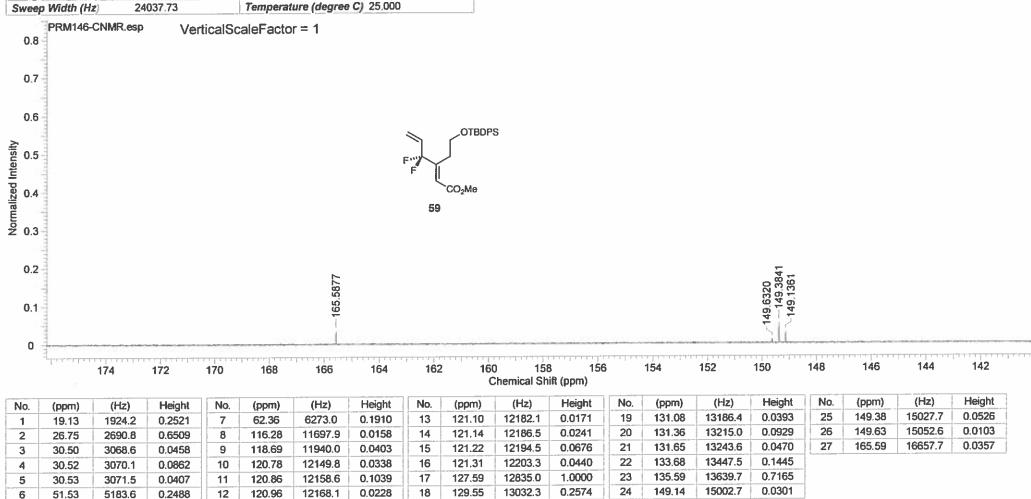
07/04/2014 15:31:32


Acquisition Time (sec)	1.3631	Comment	EJT-PRM146 prod al	Ikene mCARBON_B CDCl3	{e:\bruk400cdata\2014\A	pr} ejt 24	
Date	03 Apr 2014 19:05:5	2		Date Stamp	03 Apr 2014 19:05:52		
File Name	\\ss7a.ds.man.ac.uk\	vol5\vol3\users\snmrdata\bru	k400cdata\2014\Apr\da	ata\ejt\nmr\2014-04-03-ejt-2	4\10\fid	Frequency (MHz)	100.60
Nucleus	13C	Number of Transients	1024	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10052.8125	Spectrum Type	STANDARD
Sweep Width (Hz)	24037.73	Temperature (degree C)	25.000				

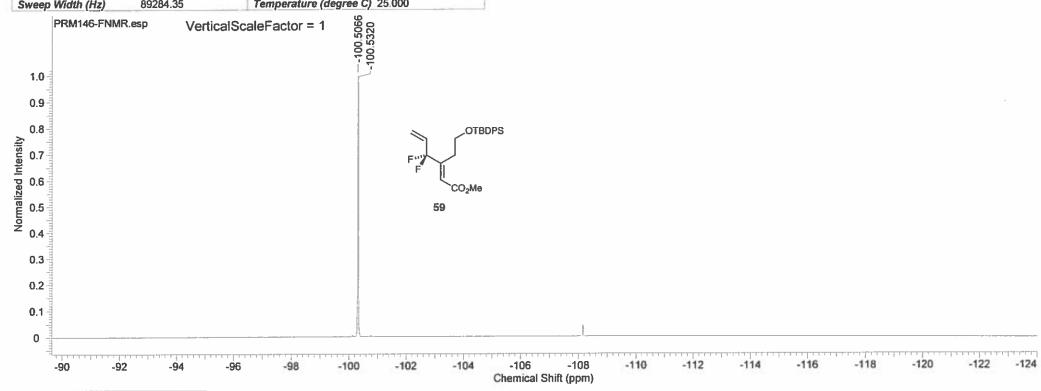

No.	(ppm)	(Hz)	Height
1	19.13	1924.2	0.2521
2	26.75	2690.8	0.6509
3	30.50	3068.6	0.0458
4	30.52	3070.1	0.0862
5	30.53	3071.5	0.0407
6	51.53	5183.6	0.2488
7	62.36	6273.0	0.1910

07/04/2014 15:34:44

Acquisition Time (sec)	1.3631	Comment EJT-PRM146 prod alkene mCARBON_B CDCl3 (e:\bruk400cdata\2014\Apr) ejt 24							
Date	03 Apr 2014 19:05:52			Date Stamp	03 Apr 2014 19:05:52				
File Name	\\ss7a.ds.man.ac.uk\w	ol5\vol3\users\snmrdata\bru	ik400cdata\2014\Apr\da	4\10\fid	Frequency (MHz)	100.60			
Nucleus	13C	Number of Transients	1024	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20		
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10052.8125	Spectrum Type	STANDARD		
Sween Width (Hz)	24037 73	Temperature (degree C	1 25 000						

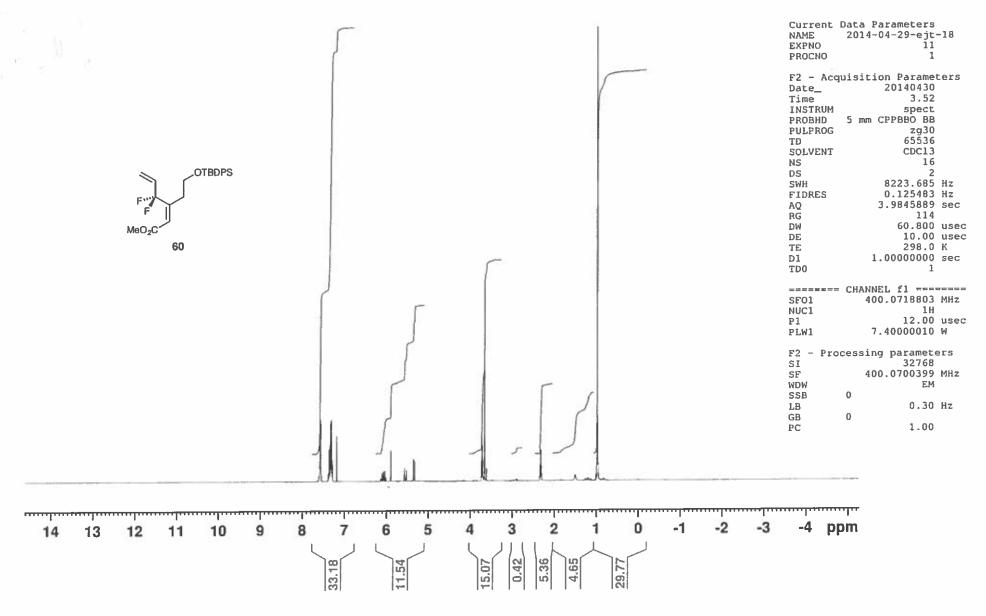


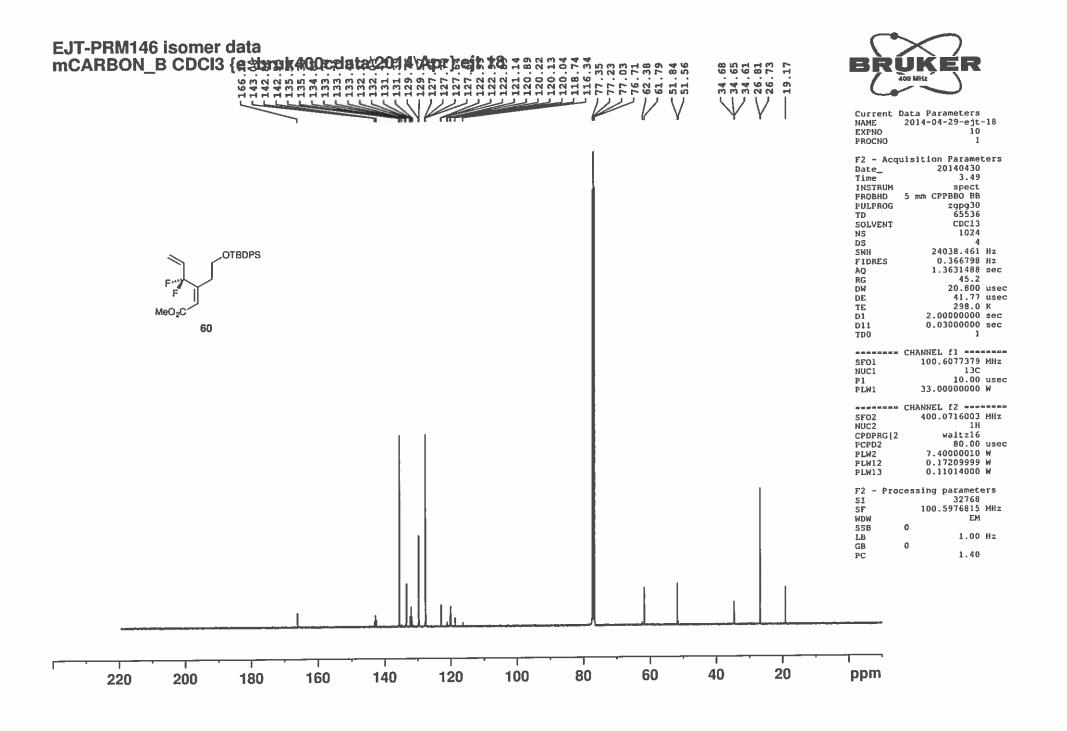
07/04/2014 15:41:55


07/04/2014 15:45:55

Acquisition Time (sec)	1.3631	Comment					
Date	03 Apr 2014 19:05:52			Date Stamp	03 Apr 2014 19:05:52		
	\\ss7a.ds.man.ac.uk\vo	xi5\voi3\users\snmrdata\bru	ik400cdata\2014\Apr\da	ata\ejt\nmr\2014-04-03-ejt-24	4\10\fid	Frequency (MHz)	100,60
Nucleus	13C	Number of Transients	1024	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10052.8125	Spectrum Type	STANDARD
Surger Midth (Un)	24027.73	Temperature (degree C	25 000			-	

07/04/2014 16:11:28

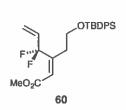

Acquisition Time (sec)	0.7340	Comment	EJT-PRM146 phosphoranylidene f14-24 20mg mF19_cryo CDCl3 {e:\bruk400cdata\2014\Apr} ejt 42					
Date	01 Apr 2014 12:29:04	Date Stamp	01 Apr 2014 12:29:04					
File Name	\\ss7a.ds.man.ac.uk\vo	l5\vol3\users\snmrdata\bruk	400cdata\2014\Apr\data	alejt\nmr\2014-04-01-ejt-42\	11\fid	Frequency (MHz)	376.44	
Nucleus	19F	Number of Transients	4	Origin	spect	Original Points Count	65536	
Owner	nmrsu	Points Count	65536	Pulse Sequence	zg	Receiver Gain	16.00	
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37644.8594	Spectrum Type	STANDARD	
Sween Width (Hz)	80284 35	Temperature (degree C)	25,000					



	No.	(ppm)	(Hz)	Height
	1	-100.53	-37844.4	0.9733
ļ	2	-100.51	-37834.9	1.0000

EJT-PRM146 isomer data mPROTON_A_night CDCl3 {e:\bruk400cdata\2014\Apr} ejt 18

	I IIIO I GPOIL HAD DI								
Acquisition Time (sec)	0.7340	Comment	EJT-PRM146 f44-48 40mg mF19CPD CDCl3 {e:\bruk400data\2014\May} ejt 23						
Date	19 May 2014 19:08:00	Date Stamp	19 May 2014 19:08:00						
File Name	\\ss7a.ds.man.ac.uk\vol	5/VOL3/USERS/SNMRD	ATA\BRUK400DATA\2014\	MAY/DATA/EJT/NMR/2014	4-05-19-EJT-23\22\PDA				
Frequency (MHz)	376.50	Nucleus	19F	Number of Transients	16	Origin	AV400		
Original Points Count	65536	Owner	Administrator	Points Count	262144	Pulse Sequence	zgig		
Receiver Gain	4100.00	SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977		
Spectrum Type	STANDARD	Sweep Width (Hz)	89285.37	Temperature (degree C) 22.600					

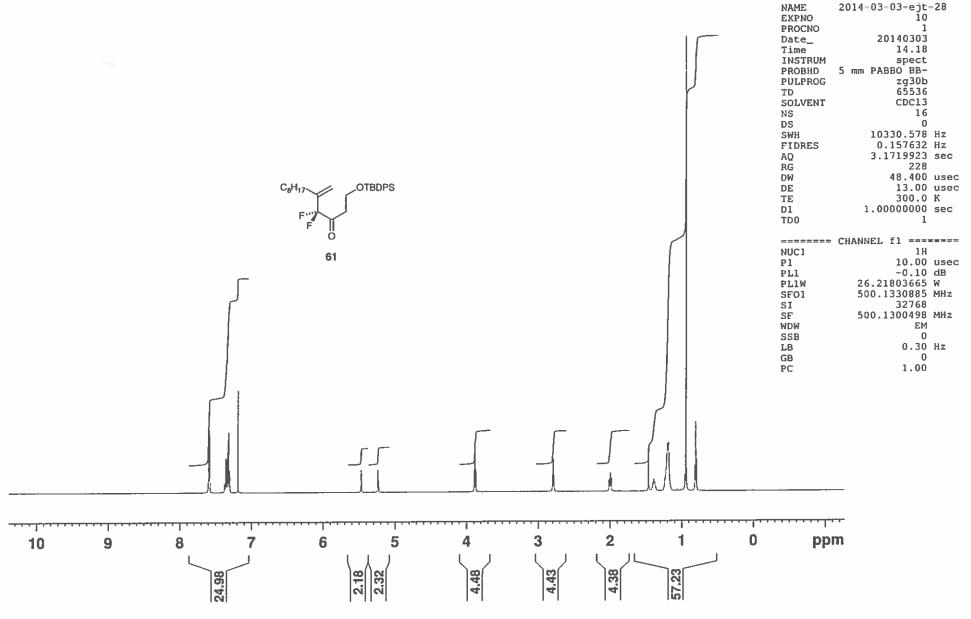

2014-05-19-EJT-23.022.001.1R.esp VerticalScaleFactor 1

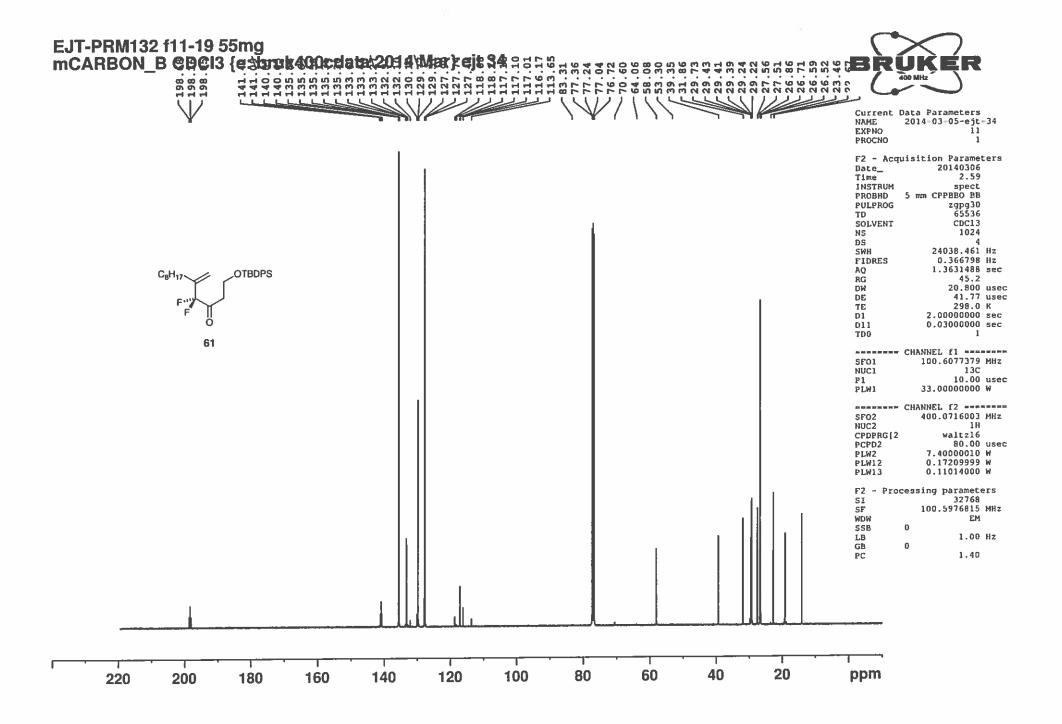
-75

-80

-85

-90




-95

-100

							•		
Acquisition Time (sec)	0.5767	Comment	EJT-PRM132 f5-10 7mg m19F CDCl3 /opt/oldbruk500data.11vii11/2014/Mar ejt 28						
Date	03 Mar 2014 14:21:52	Date Stamp	03 Mar 2014 14:21:52						
File Name	\\ss7a.ds.man.ac.uk\vol5	IVOL3\USERS\SNMRDA	TAIBRUK500DATAIBRUK5	500DATA\2014\MAR\DATA	\EJT\NMR\2014-03-03-E	EJT-28\11\PDATA\1\1R			
Frequency (MHz)	470.59	Nucleus	19F	Number of Transients	16	Origin	spect		
Original Points Count	65536	Owner	vnmr1	Points Count	65536	Pulse Sequence	zgflqn		
Receiver Gain	362.00	SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234		
Spectrum Type	STANDARD	Sweep Width (Hz)	113634.63	Temperature (degree C	27.000				

-109.7398

PRM132-FNMR.esp

EJT-PRM133 f16-21 4mg mPROTON CDCl3 /opt/oldbruk500data.11vii11/2014/Mar ejt 7 NAME 2014-03-07-ejt-7 **EXPNO** ĩo PROCNO Date_ 20140307 15.20 Time INSTRUM spect PROBHD 5 mm PABBO BB-**PULPROG** zg30b TD 65536 SOLVENT CDC13 NS 16 0 DS 10330.578 Hz SWH FIDRES 0.157632 Hz 3.1719923 sec AQ OTBDPS RG 287 48.400 usec DW DE 13.00 usec F TE 298.0 K 1.00000000 sec D1 1 TD0 62 ----- CHANNEL fl -----NUC1 10.00 usec P1 PL1 -0.10 dB 26.21803665 W PL1W 500.1330885 MHz SF01 32768 SI 500.1300487 MHz SF WDW E.M 0 SSB 0.30 Hz LB GB - 0 PC 1.00

10

9

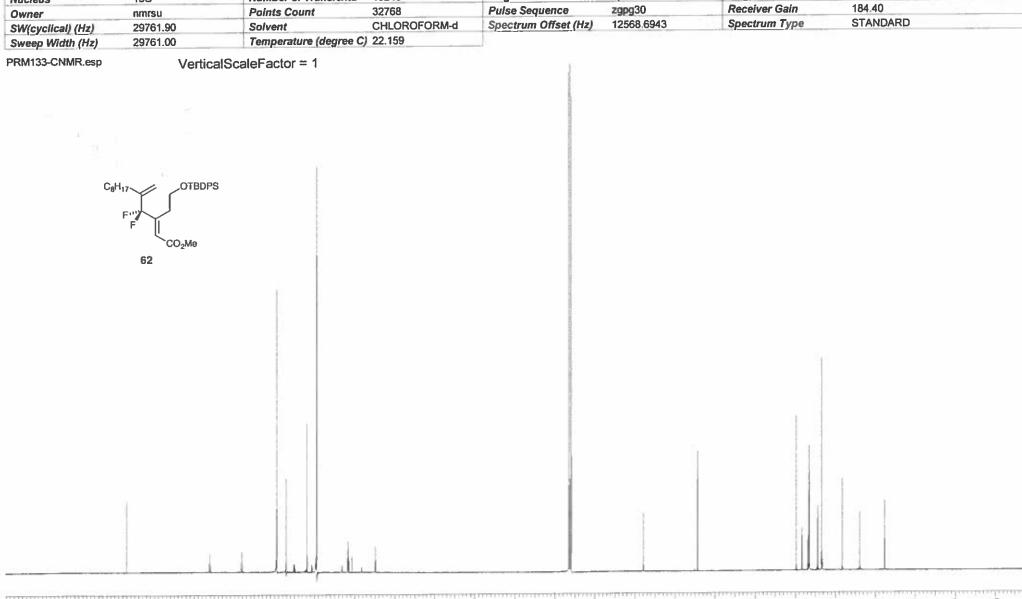
25.16

1.28

2

3.27

56.51

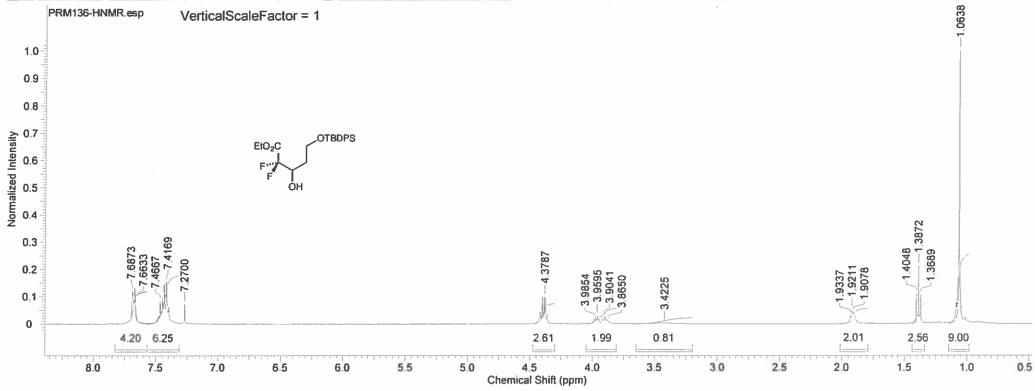

2.66

0.57

0

ppm

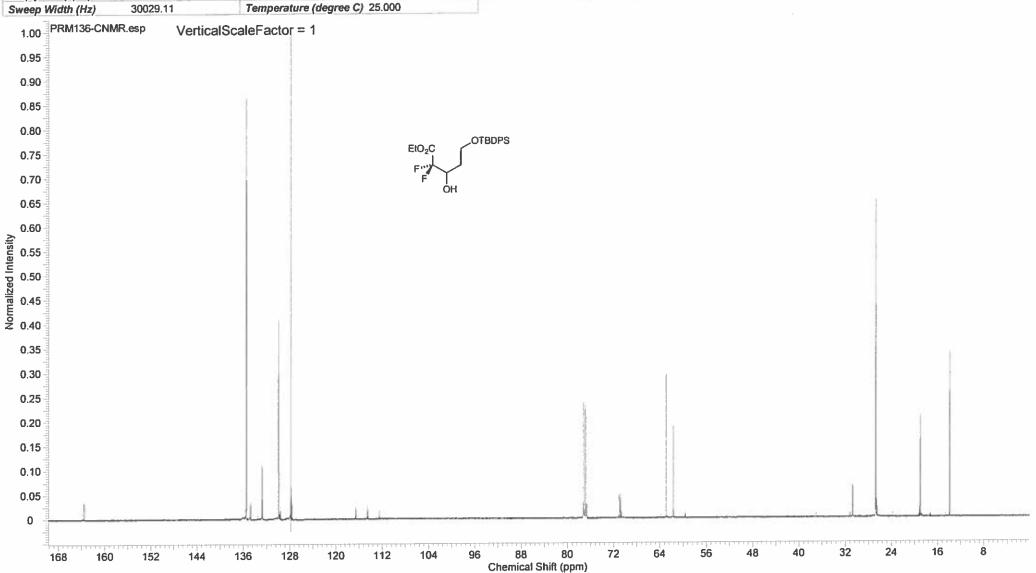
		The second secon		4					
Acquisition Time (sec)	1,1010	Comment	P. Mears EJT-PRM133prod 0614-032 mCARBON CDCl3 (E:\bruk500cdata\2014\Jun) staff 42						
Date	20 Jun 2014 07:19:44	Date Stamp	20 Jun 2014 07:19:44						
File Name	\\ss7a.ds.man.ac.uk\vol	15\vol3\users\snmrdata\bruk	<500cdata\2014\Jun\data	a\staff\nmr\2014-06-19-staff-	42\12\fid	Frequency (MHz)	125.77		
Nucleus	13C	Number of Transients	10240	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40		
SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12568,6943	Spectrum Type	STANDARD		
0 147-141-111-1	20764.00	Tompomium (doggo C	1 22 150						


Acquisition Time (sec)	0.7340	Comment	EJT-PRM133 f14-21	17mg mF19CPD CDCl3 (e	:\bruk400adata\2014\Jur) ejt 28	
Date	17 Jun 2014 12:50:24			Date Stamp	17 Jun 2014 12:50:24	4,000 to to -	
File Name	\\ss7a.ds.man.ac.uk\vo	ol5\vol3\users\snmrdata\bru	k400adata\2014\Jun\d	ata\ejt\nmr\2014-06-17-ejt-2	8\12\fid	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients		Origin	AV400	Original Points Count	65536
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	2050.00
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
Sweep Width (Hz)	89284.35	Temperature (degree C	22.400				

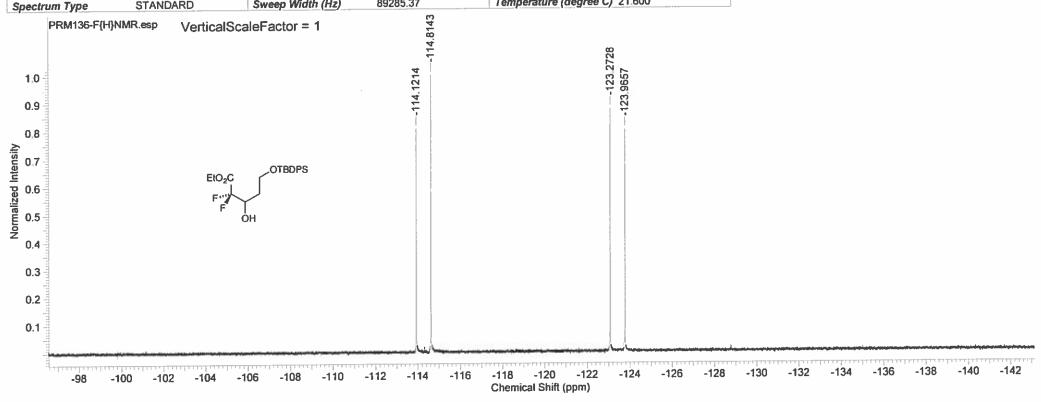
PRM133-F{H}NMR.esp

VerticalScaleFactor = 1

02/04/2014 17:04:51

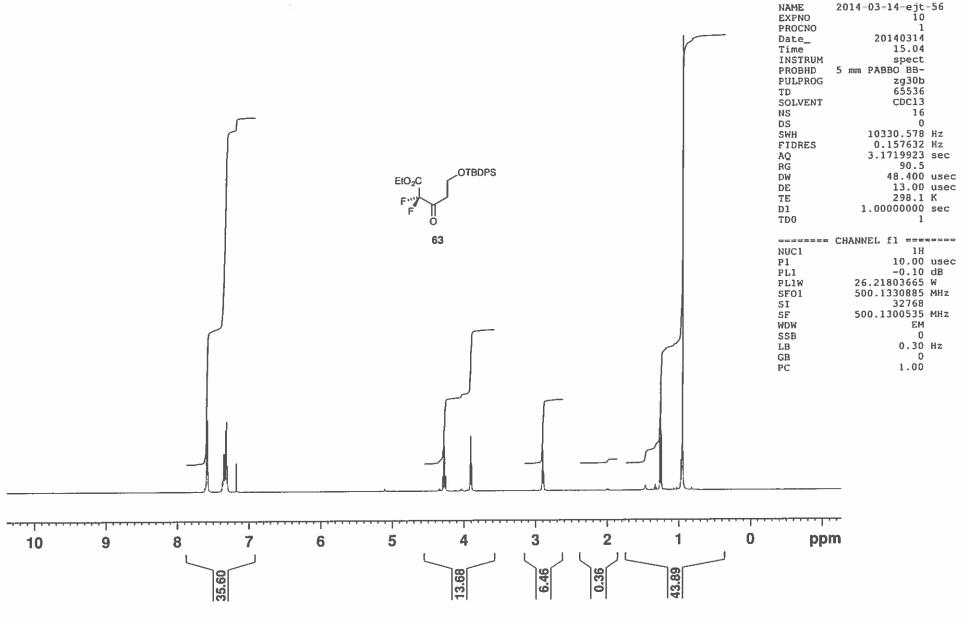

Acquisition Time (sec)	3.9649	Comment	EJT-PRM136 prod	mPROTON CDCI3 (e:\bruk400	Odata\2014\Mar} ejt 44	Date	14 Mar 2014 11:46:08
Date Stamp	14 Mar 2014 11:46:08	File Name	\\ss7a.ds.man.ac.u	k\vol5\VOL3\USERS\SNMRDA	TA\BRUK400DATA\20	14\MAR\DATA\EJT\MR\20	014-03-14-EJT-44\10\PDATA\1\1R
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	16	Origin	AV400
Original Points Count	32768	Owner	Administrator	Points Count	32768	Pulse Sequence	zg30b
Receiver Gain	128.00	SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2464.6750
Spectrum Type	STANDARD	Sweep Width (Hz)	8264.21	Temperature (degree C	21.400		

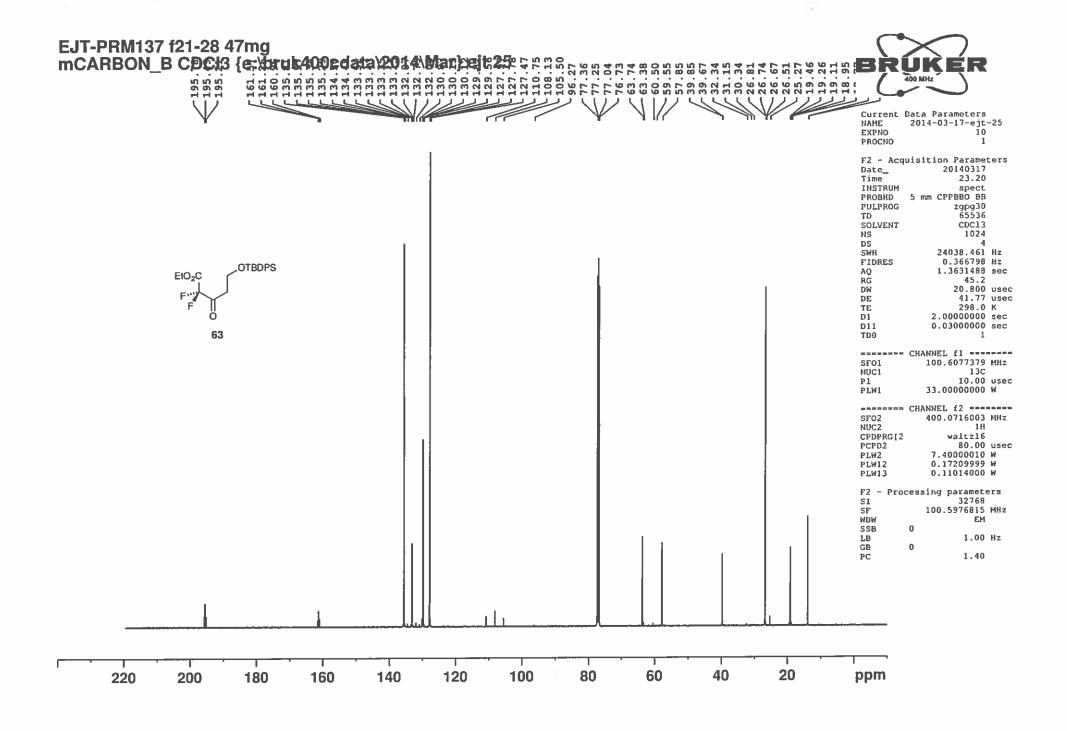
No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	9815 1.14	8 99984264	1.72771696e+8	8.99984264
2	3378 1.43	2.56114244	4.91667400e+7	2.56114244
3	7934 2.01	2.00694013	3.85276120e+7	2.00694013
4	1978 3.65	0.80761468	1.55039330e+7	0.80761468
5	3076 4.04	1.98614478	3.81284000e+7	1.98614478
6	3008 4.47	2.61058092	5.01158200e+7	2.61058092
7	3095 7.56	6.25181770	1.20017336e+8	6.25181770
8	5699 7.82	4.19923115	8.06134400e+7	4.19923115


02/04/2014 16:39:43

Acquisition Time (sec)	1.0912	Comment	EJT-PRM136 Prod data mCARBONnight CDCl3 {F:\bruk500_b_data\2014\Mar} ejt 59				
Date	21 Mar 2014 21:41:20	Date Stamp	21 Mar 2014 21:41:20				
File Name	\\ss7a.ds.man.ac.uk\vo	5\vol3\users\snmrdata\brul	<500bdata\2014\Mar\data	a\ejt\nmr\2014-03-21-ejt-59\	10\fid	Frequency (MHz)	125.76
Nucleus	13C	Number of Transients	3096	Origin	spect	Original Points Count	32768
Owner	Administrator	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	5792.60
SW(cyclical) (Hz)	30030.03	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12566.0234	Spectrum Type	STANDARD

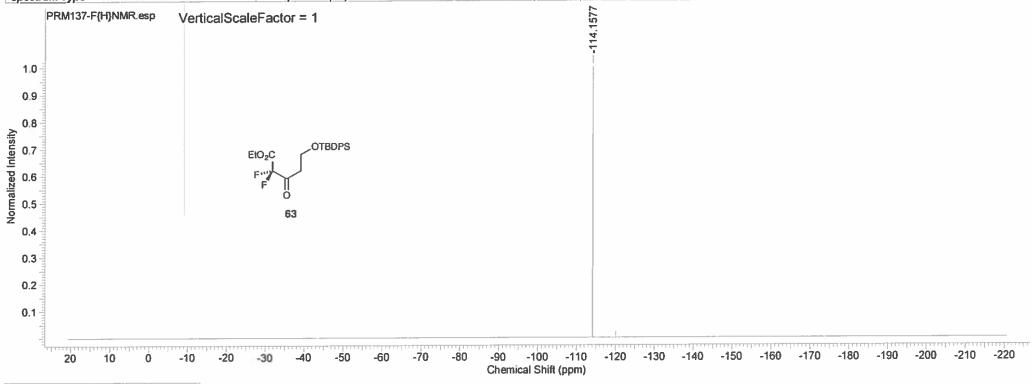
02/04/2014 17:33:27


Acquisition Time (sec)	0.7340	Comment	EJT-PRM136 prod mF	19CPD CDCl3 (e:\bruk400d	ata\2014\Mar} ejt 44	Date	14 Mar 2014 11 46:08
Date Stamp	14 Mar 2014 11:46:08	File Name	\\ss7a.ds.man.ac.uk\vo	15\VOL3\USERS\SNMRDA	TA\BRUK400DATA\2014	WARIDATA/EJTWMR/20	14-03-14-EJT-44\11\PDATA\1\1R
Frequency (MHz)	376.50	Nucleus	19F	Number of Transients	16	Origin	AV400
Original Points Count	65536	Owner	Administrator	Points Count	262144	Pulse Sequence	zgig
Receiver Gain	4100.00	SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977
Canadana Tuno	STANDADD	Sween Width (Hz)	89285.37	Temperature (degree C	21.600		

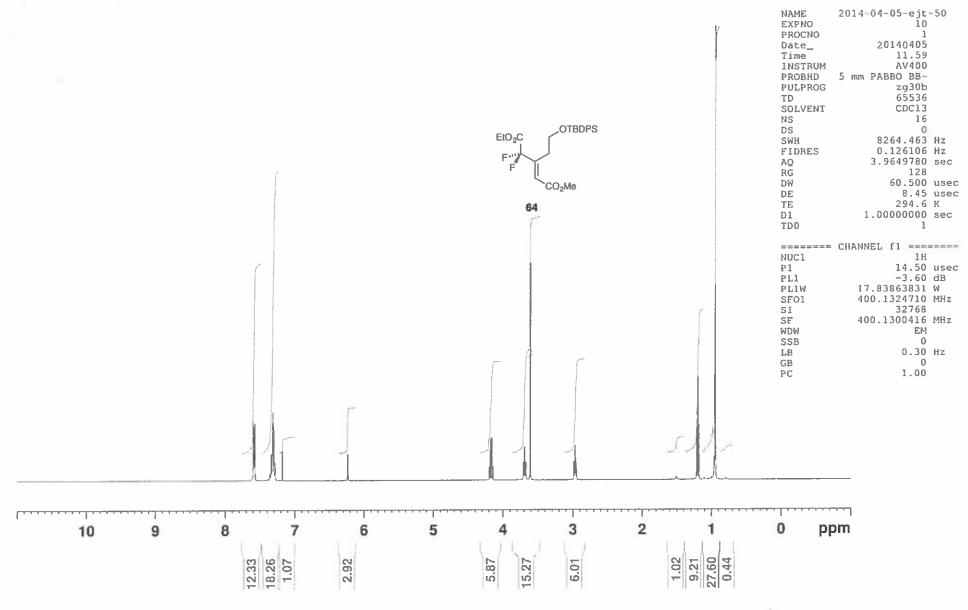


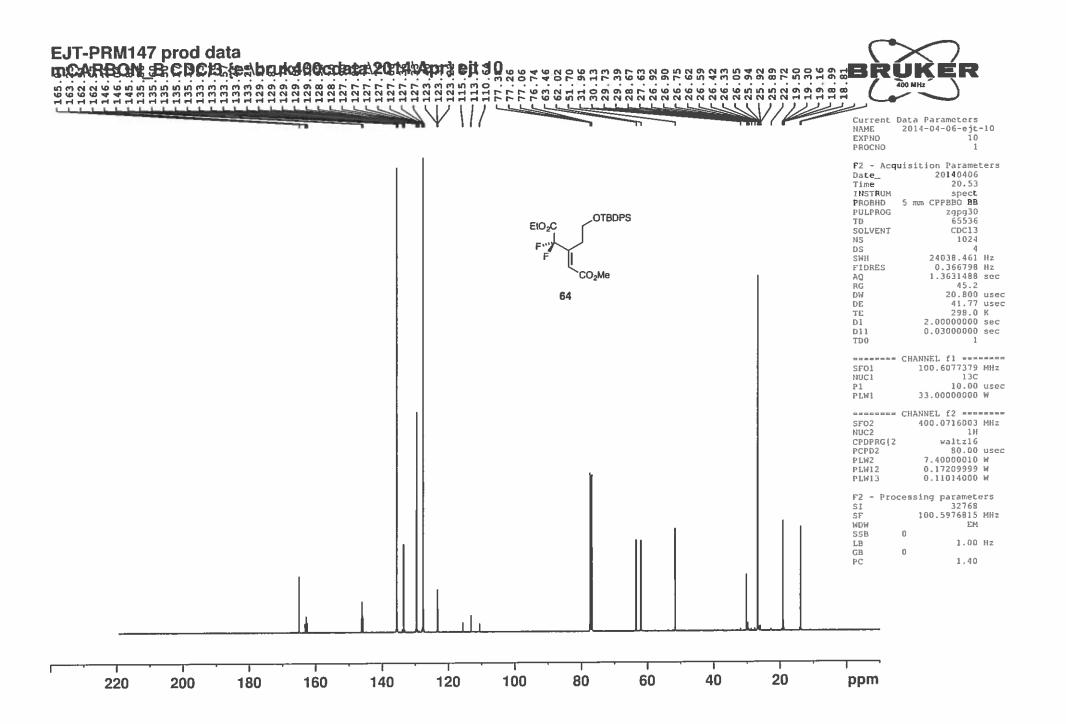
į	No.	(ppm)	(Hz)	Height
İ	1	-123.97	-46672.9	0.8015
1	2	-123.27	-46412.0	0.8765
	3	-114.81	-43227.4	1.0000
-	4	-114.12	-42966.5	0.8086

EJT-PRM137 DMP f21-26 22mg mPROTON CDCl3 /opt/oldbruk500data.11vii11/2014/Mar ejt 56



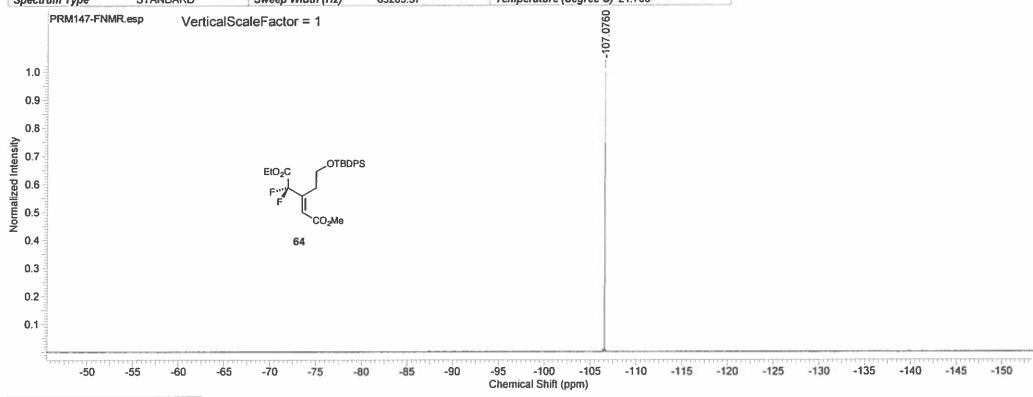
07/04/2014 11:10:45


Acquisition Time (sec)	0.5767	Comment	EJT-PRM137 DMP f21-26 22mg m19FCPD CDCl3 /opt/oldbruk500data.11vii11/2014/Mar ejt 56					
Date	14 Mar 2014 15:08:48	Date Stamp	14 Mar 2014 15:08:48					
File Name	\\ss7a.ds.man.ac.uk\vol5\	VOL3\USERS\SNMRDA	A\BRUK500DATA\BRUK50	ODATA\2014\MAR\DATA\E	JT\NMR\2014-03-14-EJT	-56\12\PDATA\1\1R		
Frequency (MHz)	470.59	Nucleus	19F	Number of Transients	16	Origin	spect	
Original Points Count	65536	Owner	vnmr1	Points Count	65536	Pulse Sequence	zgfhigqn	
Receiver Gain	912.00	SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234	
Spectrum Type	STANDARD	Sweep Width (Hz)	113634.63	Temperature (degree C	27.000			

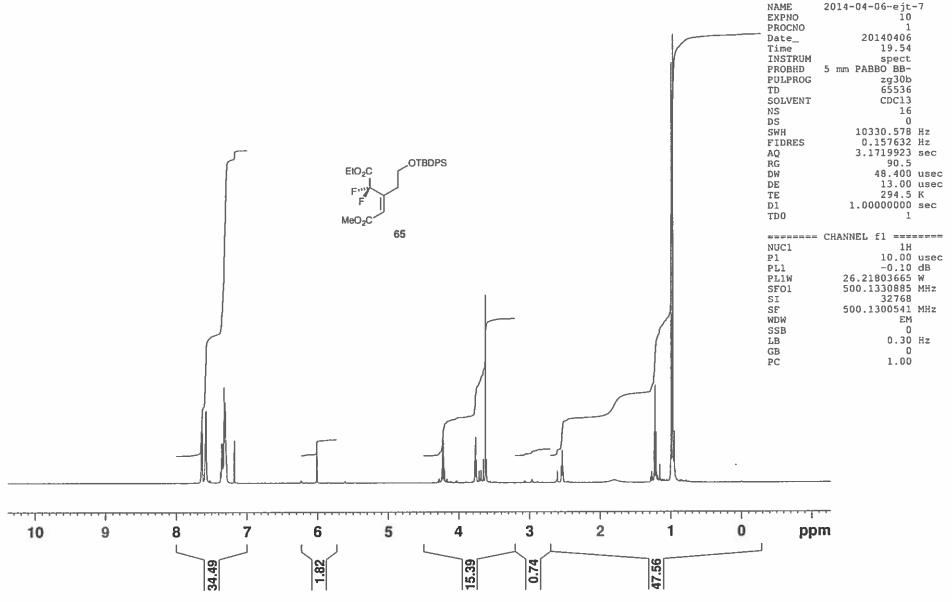


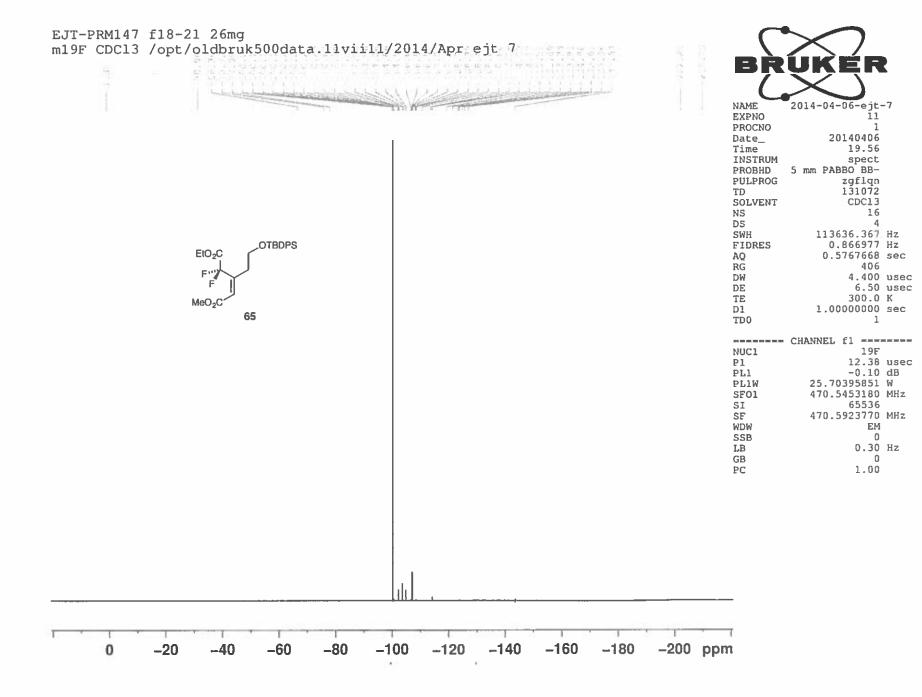
No.	(ppm)	(Hz)	Height
1	-114.16	-53721.7	1.0000

EJT-PRM147 f17-27 31mg mPROTON CDCl3 {e:\bruk400data\2014\Apr} ejt 50



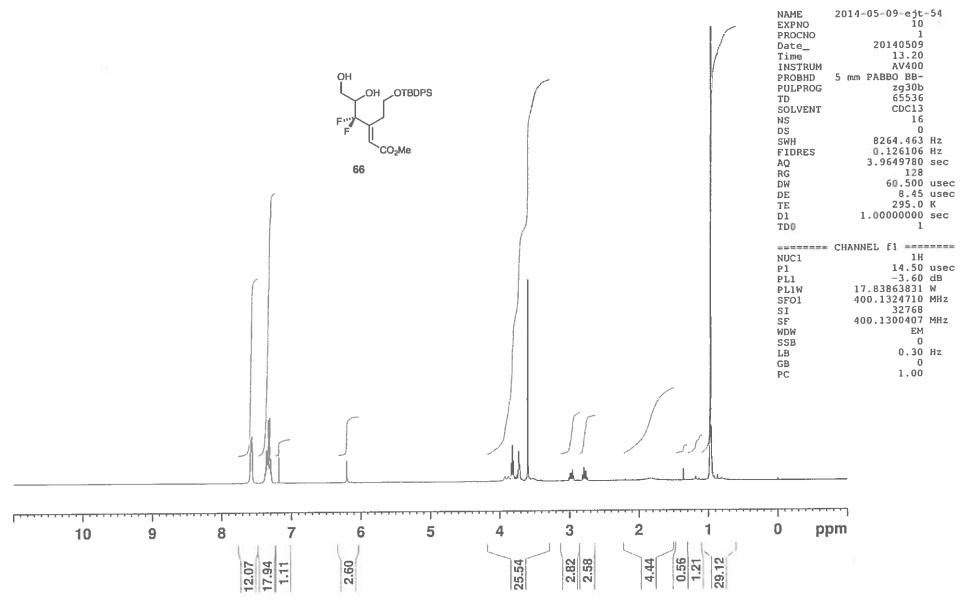
07/04/2014 17:01:40

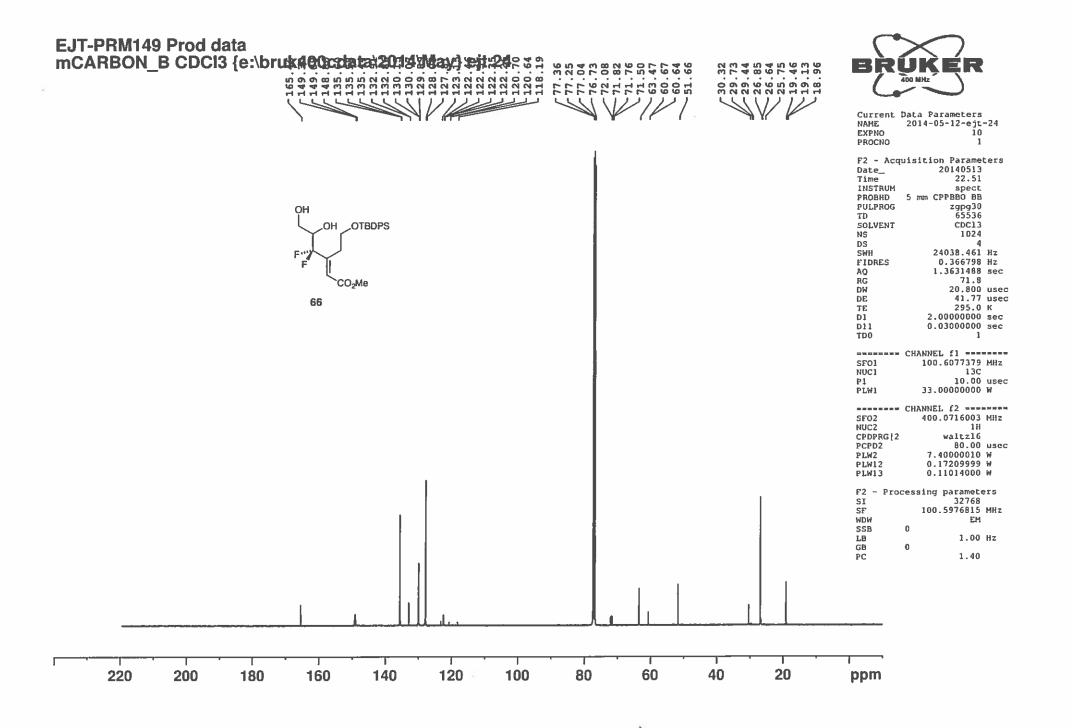

Acquisition Time (sec)	0.7340	Comment	EJT-PRM147 f17-2	7 31mg mF19 CDCl3 {e:\bruk4	00data\2014\Apr} ejt 50	Date	05 Apr 2014 12:01:20
Date Stamp	05 Apr 2014 12:01:20	File Name	\\ss7a.ds.man.ac.ul	klvol5\VOL3\USERS\SNMRDA	TA\BRUK400DATA\201	14/APR/DATA/EJT/NMR/20	14-04-05-EJT-50\12\PDATA\1\1R
Frequency (MHz)	376.50	Nucleus	19F	Number of Transients	16	Origin	AV400
Original Points Count	65536	Owner	Administrator	Points Count	262144	Pulse Sequence	zg
Receiver Gain	4100.00	SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977
Spectrum Type	STANDARD	Sweep Width (Hz)	89285.37	Temperature (degree C	21.700		



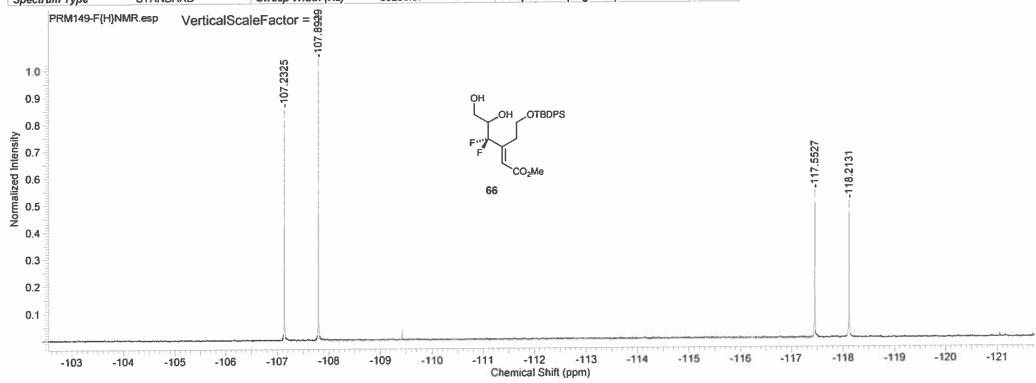
No.	(ppm)	(Hz)	Height
1	-107.08	-40313.9	1.0000

EJT-PRM147 f18-21 26mg mPROTON CDCl3 /opt/oldbruk500data.11vii11/2014/Apr ejt 7

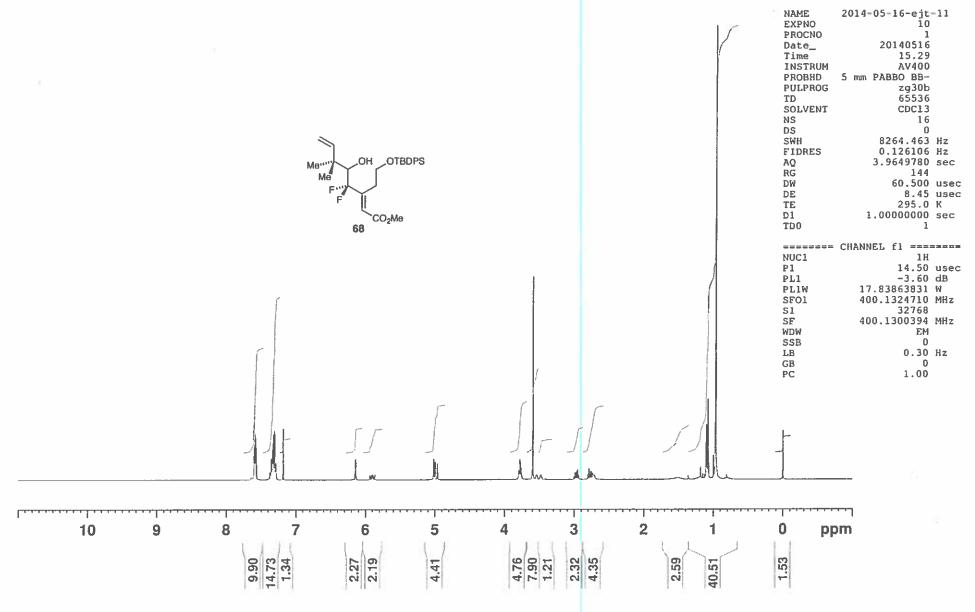




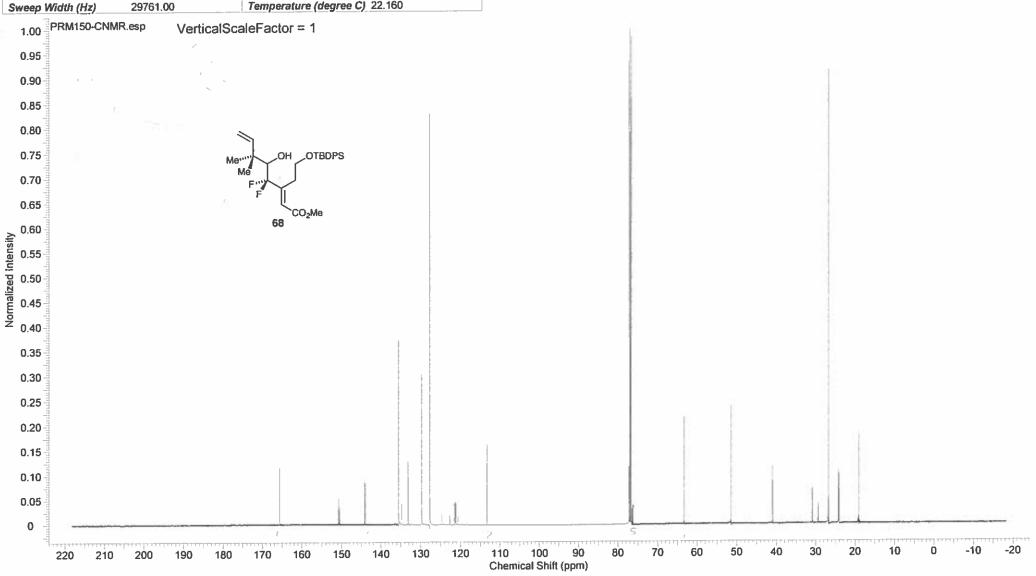
EJT-PRM149F f17-34 38mg mPROTON CDCl3 {e:\bruk400data\2014\May} ejt 54

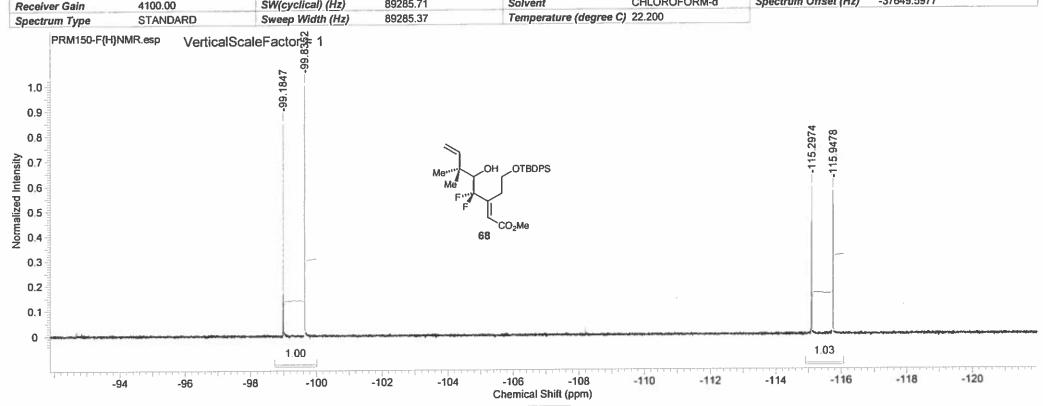


21/05/2014 12:04:27


Acquisition Time (sec)	0.7340	Comment	EJT-PRM149F f17-34 3	8mg mF19CPD CDCl3 (e:\	bruk400data\2014\May} e	jt 54	
Date	09 May 2014 13:22:24	Date Stamp	09 May 2014 13:22:24				
File Name	\\ss7a.ds.man.ac.uk\vol5	SIVOL3IUSERSISNMRD	ATA\BRUK400DATA\2014\	MAY\DATA\EJT\NMR\2014	I-05-09-EJT-54\11\PDAT	A\1\1R	
Frequency (MHz)	376.50	Nucleus	19F	Number of Transients	16	Origin	AV400
Original Points Count	65536	Owner	Administrator	Points Count	262144	Pulse Sequence	zgig
Receiver Gain	4100.00	SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977
Spectrum Type	STANDARD	Sweep Width (Hz)	89285.37	Temperature (degree C	22.200		

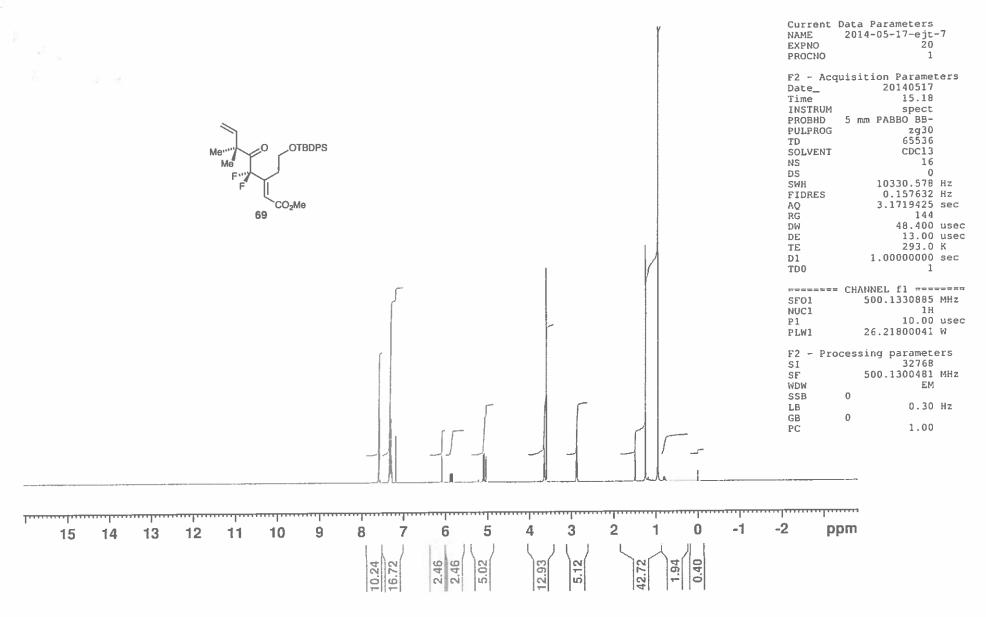
No.	(ppm)	(Hz)	Height
1	-118.21	-44507.0	0.4667
2	-117.55	-44258.4	0.5046
3	-107.89	-40621.5	1.0000
4	-107.23	-40372.8	0.8148


EJT-PRM150 Zn allylation f5-15 20mg mPROTON CDCl3 {e:\bruk400data\2014\May} ejt 11

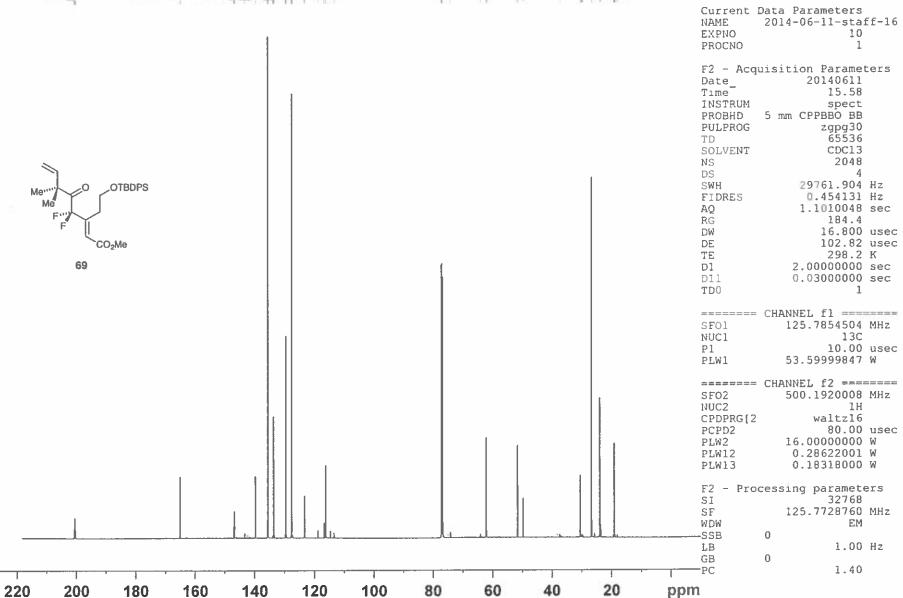

23/05/2014 19:19:14

Acquisition Time (sec)	1,1010	Comment	P. Mears EJT-PRM150 Prod 0514-049 mCARBON CDCl3 (E:\bruk500cdata\2014\May) staff 17						
Date	21 May 2014 15:30:24	Date Stamp	21 May 2014 15:30:24						
	\\ss7a ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500cdata\2014\May\data	\staff\nmr\2014-05-21-staff	-17\12\fid	Frequency (MHz)	125.77		
Nucleus	13C	Number of Transients	2048	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40		
SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12568.6943	Spectrum Type	STANDARD		
347(09011001) [112]			1 00 400	i					

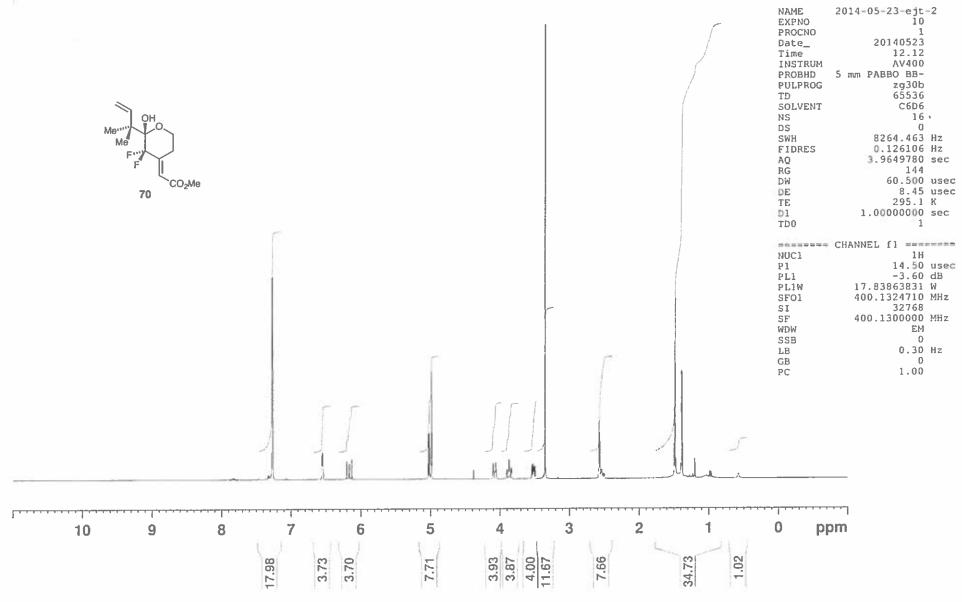
28/05/2014 17:03:52


Acquisition Time (sec)	0.7340	Comment	EJT-PRM150 Zn allylati	on f5-15 20mg mF19CPD C	DCI3 (e:\bruk400data\20	14\May} ejt 11	
Date	16 May 2014 15:30:24	Date Stamp	16 May 2014 15:30:24				
File Name	\\ss7a.ds.man.ac.uk\vol	5\VOL3\USERS\SNMRDA	ATA\BRUK400DATA\2014\A	MAY\DATA\EJT\NMR\2014-	05-16-EJT-11\11\PDAT	4\1\1R	
Frequency (MHz)	376.50	Nucleus	19F	Number of Transients	16	Origin	AV400
Original Points Count	65536	Owner	Administrator	Points Count	262144	Pulse Sequence	zgig
Receiver Gain	4100.00	SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977
Snectrum Type	STANDARD	Sweep Width (Hz)	89285.37	Temperature (degree C	22.200		

No.	(ppm)	Value	Absolute Value	Non-Negative Value	No.	(ppm)	(Hz)	Height
1	2702115	1.03150678	1.04263719e+6	1.03150678	1	-115.95	-43654.2	0.5707
2	207598.	0.99985164	1.01064050e+6	0.99985164	2	-115.30	-43409.3	0.5886
					3	-99.84	-37587.8	1.0000
					4	-99.18	-37342.9	0.8471


EJT-PRM151 f4-12 11mg mPROTON CDCl3 {E:\bruk500adata\2014\May} ejt 7

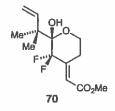
P. Mears
EJT151 prod data
0614-017
2048 scans
mCARBON CDCL3 (E:\bruk500cdata\2014\Jun) staff 16

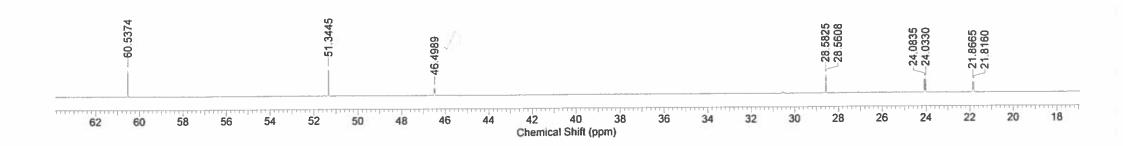


Acquisition Time (sec)	0.5767	Comment	EJT-PRM151 f4-12 1	11mg m19F CDCl3 (E:\bruk	(500adata\2014\May) ejt 7	7	
Date	17 May 2014 15:21:52			Date Stamp	17 May 2014 15:21:52		
			k500adata\2014\May\c	lata\ejt\nmr\2014-05-17-ejt-	7\22\fid	Frequency (MHz)	470.59
Nucleus	19F	Number of Transients	16	Origin	spect	Original Points Count	65536
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgfiqn	Receiver Gain	362.00
SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234	Spectrum Type	STANDARD
Sweep Width (Hz)	113634.63	Temperature (degree C)	20.000				

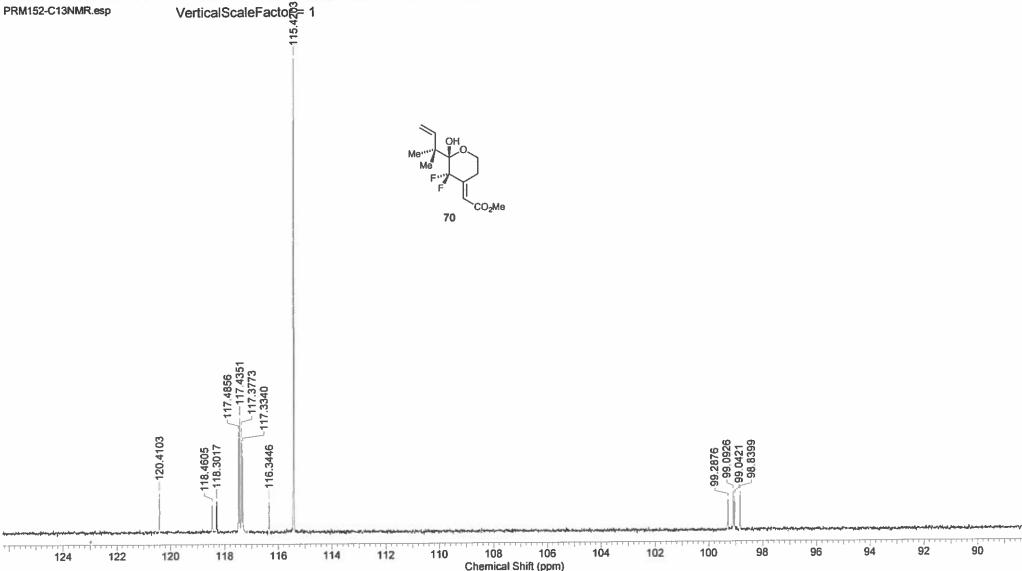
PRM151-FNMR.esp

EJT-PRM152 HF.py f3-11 15mg mPROTON C6D6 {e:\bruk400data\2014\May} ejt 2

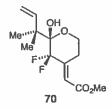


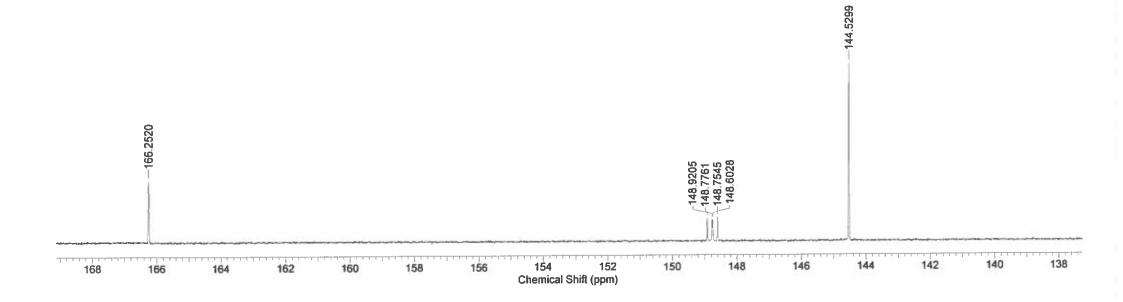


	THIS TOPOIL HOS OF			The second secon			
Acquisition Time (sec)	1.1010	Comment	P. Mears EJT-PRM152	HF.py 83-11 0514-053 m ⁽²⁾	CARBON C6D6 (E:\b	ruk500cdata\2014\May} staff 28	
Date	23 May 2014 20:35:28		23 May 2014 20:35:28				
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500cdata\2014\May\data\	staff\nmr\2014-05-23-staff	-28\12\fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	5120	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12662.5273	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.00	Temperature (degree C	25.149				

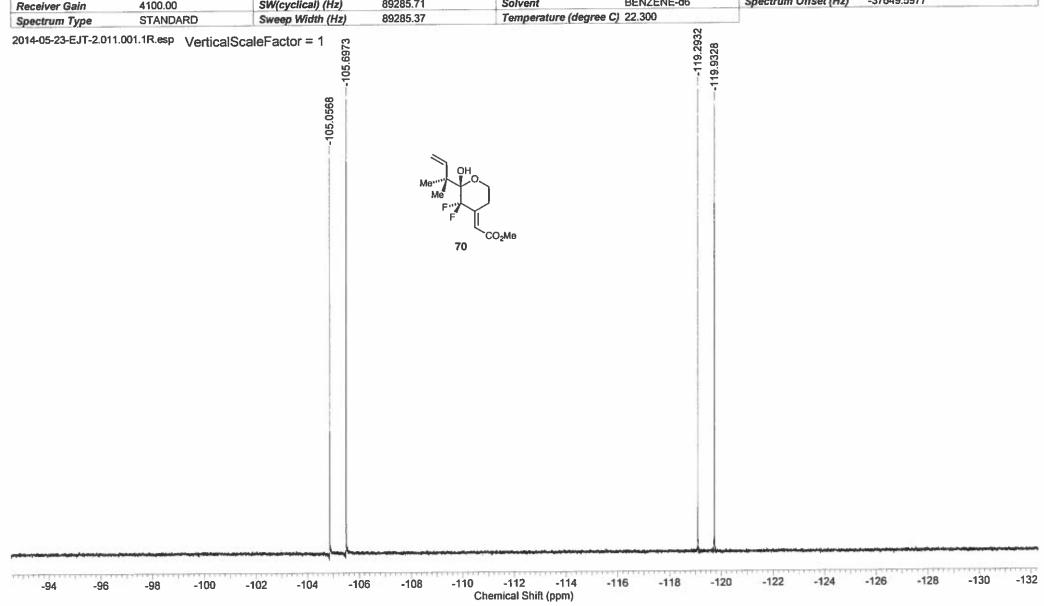

PRM152-C13NMR.esp

VerticalScaleFactor = 1

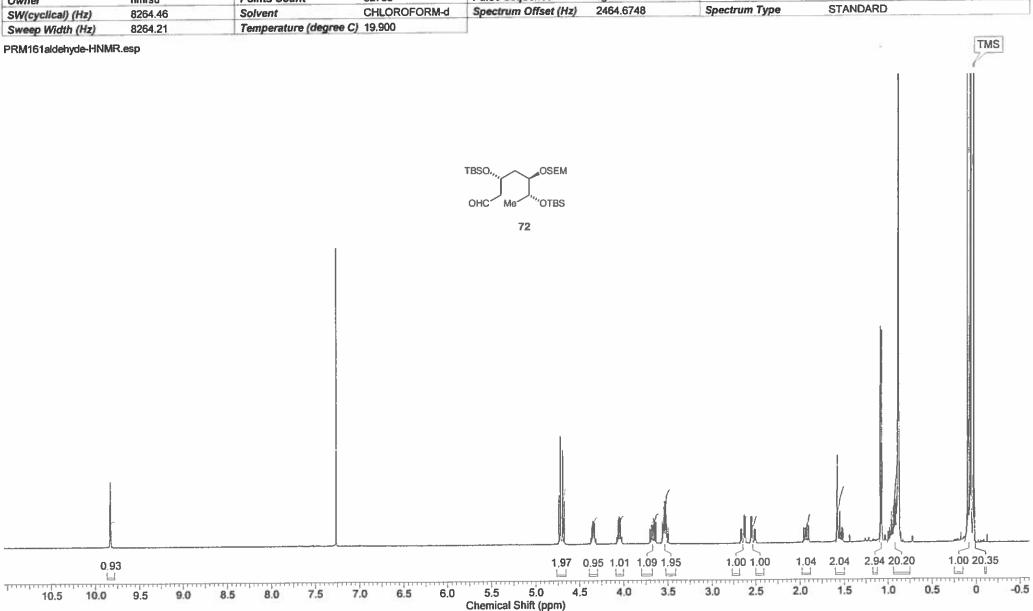

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ P. Mears EJT-PRM152 HF.py 83-11 0514-053 mCARBON C6D6 (E:\bruk500cdata\2014\May) staff 28 Acquisition Time (sec) 1.1010 Comment 23 May 2014 20:35:28 23 May 2014 20:35:28 Date Stamp Date \\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk500cdata\2014\\May\data\staff\nmr\2014-05-23-staff-28\12\\fid Frequency (MHz) 125.77 File Name Original Points Count 32768 Origin spect Number of Transients 5120 13C Nucleus 184.40 Receiver Gain 32768 **Pulse Sequence** zgpg30 **Points Count** Owner nmrsu **STANDARD** Spectrum Offset (Hz) 12662.5273 Spectrum Type BENZENE-d6 Solvent SW(cyclical) (Hz) 29761.90 Temperature (degree C) 25.149 29761.00 Sweep Width (Hz) VerticalScaleFacto8 1

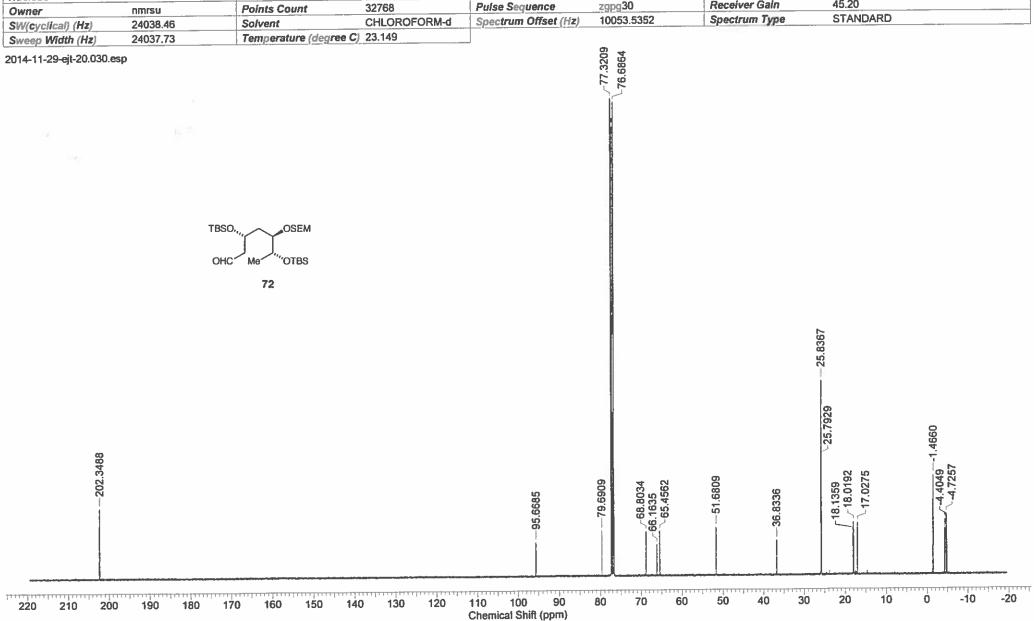


Acquisition Time (sec)	1.1010	Comment	P. Mears EJT-PRM152	HF.py 83-11 0514-053 mC	CARBON C6D6 (E:\	ruk500cdata\2014\May) staff 28	3.00
Date	23 May 2014 20:35:28	Date Stamp	23 May 2014 20:35:28				
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500cdata\2014\May\data\	staff\nmr\2014-05-23-staff-	-28\12\fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	5120	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12662.5273	Spectrum Type	STANDARD
Sween Width (Hz)	29761 00	Temperature (degree C)	25.149				

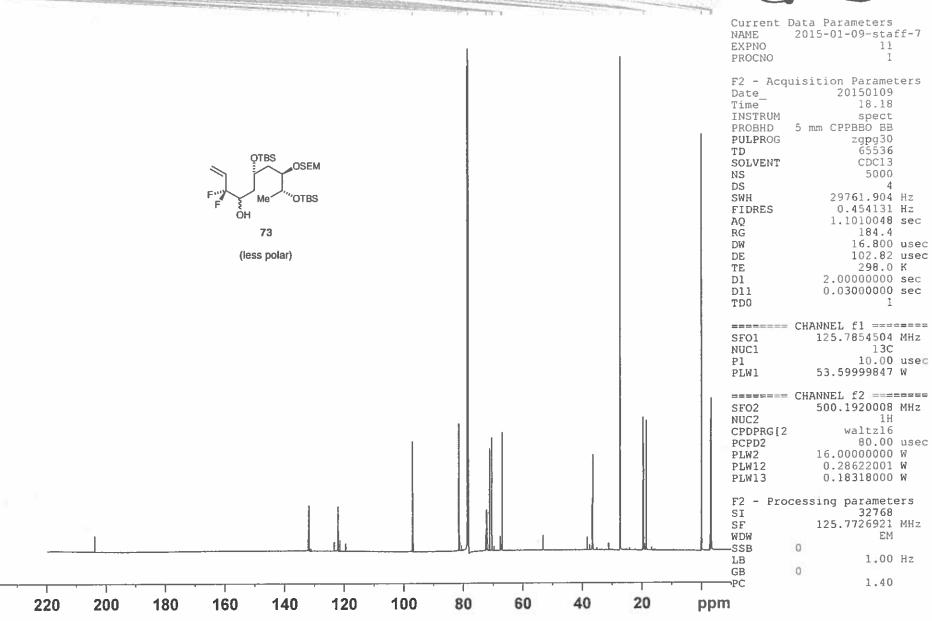

PRM152-C13NMR.esp

VerticalScaleFactor = 1




						14-1-24-0	
Acquisition Time (sec)	0.7340	Comment	EJT-PRM152 HF.py f3-	11 15mg mF19CPD C6D6	(e:\bruk400data\2014)	May) ept 2	
Date	23 May 2014 12:14:08	Date Stamp	23 May 2014 12:14:08				
File Name	\\ss7a.ds.man.ac.uk\vol	5/VOL3/USERS/SNMRD	ATA\BRUK400DATA\2014\	MAY\DATA\EJT\NMR\201	4-05-23-EJT-2\11\PD	ATA\1\1R	
Frequency (MHz)	376.50	Nucleus	19F	Number of Transients	16	Origin	AV400
Original Points Count	65536	Owner	Administrator	Points Count	262144	Pulse Sequence	zgig
Receiver Gain	4100.00	SW(cyclical) (Hz)	89285.71	Solvent	BENZENE-d6	Spectrum Offset (Hz)	-37649.5977
Construct Tune	STANDARD	Swaan Width (Hz)	89285 37	Temperature (degree C	22.300		

	rina report mas o			2011110 2211101111111111111111111111111		W				
Acquisition Time (sec)	3.9649	Comment EJT-PRM161 f15-35 289mg mPROTON CDCl3 (e:\bruk400adata\2015\Feb) ejt 22								
Date	25 Feb 2015 16:36:16			Date Stamp	25 Feb 2015 16:36:16					
File Name	liss7a ds man.ac.uklw	ol5\vol3\users\snmrdata\bru	k400adata\2015\Feb\d	lata\ejt\nmr\2015-02-25-ejt-2	22\10\fid	Frequency (MHz)	400.13			
Nucleus	1H	Number of Transients	F 7/45	Origin	AV400	Original Points Count	32768			
Owner	nmrsu	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	144.00			
SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2464.6748	Spectrum Type	STANDARD			
Sween Width (Hz)	8264.21	Temperature (degree C)	19 900							



	LING LEDOLF MING O	reaced by resultant		The second second			
Acquisition Time (sec)	1.3631	Comment	EJT-PRM161 aldehyd	e mCARBON_B CDCl3 (e:	\bruk400cdata\2014\Nov	/} ejt 20	
Date	29 Nov 2014 17:23:12			Date Stamp	29 Nov 2014 17:23:12		
File Name		d5\vol3\users\snmrdata\bru	k400cdata\2014\Nov\da	ta\eit\nmr\2014-11-29-ejt-20	0\30\fid	Frequency (MHz)	100.60
	13C	Number of Transients	1024	Origin	spect	Original Points Count	32768
Nucleus			32768	Pulse Sequence	zgpg30	Receiver Gain	45.20
Owner	nmrsu	Points Count			10053.5352	Spectrum Type	STANDARD
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10000.0002	opeculain Type	O F H TO F H TO
Sweep Width (Hz)	24037.73	Temperature (degree C)	23.149				

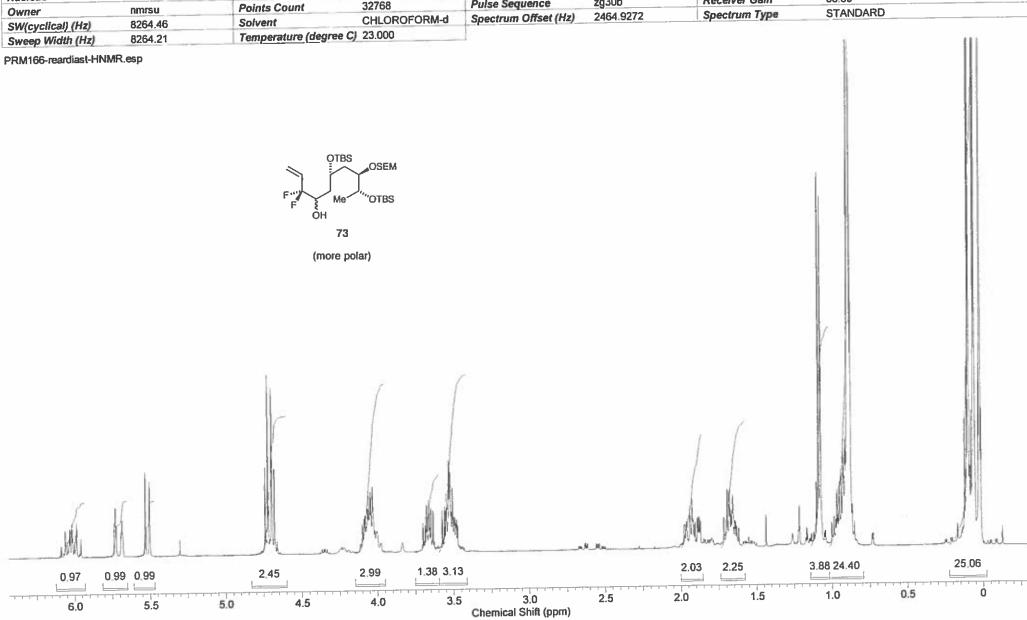
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM166 f12+13 34mg clean front diastereomer? mPROTON CDCl3 (e \u00bcruk400adata\u00e42015\u00bclan) ejt 2 Acquisition Time (sec) 3.9649 Comment 08 Jan 2015 13:17:52 Date Stamp 08 Jan 2015 13:17:52 Date Frequency (MHz) 400.13 \\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk400adata\2015\Jan\data\ejt\nmr\2015-01-08-ejt-2\13\fid 32768 File Name Original Points Count Origin AV400 16 Number of Transients 1H Nucleus 101.00 Receiver Gain zg30b Pulse Sequence 32768 **Points Count** nmrsu STANDARD Owner 2464.9270 Spectrum Type Spectrum Offset (Hz) CHLOROFORM-d 8264.46 Solvent SW(cyclical) (Hz) Temperature (degree C) 23.000 8264.21 Sweep Width (Hz) PRM166-frontdiast-HNMR.esp 73 (less polar) 6.36 7.19 9.34 3,5922.37 1.002.10 1.42 1.87 1.30 0.96 1.25 2.29 2,35 1.05 1.04 1.0 -0.5 0.5 2.0 1.5 3.0 2.5 3.5 4.5 4.0 5.0 5.5 6.0 Chemical Shift (ppm)

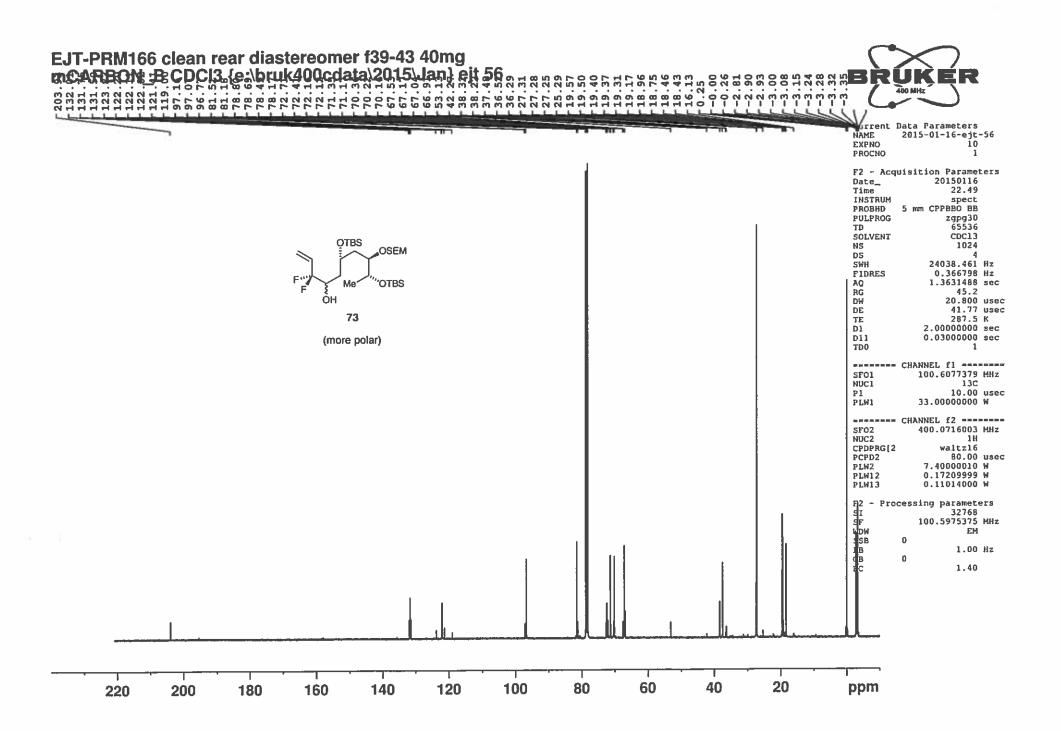
		Comment	EJT-PRM166 f12+13	34mg clean front diastereоп	ner? mF19CPD CDCl3	(e:\bruk400adata\2015\Jan) e	jt 2
Date	08 Jan 2015 13:22:08	Date Stamp	08 Jan 2015 13:22:08				
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	400adata\2015\Jan\data	vejt\nmr\2015-01-08-ejt-2\15	5Vid	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients	16	Origin	AV400	Original Points Count	65536
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	2050.00
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
	89284.35	Temperature (degree C	23.000				
Sweep Width (Hz) PRM166-frontdiast-F{H}N	MR.esp OTBS OSEM		73.000		-114.5298		
					1 1 1 1		
		1	11 1 11				

-110 -111 -112 Chemical Shift (ppm)

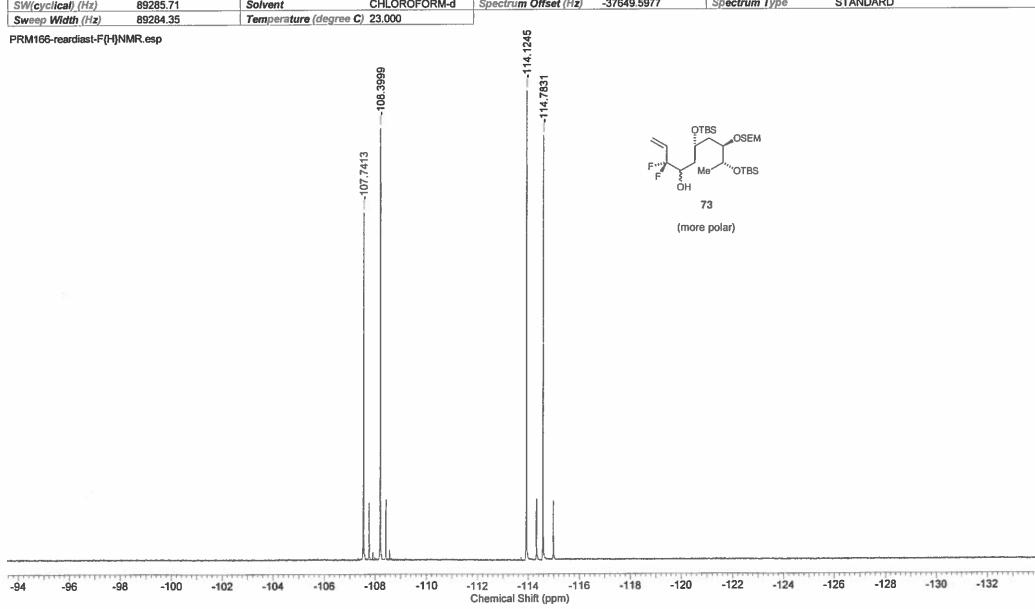
-112

-113

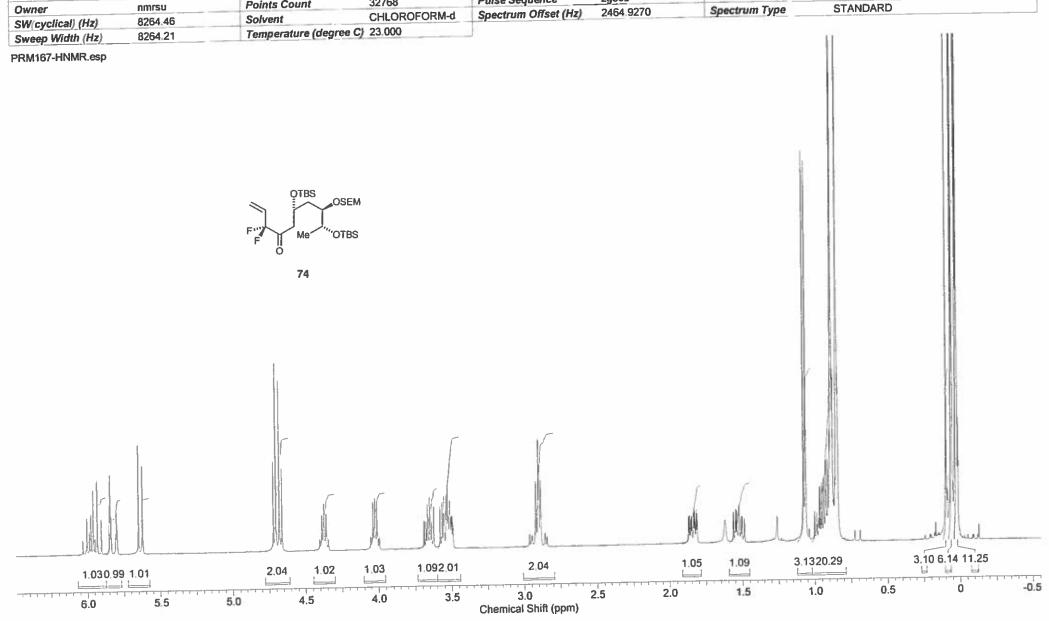

-106 -107 -108 -109

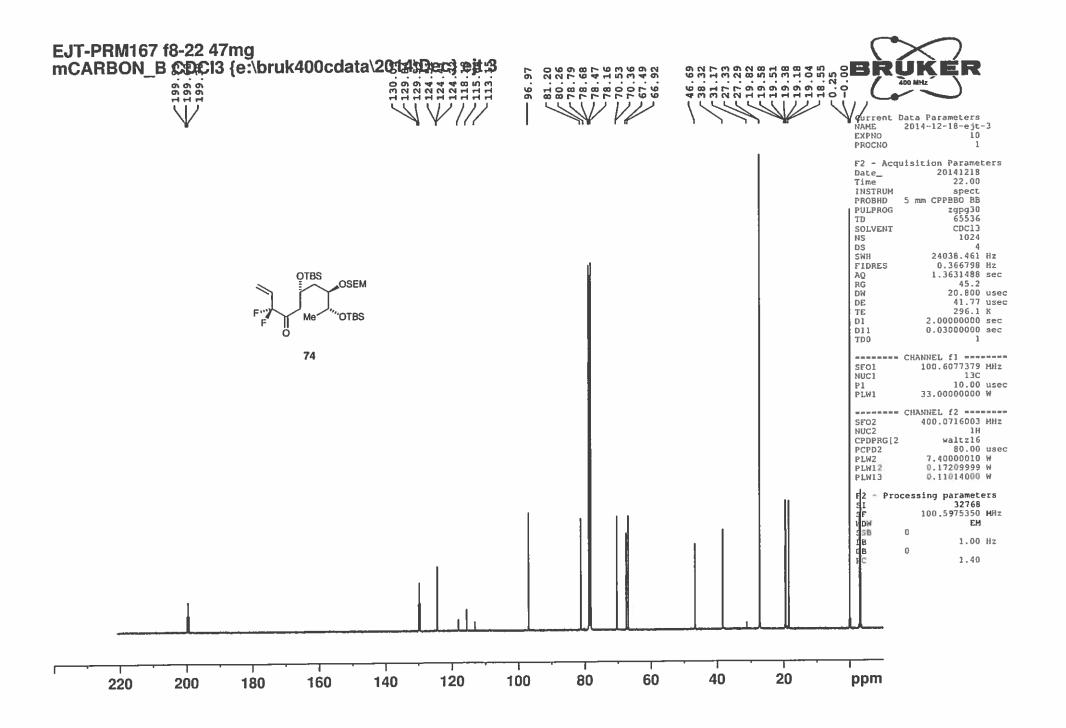

-104 -

-105

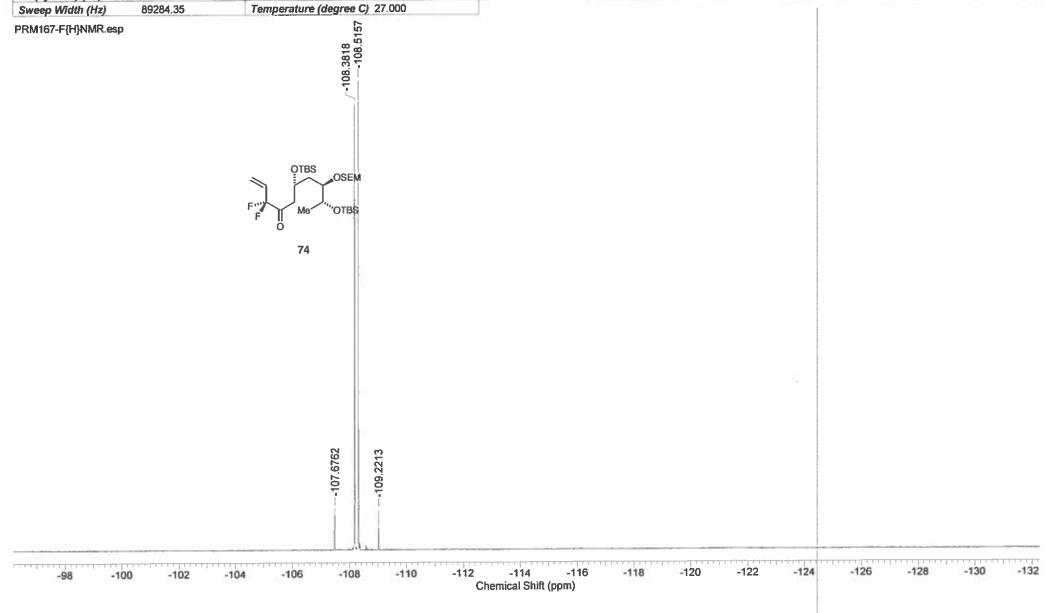

-114 -115 -116 -117 -118 -119 -120 -121 -122

	I his report was c	reated by ACD/Milli	(11000301700			1 -3 04	
Acquisition Time (sec)	3.9649	Comment	EJT-PRM166 f39-43	40mg mPROTON CDCI3 (e:\bruk400adata\2015\0	an) ejt 34	
				Date Stamp	16 Jan 2015 11:35:28		
Date	16 Jan 2015 11:35:28		J. 400 - John St. Control		14\10\fid	Frequency (MHz)	400.13
File Name				ata\ejt\nmr\2015-01-16-ejt-3	AV400	Original Points Count	32768
Nucleus	1H	Number of Transients	16	Origin			80.60
	mm2011	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	
Owner	nmrsu		CHLOROFORM-d	Spectrum Offset (Hz)	2464.9272	Spectrum Type	STANDARD
SW(cyclical) (Hz)	8264.46	Solvent		Openium email			
			1 72 000				

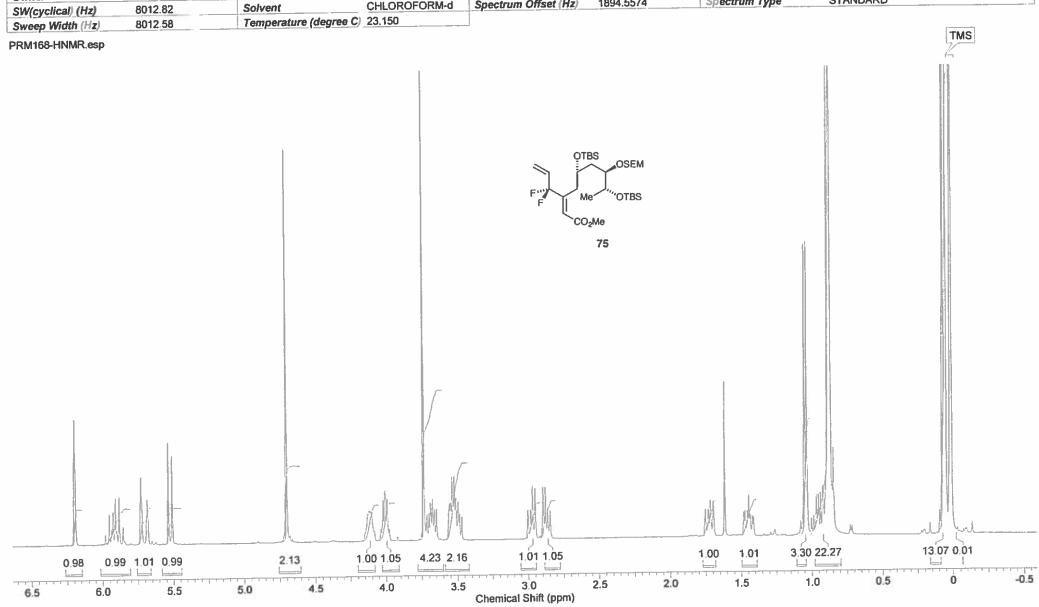


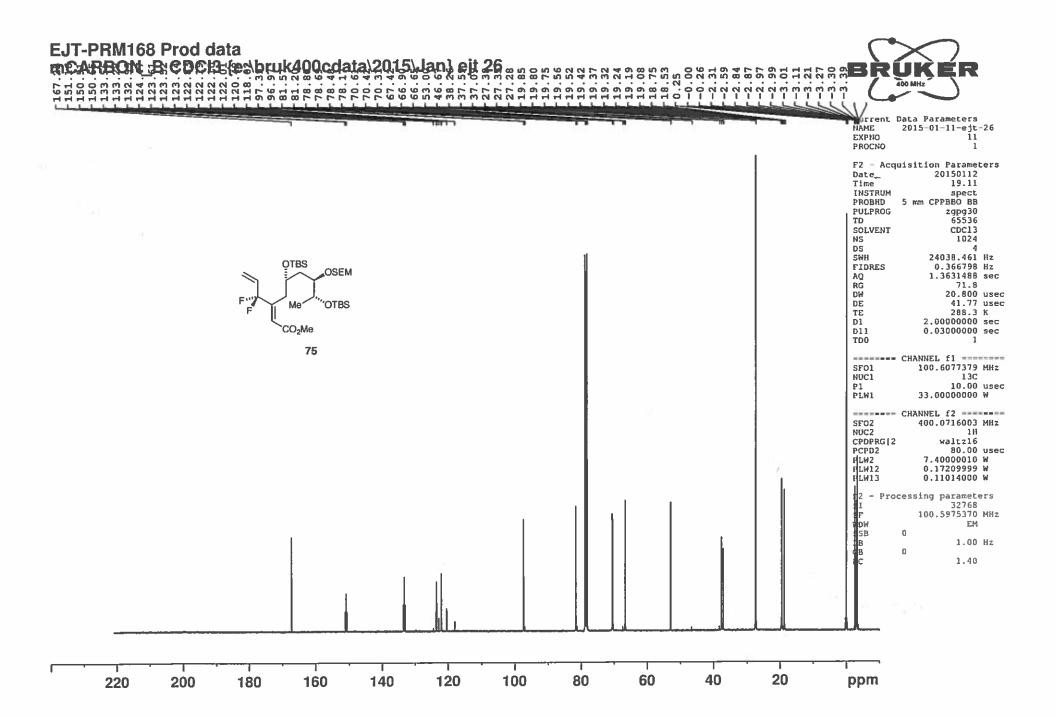


	This toport was strated by Addition 1 to too and 1 to the total to the											
Acquisition Time (sec)	0.7340	Comment EJT-PRM166 (39-43 40mg mF19CPD CDCl3 (e:\bruk400adata\2015\Jan) ejt 34										
Date	16 Jan 2015 11:39:44			Date Stamp	16 Jan 2015 11:39:44							
File Name	\\ss7a.ds.man.ac.uk\vo	ol5\vol3\users\snmrdata\bru	ık400adata\2015\Jan\da	ta\ejt\nmr\2015-01-16-ejt-3	34\12\fid	Frequency (MHz)	376.50					
Nucleus	19F	Number of Transients	16	Origin	AV400	Original Points Count	65536					
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	322.00					
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD					
Owner Madela (Ma)	00204.25	Tomporatura (doggo C	22,000									

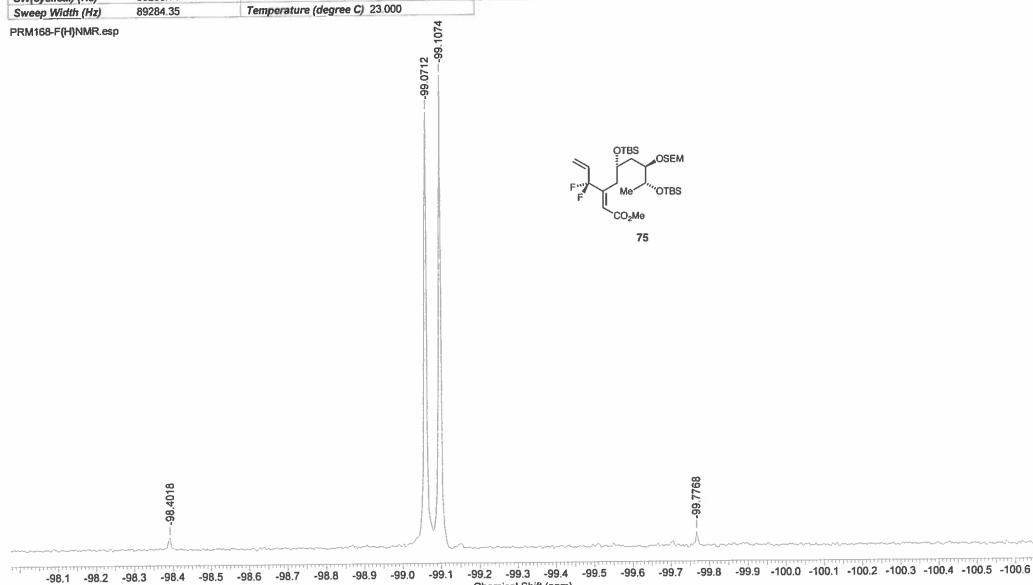


This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM167 f8-22 47mg mPROTON CDCl3 (e:\bruk400adata\2014\Dec) ejt 59 Acquisition Time (sec) 3,9649 Comment 18 Dec 2014 14:13:20 Date Stamp 18 Dec 2014 14:13:20 400.13 Date \\ss7a.ds.man.ac.uk\\vol5\\vol3\\users\\snmrdata\\bruk400adata\\2014\\Dec\\data\\ejt\\nmr\\2014-12-18-ejt-59\\10\\fid Frequency (MHz) 32768 File Name Original Points Count AV400 Origin Number of Transients 16 1H 90.50 Nucleus Receiver Gain zg30b Pulse Sequence 32768 **Points Count** nmrsu STANDARD Owner Spectrum Offset (Hz) Spectrum Type 2464.9270 CHLOROFORM-d Solvent 8264.46 SW(cyclical) (Hz) Temperature (degree C) 23.000 8264.21 Sweep Width (Hz)





ec 2014 14:17:36	- ///		Date Stamp	40 D 0044 4447-00		
			Date Stamp	18 Dec 2014 14:17:36		
a.ds.man.ac.uk\vol!	5\vol3\users\snmrdata\bru	k400adata\2014\Dec\da	ata\ejt\nmr\2014-12-18-ejt-5	i9\12\fid	Frequency (MHz)	376.50
	Number of Transients	16	Origin	AV400	Original Points Count	65536
su	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	2050.00
35.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
su		Number of Transients Points Count	Number of Transients 16 Points Count 65536	Number of Transients 16 Origin Points Count 65536 Pulse Sequence	Number of Transients 16 Origin AV400 Points Count 65536 Pulse Sequence zgig	Number of Transients 16 Origin AV400 Original Points Count Points Count 65536 Pulse Sequence zgig Receiver Gain

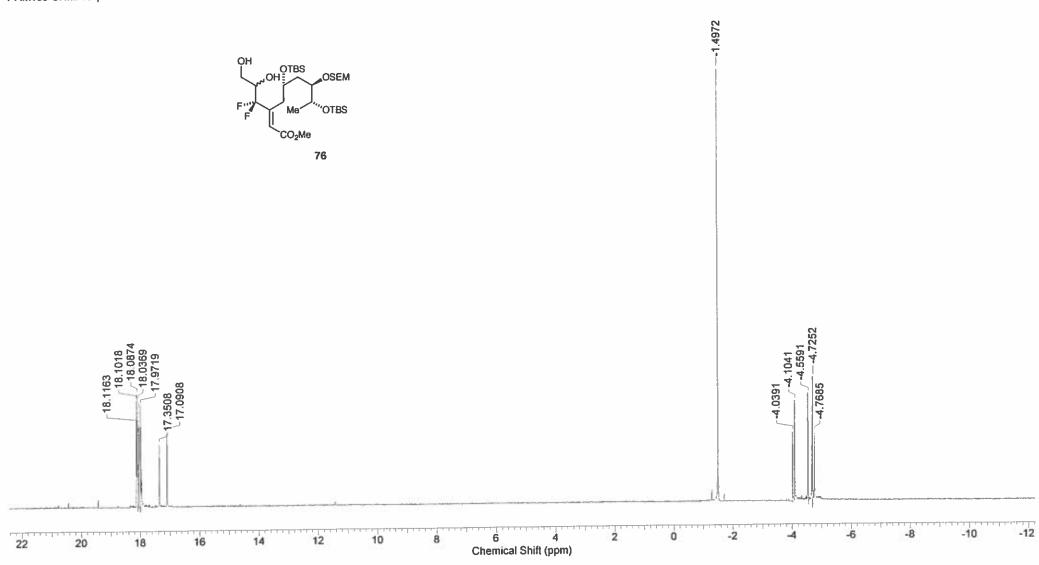


	This report was o	reated by ACD/NIMH	Processor Acau	lelliic Euldon, i or	more information	30 10 1111111	
Acquisition Time (sec)		Comment	EJT-PRM168 f7-9 38	mg mPROTON_A CDCl3	{e:\bruk400cdata\2015\J	an) ejt 10	
	07 Jan 2015 16:34:08			Date Stamp	07 Jan 2015 16:34:08		
Date	07 Jan 2015 10.34.00	ol5\vol3\users\snmrdata\bru	L400cdata\2015\ lan\d:	ata\eit\nmr\2015-01-07-eit-	-10\10\fid	Frequency (MHz)	400.07
File Name				Origin	spect	Original Points Count	32768
Nucleus	1H	Number of Transients				Receiver Gain	64.00
Owner	nmrsu	Points Count	32768	Puise Sequence	zg 30		
SW(cyclical) (Hz)	8012.82	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	1894.5574	Spectrum Type	STANDARD
Sween Width (Hz)	8012.58	Temperature (degree C)	23.150				

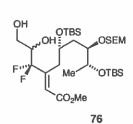


						The state of the s	
Acquisition Time (sec)	0.7340	Comment	EJT-PRM189 f17-33	124mg mF19CPD CDCl3 {	e:\bruk400adata\2015\Ja	in) ejt 29	
Date	10 Jan 2015 15:32:16			Date Stamp	10 Jan 2015 15:32:16		
			ik400adata\2015\Jan\da	ata\ejt\nmr\2015-01-10-ejt-2	9\12\fid	Frequency (MHz)	376.50
				Origin	AV400	Original Points Count	65536
Nucleus	19F	Number of Transients				Receiver Gain	287.00
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgig		STANDARD
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649,5977	Spectrum Type	STANDARD
011 07 011 011 111							

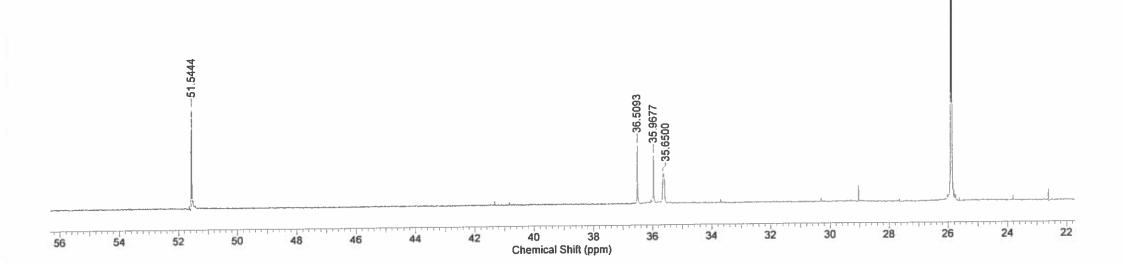
Chemical Shift (ppm)


Acquisition Time (sec)	3,1719	Comment	EJT-PRM169 f28-36	44mg mPROTON CDCI3	{E:\bruk500adata\2015\J	an) <u>e</u> it 10	
Date	12 Jan 2015 13:05:04			Date Stamp	12 Jan 2015 13:05:04		
File Name			uk500adata\2015\Jan\d	lata\ejt\nmr\2015-01-12-ejt-1	10\20\fid	Frequency (MHz)	500.13
Nucleus				Origin	spect	Original Points Count	32768
	nmrsu	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	50.80
Owner CM/ovelines (NZ)	10330.58	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	3081,5532	Spectrum Type	STANDARD
SW(cyclical) (Hz)	10330.30	Temperature (degree C		1			

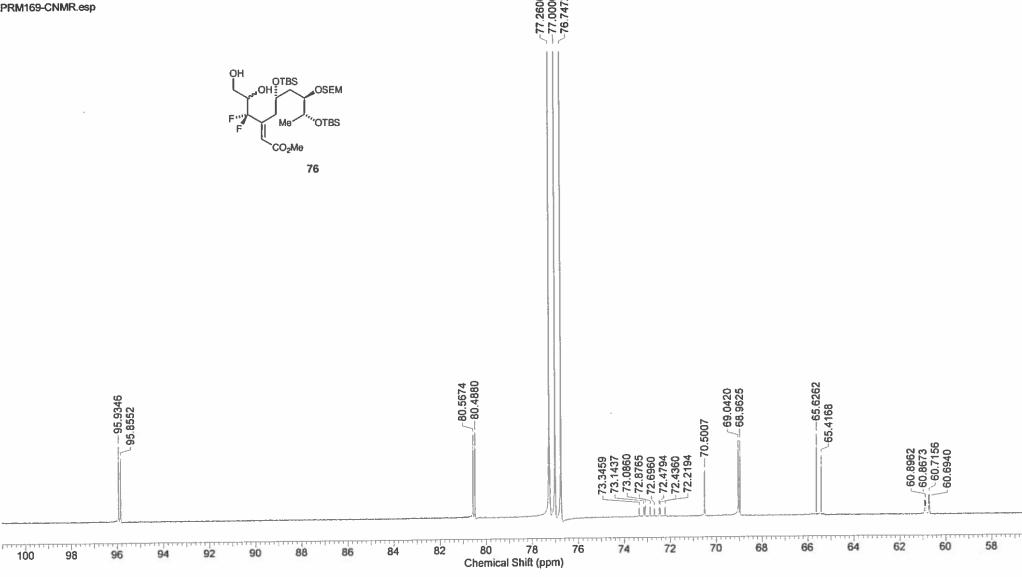
No.	(ppm)	Value	Absolute Value	Non-Negative Value	No.	(ppm)	Value	Absolute Value	Non-Negative Value
1		9.70469666	1.55986125e+10	9.70469666	12	1107 3.16	0.51732343	8.31507520e+8	0.51732343
2	0363 0.10		2.03028726e+10	12.63145828	13	1687 3.23	0.49489146	7.95451968e+8	0.49489146
3	3486 0.90		3.24516250e+10	20.18981934	14	4552 3.56	2.15453339	3.46303770e+9	2.15453339
4	9102 1.01		2.98496614e+9	1.85710049	15	5323 3.71	1.56468415	2.51495782e+9	1.56468415
5	0235 1.06		4.74843597e+9	2.95424557	16	7205 3.76	3.11513853	5.00704358e+9	3.11513853
6	4679 1.57	1.09587038	1.76142106e+9	1.09587038	17	7679 3.88	2.17377329	3.49396250e+9	2.17377329
7	101-11-1	D.74124676	1.19142528e+9	0.74124676	18	9501 4.06	1.75517964	2.82114611e+9	1.75517964
В	3096 1.88		1.00238470e+9	0.62363493	19	0657 4.14	1.01384950	1.62958682e+9	1.01384950
9		0.89462709	1.43795750e+9	0.89462709	20	1993 4.28	0.56165135	9.02756928e+8	0.56165135
10		0.47494268	7.63387776e+8	0.47494268	21	5814 4.78	2.17071009	3.48903910e+9	2.17071009
11		0.53880036	8 66027904e+8	0.53880036	22	2189 6.27	1.00053573	1.60818714e+9	1.00053573


	mo report mae or	1		4 0445 050 CADDON	CDCI2 (E-thout-600)	edata\2015\ lan\ etaff 10	
Acquisition Time (sec)	1.1010	Comment	EJT-PRM 169 128-36 4	14mg 0115 062 mCARBO	CDCI3 (E.WIGKSOO)	cdata\2015\Jan) staff 10	
Date	14 Jan 2015 02:48:32	Date Stamp	14 Jan 2015 02:48:32			1	405.77
File Name	Nes7a de man ac uk\vol	5\vol3\users\snmrdata\bruk	:500cdata\2015\Jan\data\	staff\nmr\2015-01-13-staff	-10\11\fid	Frequency (MHz)	125.77
		Number of Transients	5000	Origin	spect	Original Points Count	32768
Nucleus	13C			Pulse Sequence	zgpg30	Receiver Gain	184.40
Owner	nmrsu	Points Count	32768			- 1	STANDARD
SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12571.4053	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.00	Temperature (degree C	24.997				

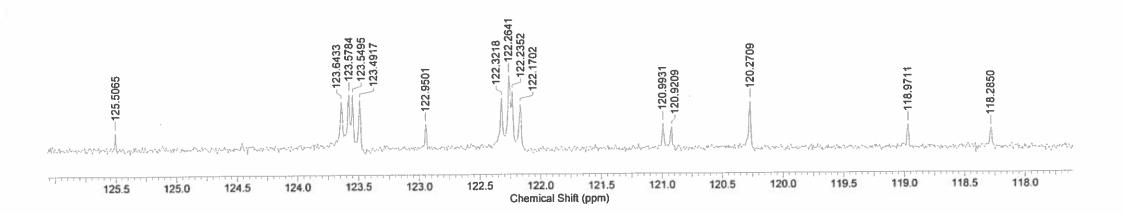
PRM169-CNMR.esp



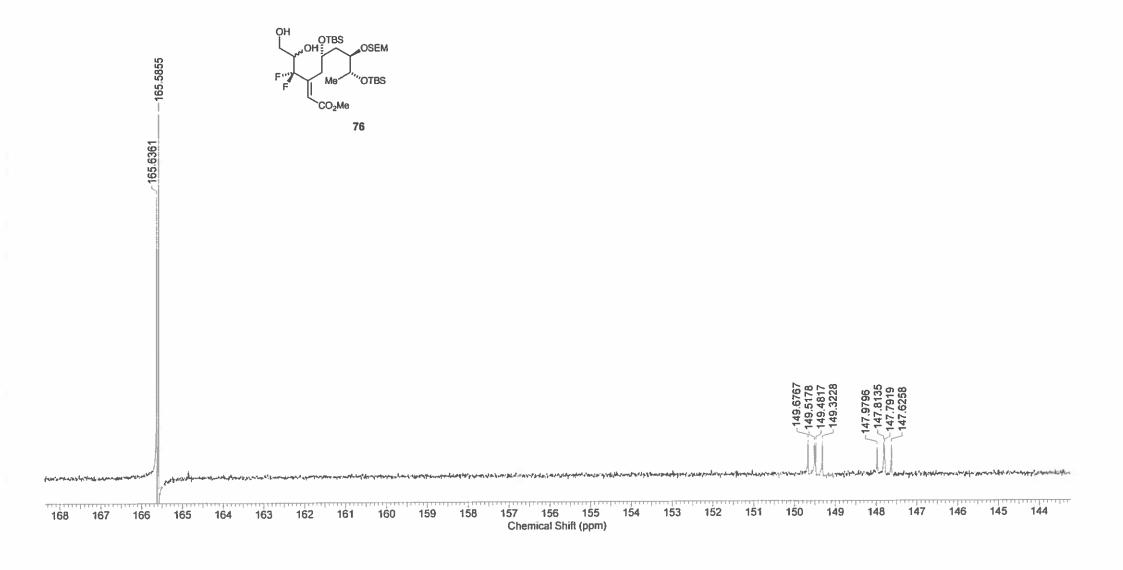
	THO TOPOIC TIME OF						,
Acquisition Time (sec)	1.1010	Comment	EJT-PRM 169 f28-36 4	4mg 0115 062 mCARBON	I CDCI3 (E:\bruk500cd	lata\2015\Jan) staff 10	
Date	14 Jan 2015 02:48:32	Date Stamp	14 Jan 2015 02:48:32				
File Name	Nes7a de man ac uk\vol	5\vol3\users\snmrdata\bruk	500cdata\2015\Jan\data\	staff\nmr\2015-01-13-staff	-10\11\fid	Frequency (MHz)	125.77
7 (74	13C	Number of Transients	5000	Origin	spect	Original Points Count	32768
Nucleus		Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
Owner	nmrsu		CHLOROFORM-d	Spectrum Offset (Hz)	12571.4053	Spectrum Type	STANDARD
SW(cyclical) (Hz)	29761.90	Solvent		Specaani Onset (112)	12011.1000	7,	
Sweep Width (Hz)	29761.00	Temperature (degree C)	24.997	J			



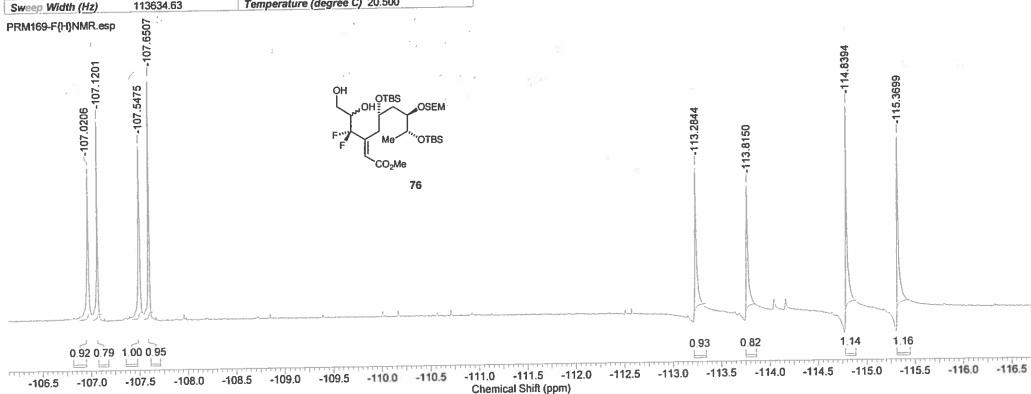
70



This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM 169 f28-36 44mg 0115 062 mCARBON CDCl3 (E:\bruk500cdata\2015\Jan) staff 10 Comment Acquisition Time (sec) 1.1010 14 Jan 2015 02:48:32 Date Stamp 14 Jan 2015 02:48:32 Date \\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk500cdata\2015\Jan\data\staff\nmr\2015-01-13-staff-10\11\\fid Frequency (MHz) 125.77 File Name Original Points Count 32768 Origin spect Number of Transients 5000 13C Nucleus zgpg30 Receiver Gain 184.40 **Pulse Sequence** 32768 Points Count Owner nmrsu **STANDARD** Spectrum Offset (Hz) 12571.4053 Spectrum Type CHLOROFORM-d 29761.90 Solvent SW(cyclical) (Hz) Temperature (degree C) 24.997 29761.00 Sweep Width (Hz) PRM169-CNMR.esp OTBS OSEM OTBS

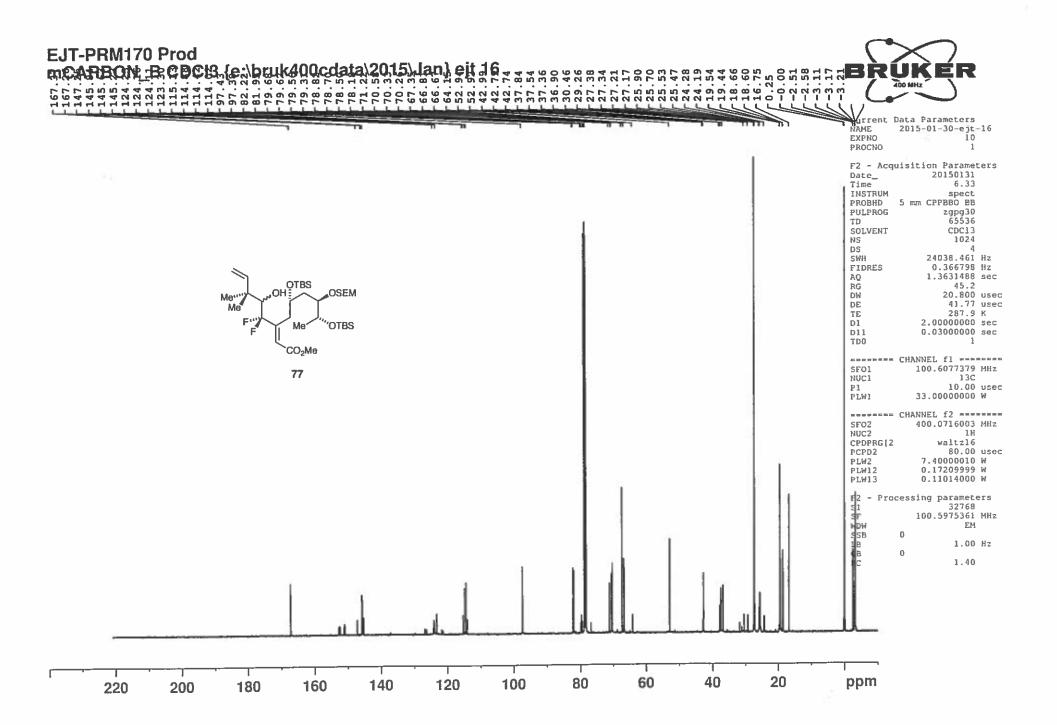

Acquisition Time (sec)	1.1010	Comment	EJT-PRM 169 f28-36 4	4mg 0115 062 mCARBON	I CDC13 {E:\bruk500	cdata\2015\Jan} staff 10	
Date	14 Jan 2015 02:48:32	Date Stamp	14 Jan 2015 02:48:32			(6.18-81)	
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	:500cdata\2015\Jan\data\	staff\nmr\2015-01-13-staff	-10\11\fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	5000	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12571.4053	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.00	Temperature (degree C	24.997				

PRM169-CNMR.esp



Acquisition Time (sec)	1.1010	Comment	EJT-PRM 169 f28-36 4	4mg 0115 062 mCARBON	I CDCI3 (E:\bruk500	cdata\2015\Jan} staff 10	
Date	14 Jan 2015 02:48:32	Date Stamp	14 Jan 2015 02:48:32				
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	:500cdata\2015\Jan\data\	staff\nmr\2015-01-13-staff	-10\11\fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	5000	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	12571.4053	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.00	Temperature (degree C	24.997				

PRM169-CNMR.esp

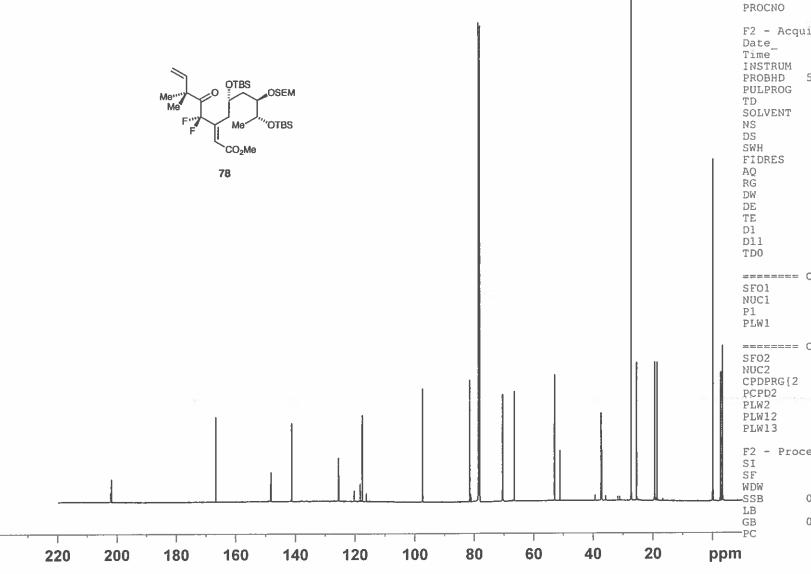


•	This report was c	reated by ACD/NMR	Processor Acade	HING Edition, For the	ore information g		
	0.5767	Comment	EJT-PRM169 (28-36 4	4mg m19FCPD CDCl3 (E:	Wruk500adatav2015Wan) ejt 10	
Acquisition Time (sec)	12 Jan 2015 13:09:20			Date Stamp	12 Jan 2015 13:09:20		
- 5010	12 Jan 2015 15.05.20	x5\vol3\users\snmrdata\brul	600adata\2015\ lan\dat	a\eit\nmr\2015-01-12-eit-10	\23\fid	Frequency (MHz)	470.59
File Name	\\ss7a.ds.man.ac.uk\vc			Origin	spect	Original Points Count	65536
Nucleus	19F	Number of Transients			zgfhiggn	Receiver Gain	575.00
Owner	nmrsu	Points Count	65536	Pulse Sequence		Spectrum Type	STANDARD
SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234	Spectrum Type	OTATO
Sweep Width (Hz)		Temperature (degree C)	20.500]			
PRM169-F{H}NMR.esp	1507		,				

No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	4979115	1,16230905	2.03938675e+9	1.16230905
2	9359114		1.99388979e+9	1.13637888
3	9101113		1.43967245e+9	0.82051349
4	3913113	The second secon	1.62383578e+9	0.92547381
5	5915107	The second secon	1.66191501e+9	0.94717634
6	5948107		1.75054810e+9	0.99769104
7	1681107		1.39409690e+9	0.79453856
8	D656106		1.62046221e+9	0.92355108

	3.9649		Comment	t	EJT-PRM	/1170 f75-87	27mg mPROTON CDC	3 (e:\bruk400adat	la\2015\	Uan) ejt 38			
Date	21 Jan 201	5 14:06:56		-110			Date Stamp	21 Jan 2015	14:06:5				
		an.ac.uk\vo	i5\vol3\use	rs/snmrdata/bru	uk400adata	\2015\Jan\c	lata\ejt\nmr\2015-01-21-ej	1-38\10\fid		Frequency (I	MHz) 40	00.13	
Nucleus	1H			of Transients	16		Origin	AV400		Original Poir		2768	
	nmrsu		Points Co	ount	32768		Pulse Sequence	zg30b		Receiver Gai		01.00	
SW(cyclical) (Hz)	8264.46		Solvent			FORM-d	Spectrum Offset (Hz)	2464.9270		Spectrum Ty	pe S	TANDARD	
Sweep Width (Hz)	8264.21		Temperat	ture (degree C	23.000								
RM170-HNMR.esp							Me"" OH E Me	OSEM '''OTBS					
							CO₂Me				1		
							77						
							0.51 0.54 0.980.99		^~~~	1.29 1.31 E			20.70
1.00 1.00		2.02	1.98	0.54	1 2 1 1 7 7 1 4	89 2.73		, , , , , , , , , , , , , , , , , , , 	<u> </u>	7-1 - 1 - 7 - 1 - 7 - 1 - 1	3.06 3.2120.68	2 1 1 1 1 1 1 1	
	5.5	5.0		4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0

Acquisition Time (sec)	0.7340	Comment	EJT-PRM170 f75-87	27mg mF19CPD CDCl3 (e	e:\bruk400adata\2015\Jar	ı) ejt 38	
Date	21 Jan 2015 14:11:12			Date Stamp	21 Jan 2015 14:11:12		
File Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bru	k400adata\2015\Jan\d	ata\ejt\nmr\2015-01-21-ejt-3	38\12\fid	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients		Origin	AV400	Original Points Count	65536
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	406.00
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
0 145-44- (14-1	00384.35	Tomporatura (dograda C	1 22 000				

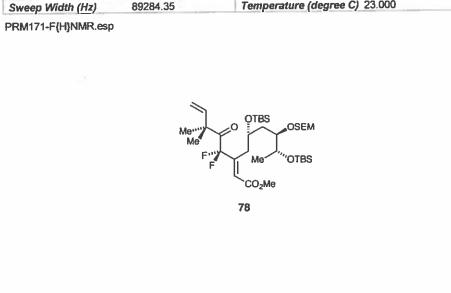


No.	(ppm)	Value	Absolute Value	Non-Negative Value
1	9327113	0.18757442	3.96218432e+8	0.18757442
2	2709113	0.20678121	4.36789440e+8	0.20678121
3	7358112	0.19675171	4.15603872e+8	0.19675171
4	0951111	0.21439180	4.52865504e+8	0.21439180
5	571799.5	0.21261145	4.49104832e+8	0.21261145
6	108598.9	0.20801891	4.39403872e+8	0.20801891
7	995898.8	0.18103851	3.82412448e+8	0.18103851
8	478398.3	0.17934489	3.78834976e+8	0.17934489

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM171 f3-9 50mg mPROTON_A CDCl3 (e:\bruk400cdata\2015\Feb) ejt 6 Acquisition Time (sec) 4.0894 Comment 04 Feb 2015 16:06:24 Date Stamp 04 Feb 2015 16:06:24 Date \\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk400cdata\2015\Feb\data\eji\nmr\2015-02-04-ejt-6\10\fid Frequency (MHz) 400.07 File Name Original Points Count 32768 Origin spect Number of Transients 4 1H Nucleus zg30 Receiver Gain 32.00 Pulse Sequence **Points Count** 32768 nmrsu Owner Spectrum Type STANDARD Spectrum Offset (Hz) 1894.0684 CHLOROFORM-d SW(cyclical) (Hz) 8012.82 Solvent Temperature (degree C) 14.793 8012.58 Sweep Width (Hz) PRM171-HNMR.esp **OTBS** OSEM OTBS 78 23.23 7.74 3.78 22.47 1,96 2.12 2.14 4.33 2.23 2.13 0.99 1.00 3.0 2.5 1.5 0.5 Ó -0.5 2.0 1.0 3.5 4.5 4.0 6.5 6.0 5.5 5.0 Chemical Shift (ppm)

0215-106 Mears P. EJT-PRM 171 f3-9

50 mg
mCARBON CDCl3 (E:\bruk500cdata\2015\Feb) staff=22

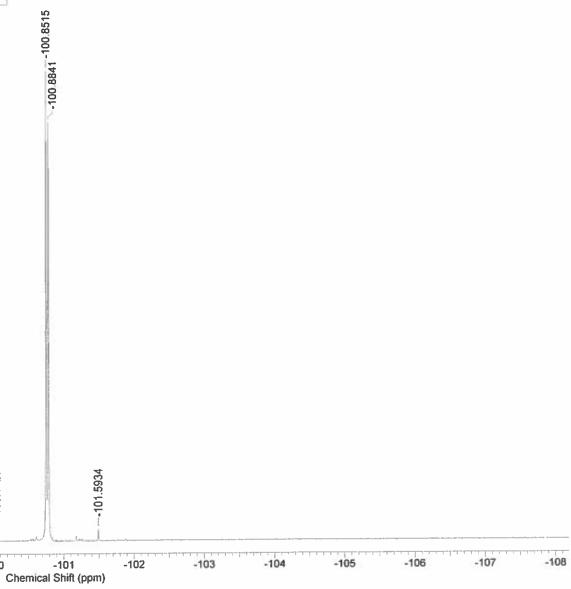

Current I NAME EXPNO PROCNO										st		ff-22
F2 - Acquenter Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1	5 m	um	2	2	2 90.	0 P 7	1 Bz 640 11	5 SB G G C C C C C C C C C C C C C C C C C	02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 30 30 30 30 30 30 40 30 40 30 30 30 30 30 30 30 30 30 30 30 30 30	54 tB0638441840220	Hz Hz sec usec usec K sec
D11 TD0 ====== SFO1 NUC1 P1 PLW1	CHA	1 1	N 2	E 5	L	7	f 8	1 5.	4 5	50 L3	1 4 C	MHz usec
SFO2 NUC2 CPDPRG{2 PCPD2 PLW2 PLW12 PLW13	CHF	5	60	0	02	1 w 0 8	9: a 0: 6:	2 i	0 (t : 0 (2 (00 1 21	8 H 6 0 1	MHz
F2 - Proc SI SF WDW -SSB LB	ess 0			_		-		3:	21 69	76 93 E	8 4 M	ers MHz Hz
 GB -PC	0									. 4		- 4 400

	Timo topott mee -						
Acquisition Time (sec)	0.7340	Comment	EJT-PRM171 f4-18 5	7mg mF19CPD CDCl3 (e:	\bruk400adata\2015\Feb)	ejt 55	
Date	02 Feb 2015 12:45:52			Date Stamp	02 Feb 2015 12:45:52		
File Name			uk400adata\2015\Feb\d	ata\ejt\nmr\2015-02-02-ejt-	55\13\fid	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients		Origin	AV400	Original Points Count	65536
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	203.00
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
SVI(Cychical) (112)	00200.71	Townsenture (deares C	23.000	1	10 - 20 - 1		

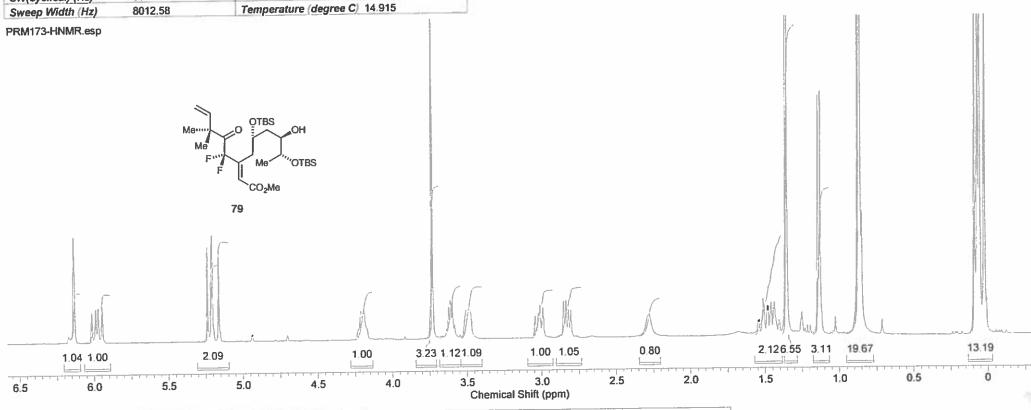
-100.1423

-100

-99

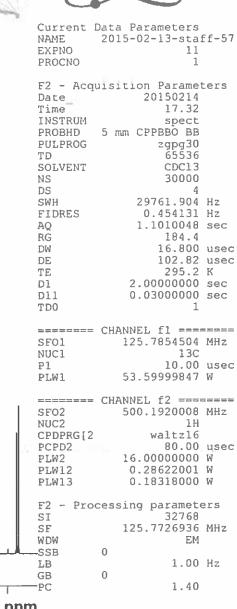

-95

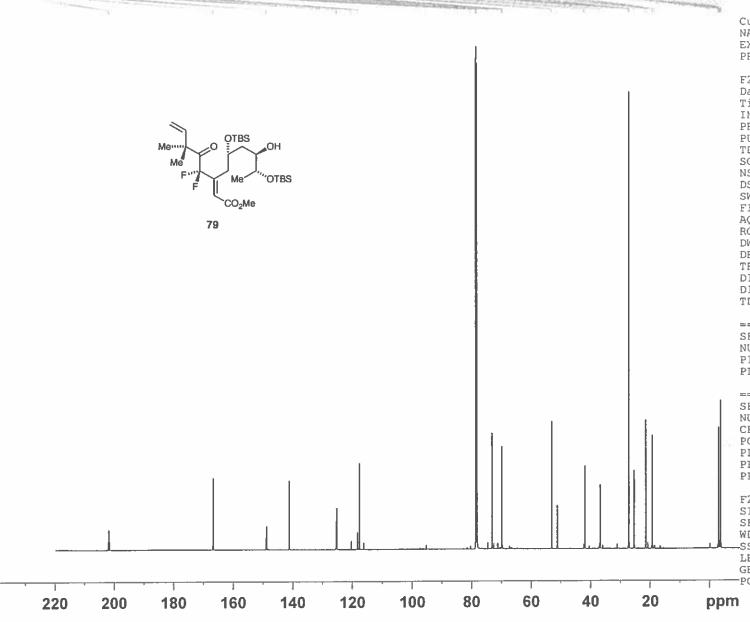
-94

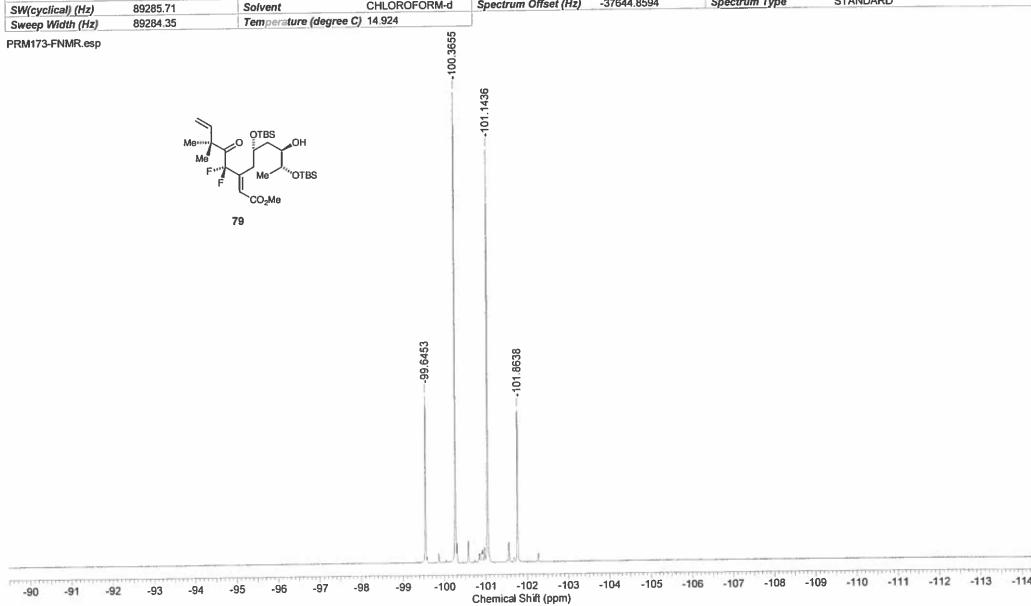

-96

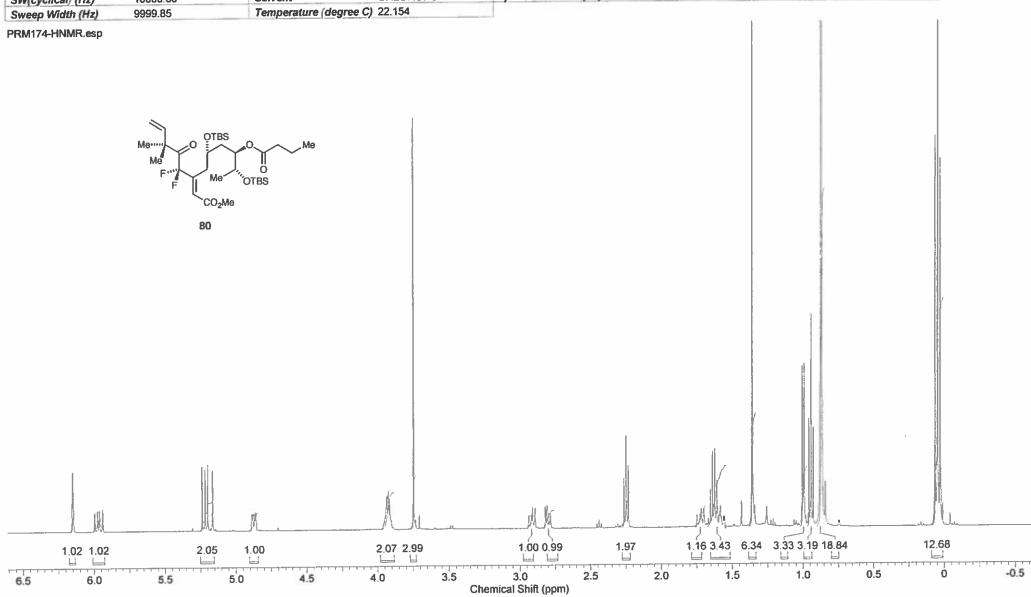
-97

-98



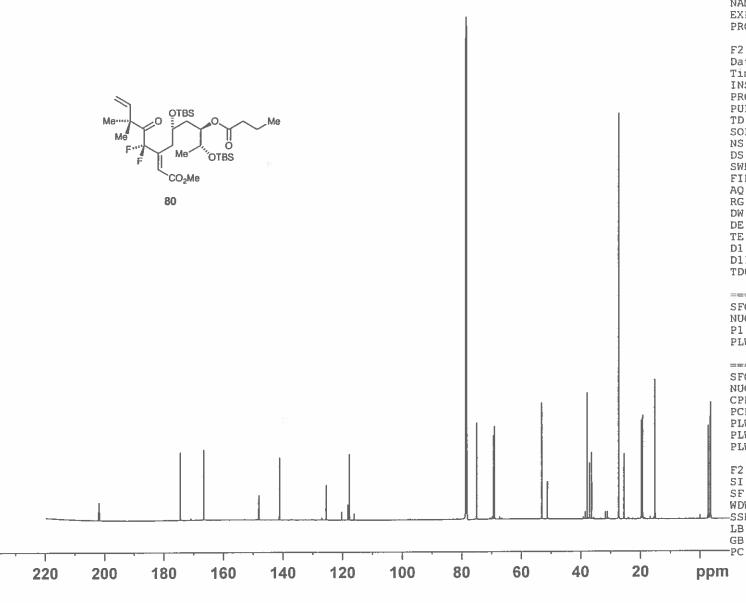

	I III O I OPOIL II MO 4						
Acquisition Time (sec)	4.0894	Comment	EJT-PRM173 f6-22 2	9mg mPROTON_A CDCI3	{e:\bruk400cdata\2015\	Feb) ejt 14	110
	12 Feb 2015 16:00:00			Date Stamp	12 Feb 2015 16:00:00		
Date	12 Feb 2013 10.00.00	alet alette omredetetber	k400cdata\2015\Eeb\d	lata\ejt\nmr\2015-02-12-ejt-1	14\10\fid	Frequency (MHz)	400.07
File Name					spect	Original Points Count	32768
Nucleus	1H	Number of Transients		Origin			32.00
Owner	nmrsu	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	
SW(cyclical) (Hz)	8012.82	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	1893.8241	Spectrum Type	STANDARD
SVV(Cychody (Vic)	0010.50	Tammamatura (dagrag C	14 015				


NI-	(ppm)	Value	Absolute Value	Non-Negative Value	No.	(ppm)	Value	Absolute Value	Non-Negative Value
No.	0300 0.13		2.20347003e+10	13.19273376	9	4009 3.54	1.08516133	1.81245261e+9	1.08516133
1	1		3.28596849e+10	19.67392731			1.11831653	1.86782886e+9	1,11831653
2	7731 0.95		5.19691622e+9	3.11152554			3.23063946	5.39586202e+9	3.23063946
3	0681 1.17		1.09395466e+10	6.54978418	12		0.99953032	1.66943040e+9	0.99953032
4	2976 1.38		3.54885965e+9	2.12479234	13		2.08711100	3,48592358e+9	2.08711100
_	3850 1.57	A		0.80205345	14		0.99999589	1.67020800e+9	0.9999589
6	-	0.80205345	1.74787955e+9	1.04649985			1.03641319	1.73103270e+9	1.03641319
7		1.04649985	111 11 41	0.99720508	13	93-73 ,, 0.20	1.00041010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
- 8	3256 3.09	0.99720508	1.66554675e+9	0.99720000					

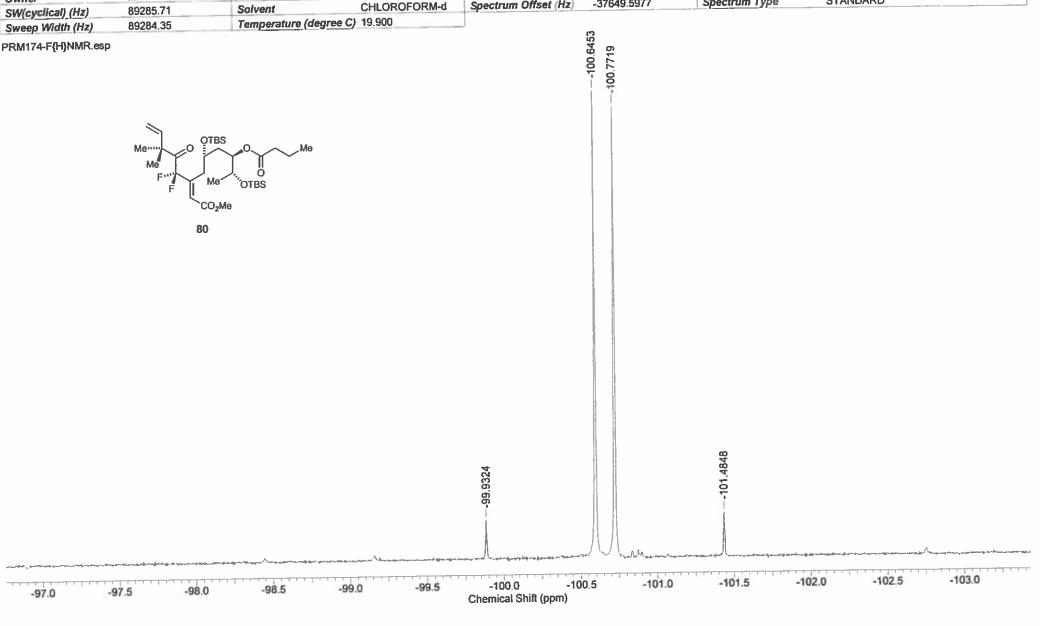


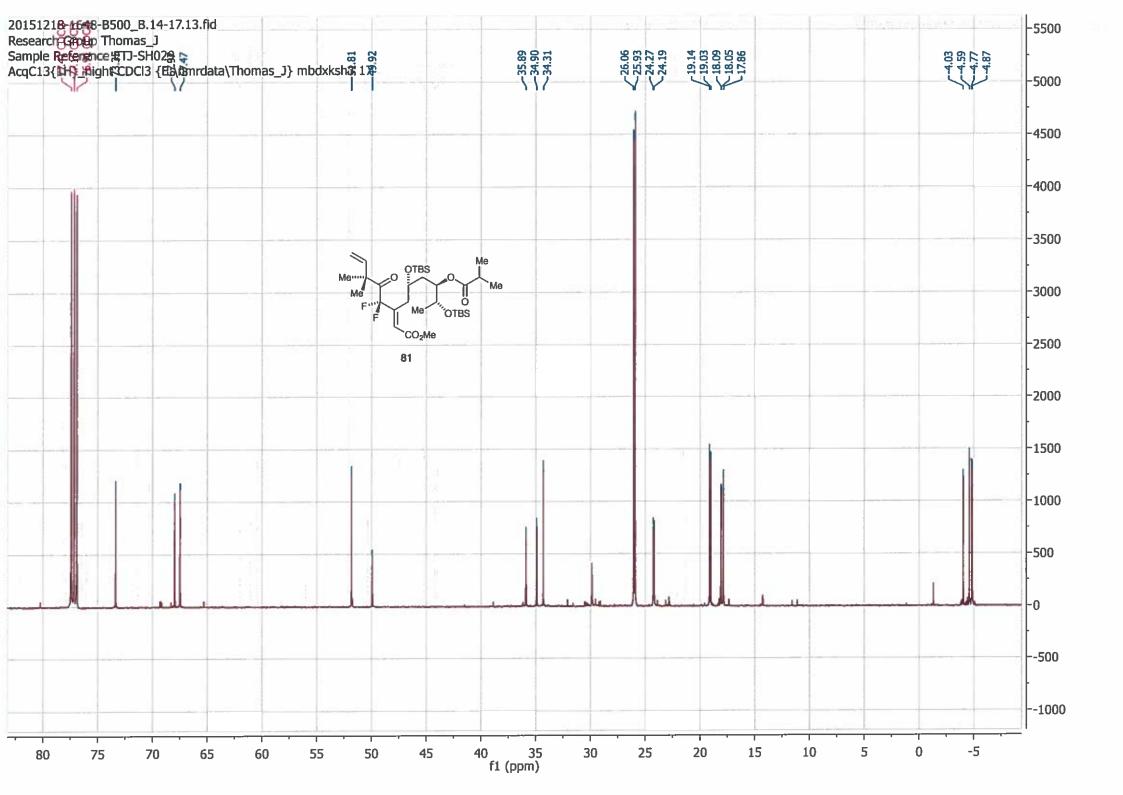
	Tito toport mas -					PARTICIA DA AMERICA	
Acquisition Time (sec)	0.7340	Comment	EJT-PRM173 f6-22 2	9mg mF19_cryo_zgbs CD0	CI3 (e:\bruk400cdata\201	by-eb) ejt 14	
	12 Feb 2015 16:02:08			Date Stamp	12 Feb 2015 16:02:08		
Date	12 Feb 2015 10.02.00	453 - 153	1.400adata\2015\Eah\d:	ata\ejt\nmr\2015-02-12-ejt-1	4\11\fid	Frequency (MHz)	376.44
File Name						Original Points Count	65536
Nucleus	19F	Number of Transients	16	Origin	spect		
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgbs	Receiver Gain	7,12
		Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37644.8594	Spectrum Type	STANDARD
SW(cyclical) (Hz)	89285.71	Solvent					

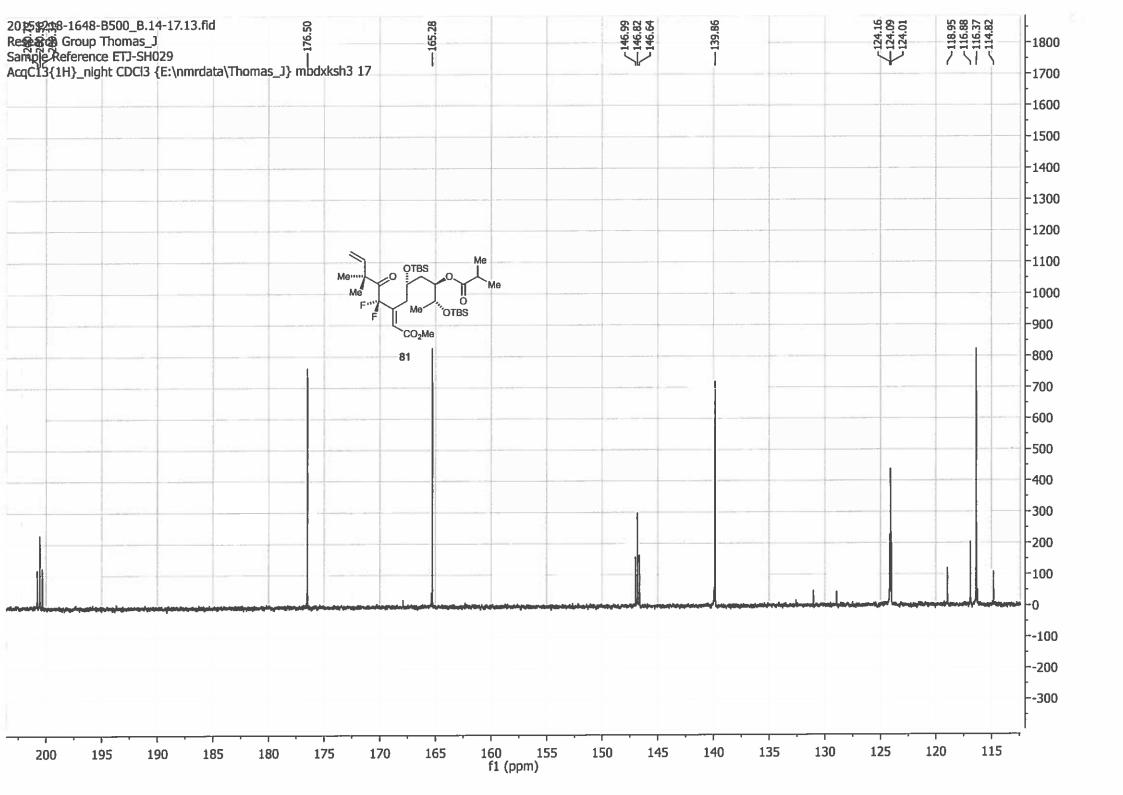
Acquisition Time (sec)	3.2768	Comment	0215 121 Mears P EJT	-PRM174 F5-15 26 mg in C	DCI3 mPROTON CDO	Cl3 (E:\bruk500cdata\2015\Feb)	staff 39
Date	24 Feb 2015 02:14:24	Date Stamp	24 Feb 2015 02:14:24				
File Name	\\ss7a ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk5	500cdata\2015\Feb\data\s	taff\nmr\2015-02-23-staff-3	9\10\PDATA\1\1r	Frequency (MHz)	500.19
Nucleus	1H	Number of Transients		Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	65536	Pulse Sequence	zg30	Receiver Gain	30.53
SW(cyclical) (Hz)	10000.00	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	3081.8008	Spectrum Type	STANDARD
Greto Guidan (112)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		00.454				

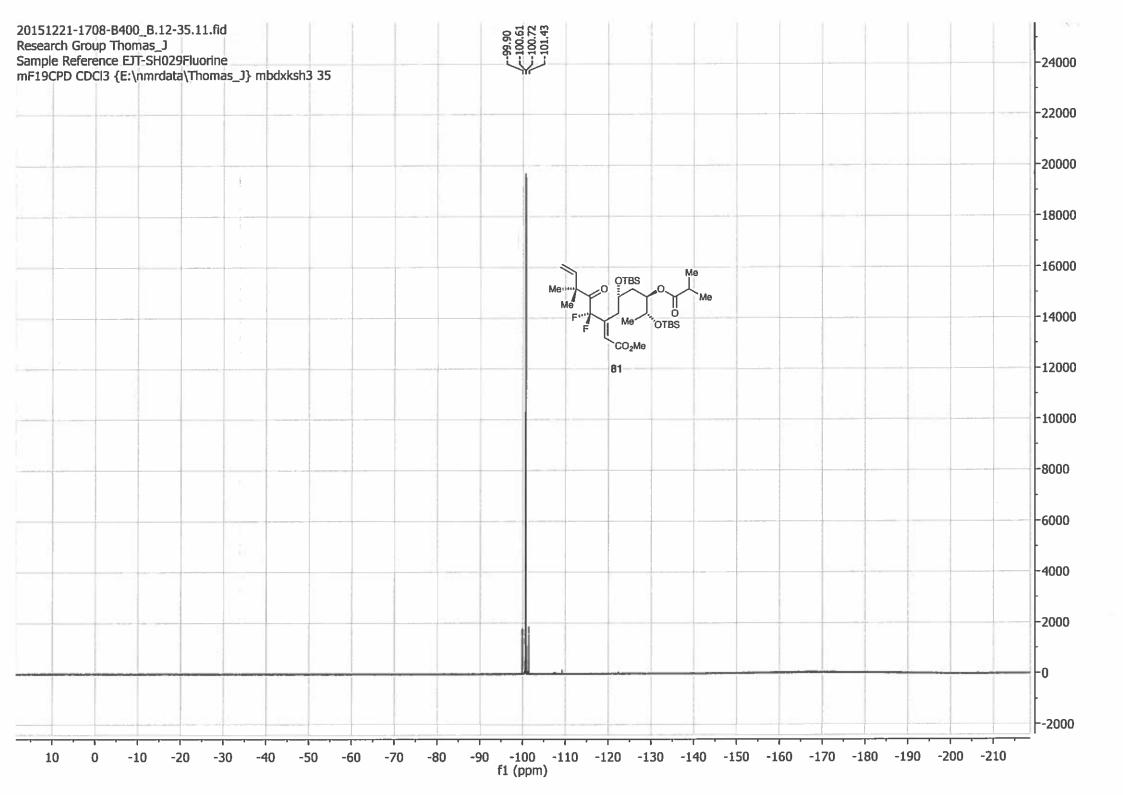


0215 121
Mears P
EJT-PRM174 F5-15
26 mg in CDC13
mCARBON CDC13 {E:\bruk500edata\2015\Feb|_staff_39

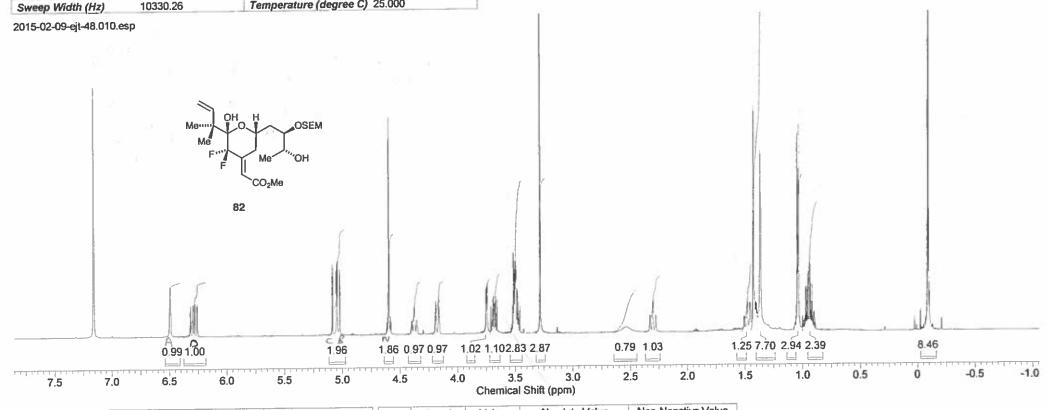

.

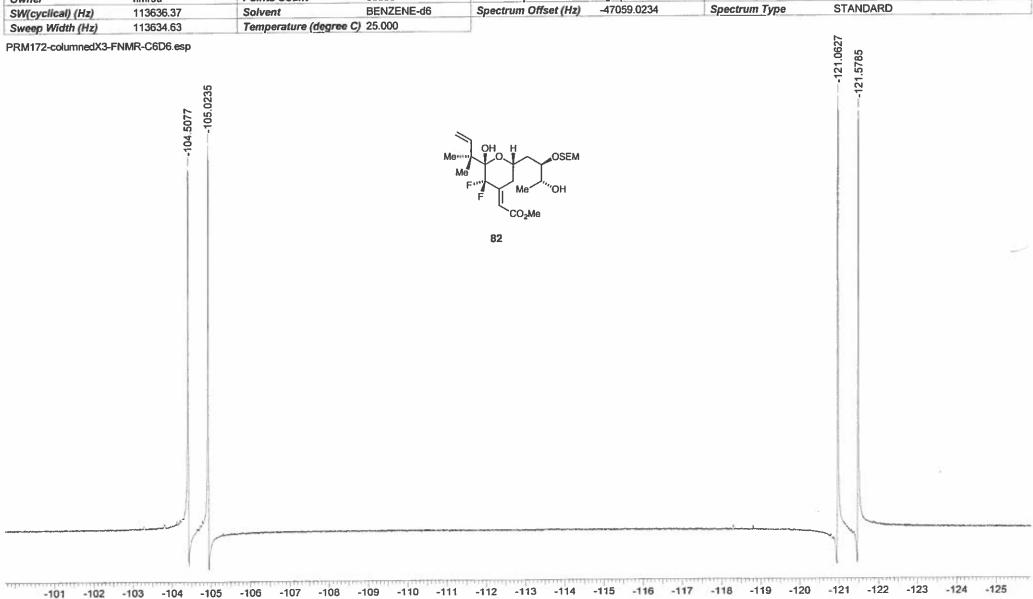



in .				
	Current 1	Data Pa	rameter	s
	NAME	2015-0	2-23-st	aff-39
	EXPNO		1	1
	PROCNO			1
	11100110			•
	F2 - Acq	nisitio	n Param	eters
	Date	1101616	2015022	04
	Time		10.1	
	INSTRUM			
			spec	
	PROBHD	5 mm C	PPBBO E	
	PULPROG		zgpg.	
	TD		6553	
	SOLVENT		CDC1	
	NS		922	23
	DS			4
	SWH	2	9761.90)4 Hz
	FIDRES		0.45413	31 Hz
	AO	1	.101004	8 sec
	RG	_	184.	
	DW		16 80	0 usec
	DE		102.8	
	TE		295.	
		2	0000000	
	D1			
	D11	υ.	0300000	
	TD0			1
		CUBBINE	T 61	
	======		.785450	
	SF01	125		
	NUC1		13	
	P1			0 usec
	PLW1	53.	5999984	17 W
	========	CHANNE	L f2 ==	=====
	SFO2	500	.192000	
	NUC2			H
1	CPDPRG[2		waltz1	
1	PCPD2			0 usec
ıl	PLW2	16.	0000000	0 W
ļ.	PLW12	0.	2862200)1 W
	PLW13	0.	1831800	0 W
ı	F2 - Proc	cessino	parame	eters
	SI		3276	
ı	SF	125	.772693	
ı	WDW			EM
	-SSB	0		***
	LB	U	1.0	0 Hz
		0	1.0	, 0 HZ
	GB -PC	U	1.4	10
	FC		1.4	
DП	ı			
	-			

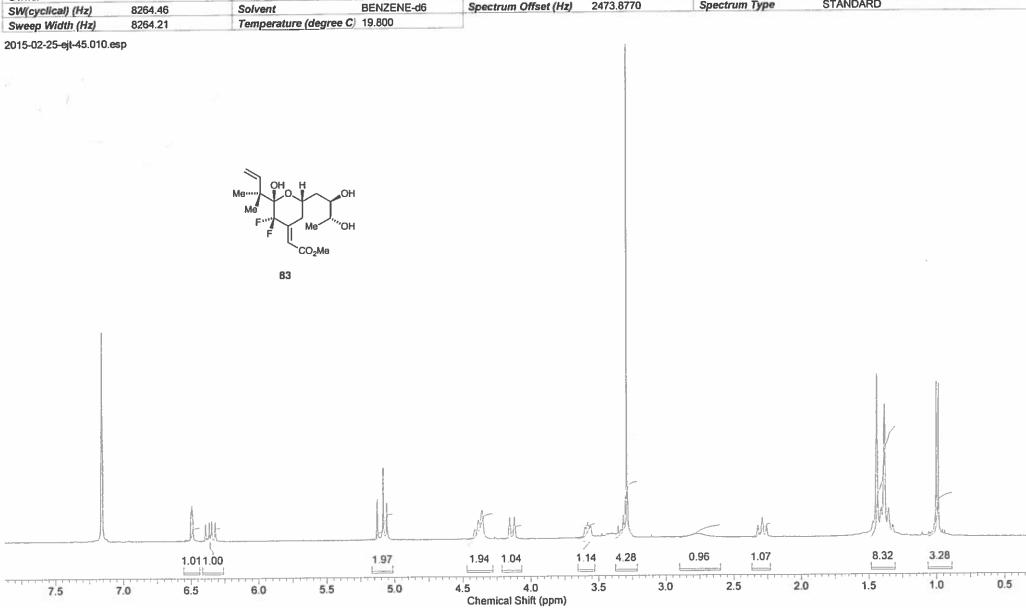


This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM174 f5-15 26mg mF19CPD CDCl3 (e:\bruk400adata\2015\Feb) ejt 58 Comment Acquisition Time (sec) 0.7340 23 Feb 2015 15:30:08 Date Stamp 23 Feb 2015 15:30:08 Date Frequency (MHz) \lss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk400adata\2015\Feb\data\ejt\nmr\2015-02-23-ejt-58\12\fid 376.50 File Name Original Points Count 65536 AV400 Origin Number of Transients 16 19F Nucleus 203.00 Receiver Gain zgig Pulse Sequence 65536 **Points Count** nmrsu Owner **STANDARD** Spectrum Type Spectrum Offset (Hz) -37649.5977 CHLOROFORM-d Solvent 89285.71 SW(cyclical) (Hz) Temperature (degree C) 19.900 Sweep Width (Hz) 89284.35 -100,6453 PRM174-F{H}NMR.esp 100,7719 **OTBS**

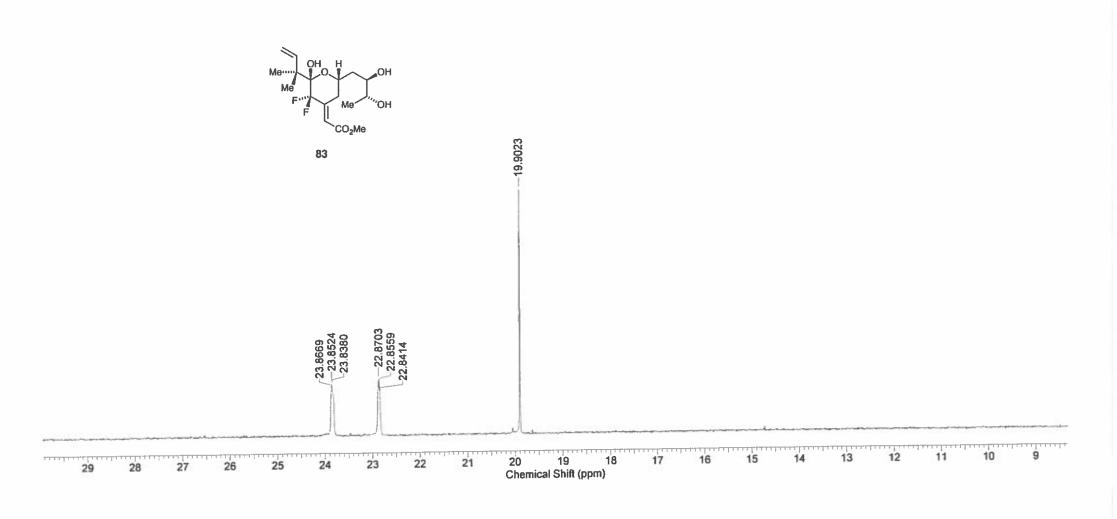



	rino report mae e	reaced by riverimin			LOCOC (E-Vb-vd-COO-det	-12016)Eab) ail 49	
Acquisition Time (sec)	3.1719	Comment	EJT-PRM172 bis-	TBS deprot. 24mg mPROTON	A CODE (E: April K2009091	accurated eli 40	
Date	09 Feb 2015 14:24:00			Date Stamp	09 Feb 2015 14:24:00)	1790
Date	No.70 do man no ukhu	JE) w/3) us are/sommata/houl	k500adata\2015\Feb	\data\ejt\nmr\2015-02-09-ejt-4	18\10\fid	Frequency (MHz)	500.13
File Name						Original Points Count	32768
Nucleus	1H	Number of Transients	16	Origin	spect		.,
Owner	nmrsu	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	90.50
			BENZENE-d6	Spectrum Offset (Hz)	3093,0591	Spectrum Type	STANDARD
SW(cyclical) (Hz)	10330.58	Solvent	BEINZEINE-00	Spectrum Onset [112)	0000.0001		
O	10330.26	Temperature (degree C)	25 000				

No.	(ppm) 1	Value	Absolute Value	Non-Negative Value	No.	(ppm)	Value	Absolute Value	Non-Negative Value
110.	15990.028.4		2 23010775e+10	8.45782185	10	5335 3.72	1.10219407	2.90619930e+9	1.10219407
2	3718 1,002.3		6.31391744e+9	2.39459229	11	7208 3.79	1.01866615	2.68595789e+9	1.01866615
	0027 1.082.9		7.76145357e+9	2.94357920	12	1260 4.22	0.96806675	2.55254042e+9	0.96806675
	2804 1.447.7		2.03142328e+10	7.70429850	13	3233 4.42	0.97044659	2.55881549e+9	0.97044659
4	4463 1.521.2		3.28711808e+9	1,24665987	14	5590 4.63		4,90485555e+9	1.86019683
5	2401 2.361.0		2.72663706e+9	1.03409398	15		1.95728326	5.16084736e+9	1.95728326
6			2.07551309e+9	0.78715116	16		0.99992341	2.63653811e+9	0.99992341
7	4444 2.640.7			2.86838222	17	1099 6.54		2.62285389e+9	0.99473357
8	2388 3.312.8		7.56317850e+9	2.82843184	''-	7000 0.01	0,00 11 0001		
9	4414 3.542.8	2843184	7.45783962e+9	2.02043104]				

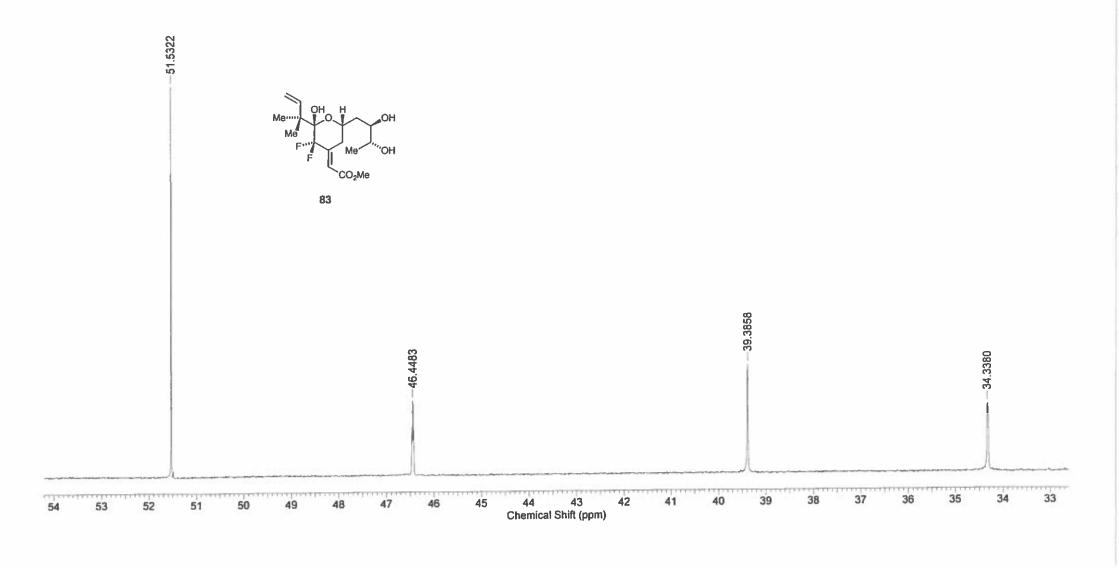

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ P.Mears EJT-PRM172 bis-TBS deprot mCARBON C6D6 (E:\bruk500cdata\2015\Feb) staff 26 Acquisition Time (sec) 1.1010 Comment 10 Feb 2015 01:44:32 10 Feb 2015 01:44:32 Date Stamp Date 125,77 \\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk500cdata\2015\Feb\data\staff\nmr\2015-02-09-staff-26\21\fid Frequency (MHz) File Name Original Points Count 32768 spect Origin Number of Transients 10000 13C Nucleus 184.40 zgpg30 Receiver Gain Pulse Sequence 32768 **Points Count** Owner nmrsu STANDARD Spectrum Offset (Hz) 12661.5830 Spectrum Type BENZENE-d6 Solvent SW(cyclical) (Hz) 29761.90 Temperature (degree C) 22.161 29761.00 Sweep Width (Hz) PRM172-columnedX3-CNMR-C6D6.esp OSEM 82 51,3660 19.6710 85.6390 70,7195 67.0582 98.5076 18.3206 37.6452 67.2820 -113,9976 144.8405 34.2728 46.4554 166,3676 23.6861 99.5692 99.3236 24 16 0 -8 56 48 40 32 72 80 64 88 96 120 112 104 136 128 168 160 152 144 Chemical Shift (ppm)

Acquisition Time (sec)	0.5767	Comment	EJT-PRM172 bis-	TBS deprot. 24mg m19F C6D6	6 {E:\bruk500adata\2	2015\Feb} ejt 48	
Date	09 Feb 2015 14:3	4:40		Date Stamp	09 Feb 2015 14:3	4:40	
	\\ss7a.ds.man.ac.	uk\vol5\vol3\users\snmrdata\bru	k500adata\2015\Fel	o\data\ejt\nmr\2015-02-09-ejt-4	/8\12\fid	Frequency (MHz)	470.59
Nucleus	19F	Number of Transients		Origin	spect	Original Points Count	65536
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgflqn	Receiver Gain	406.00
SW(cyclical) (Hz)	113636.37	Solvent	BENZENE-d6	Spectrum Offset (Hz)	-47059.0234	Spectrum Type	STANDARD
Sween Width (Ha)	11363/63	Temperature (degree C	25 000				

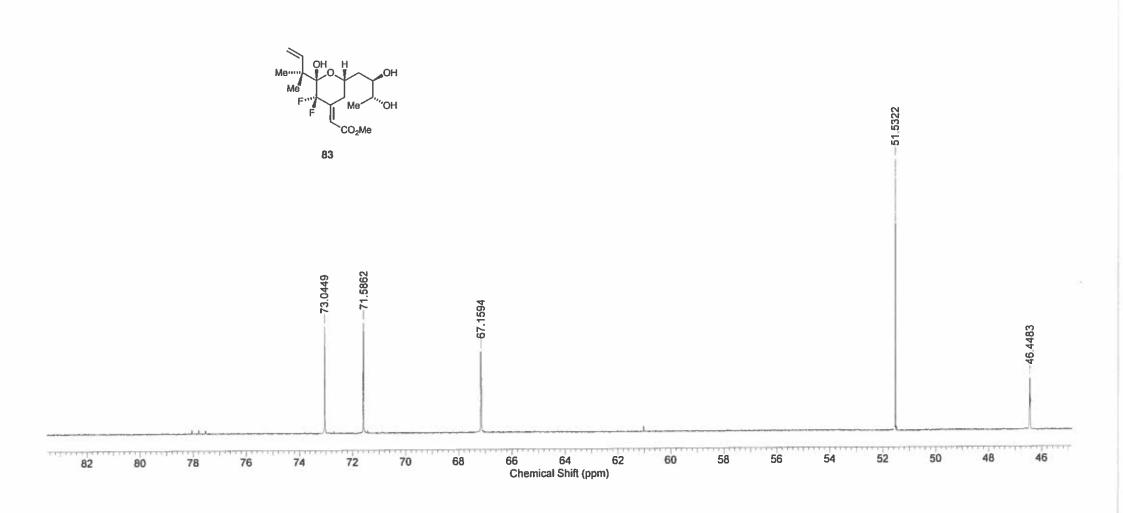


Chemical Shift (ppm)

	Illia Leboir mas c	cated by Aobitim				NULL I	
Acquisition Time (sec)	3.9649	Comment	EJT-PRM175 f6-20	8 11mg mPROTON C6D6 (e:	\bruk400adata\2015\Feb	ejt 45	
Date	25 Feb 2015 18:31:28			Date Stamp	25 Feb 2015 18:31:28		
File Name	lles7a de man ac ukly	ol5\vol3\users\srimrdata\bri	ık400adata\2015\Fel	o\data\ejt\nmr\2015-02-25-ejt-	45\10\fid	Frequency (MHz)	400.13
Nucleus		Number of Transients		Origin	AV400	Original Points Count	32768
		Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	128.00
Owner	nmrsu 8264.46	Solvent	BENZENE-d6	Spectrum Offset (Hz)	2473.8770	Spectrum Type	STANDARD
SW(cyclical) (Hz)	8264.40	Temperature (degree C)					



Acquisition Time (sec)	1.1010			0 00 44 N	DOM CEDE IE-MarkED	Ocdata)2015\Eah\ staff 53	
Comment	Research Group EJT Ac	ad/Staff/PDRA/PG/UG PDRA	A 0215 129 EJT-PRM175 F	6-28 11mg Mears P. MCAR	BON CODD (E. WILKSO	OCCIDITATED STATE SO	
Dete	28 Feb 2015 19:50:24	Date Stamp	28 Feb 2015 19:50:24				40E 77
	Nee7a de man ac uklyol5	lvol3\users\snmrdata\bruk50l	cdata\2015\Feb\data\staff\r	mr\2015-02-27-staff-53\11\	fid	Frequency (MHz)	125.77
			8192	Origin	spect	Original Points Count	32768
Nucleus	13C	Number of Transients			zgpg30	Receiver Gain	184.40
Owner	nmrsu	Points Count	32768	Pulse Sequence	- L		STANDARD
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12660.7109	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.00	Temperature (degree C) 22.153				



This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Acquisition Time (sec)	1.1010						
Comment	Research Group EJT Ac	ad/Staff/PDRA/PG/UG PDR	A 0215 129 EJT-PRM175 F	F6-28 11mg Mears P. mCAR	BON C6D6 (E:\bruk50	00cdata\2015\Feb} staff 53	
Date	28 Feb 2015 19:50:24	Date Stamp	28 Feb 2015 19:50:24				
File Name	\\ss7a ds man ac.uk\vol5	Nvol3\users\snmrdata\bruk500	Ocdata\2015\Feb\data\staff\	nmr\2015-02-27-staff-53\11\	fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	8192	Origin	spect	Original Points Count	32768
		Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
Owner	nmrsu		BENZENE-d6	Spectrum Offset (Hz)	12660.7109	Spectrum Type	STANDARD
SW(cyclical) (Hz)	29761.90	Solvent		Spectrum Onset (112)	12000 100	72	
Sweep Width (Hz)	29761.00	Temperature (degree C	22.153				

Acquisition Time (sec)	1.1010						
Comment	Research Group EJT Ac	ad/Staff/PDRA/PG/UG PDRA	0215 129 EJT-PRM175 F	6-28 11mg Mears P. mCAR	BON C6D6 (E:\bruk50	Ocdata\2015\Feb} staff 53	
Date	28 Feb 2015 19:50:24	Date Stamp	28 Feb 2015 19:50:24				
File Name	\\ss7a ds man ac uk\\vol5	\vol3\users\snmrdata\bruk500	cdata\2015\Feb\data\staff\	nmr\2015-02-27-staff-53\11\	fid	Frequency (MHz)	125.77
	13C	Number of Transients	8192	Origin	spect	Original Points Count	32768
Nucleus		Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
Owner	nmrsu	7.01111	BENZENE-d6	Spectrum Offset (Hz)	12660.7109	Spectrum Type	STANDARD
SW(cyclical) (Hz)	29761.90	Solvent		opecuam onset (nz)	12000100	1 -1 -1 -1 -1	
Sween Width (Hz)	29761.00	Temperature (degree C)	22.153				

Acquisition Time (sec)	1.1010						
Comment	Research Group EJT Ac	ad/Staff/PDRA/PG/UG PDR/	\ 0215 129 EJT-PRM175 F	6-28 11mg Mears P. mCAR	BON C6D6 (E:\bruk500	ocdata\2015\Feb} staff 53	
Date	28 Feb 2015 19:50:24	Date Stamp	28 Feb 2015 19:50:24				
File Name	\\ss7a.ds.man.ac.uk\vol5	lvol3\users\snmrdata\bruk500	cdata\2015\Feb\data\staff\r	nmr\2015-02-27-staff-53\11\	fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	8192	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12660.7109	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.00	Temperature (degree C	22.153				

PRM175-CNMR.esp

107.0

106.5

106.0

105.5

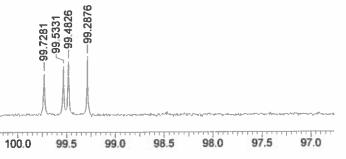
105.0

104.5

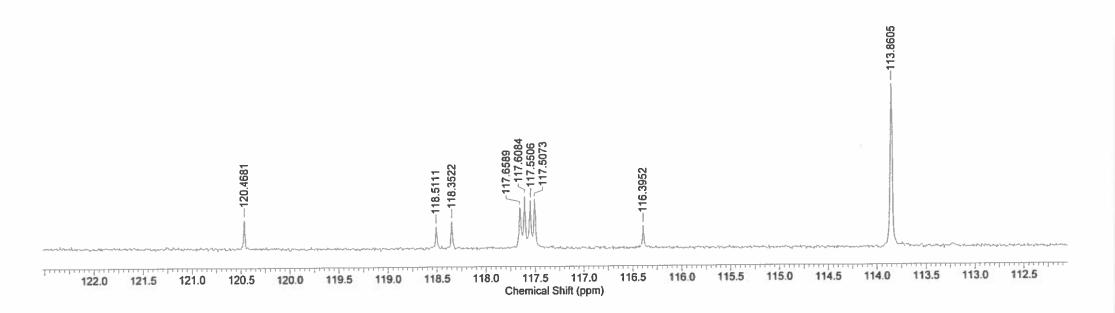
103.0

103.5

104.0

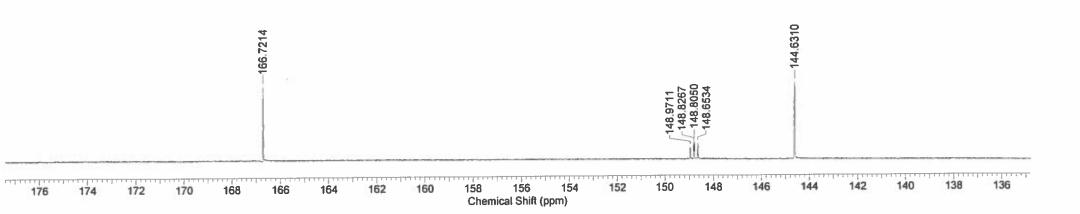

102.5

102.0

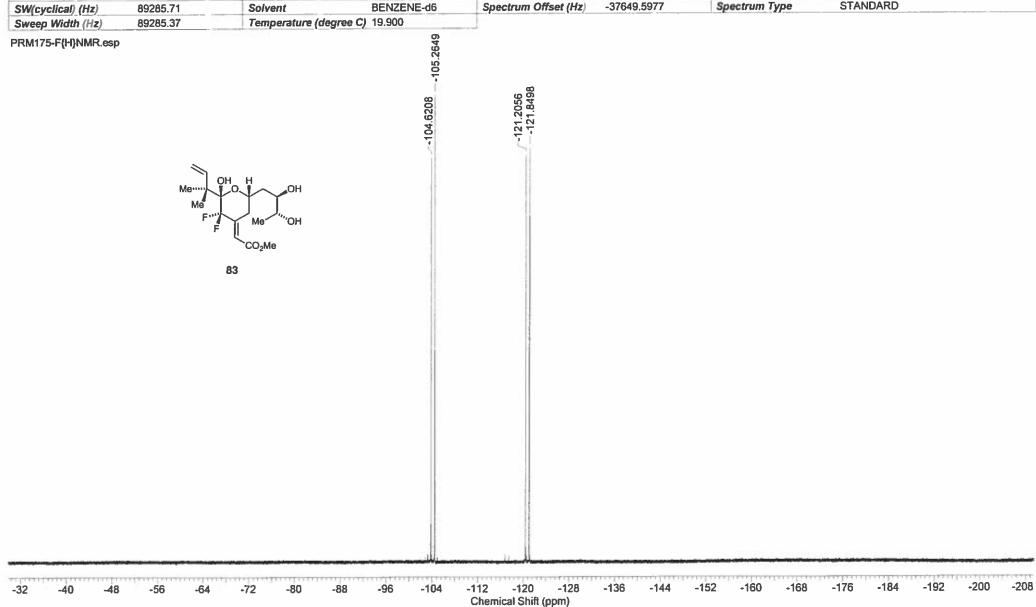

Chemical Shift (ppm)

101.5

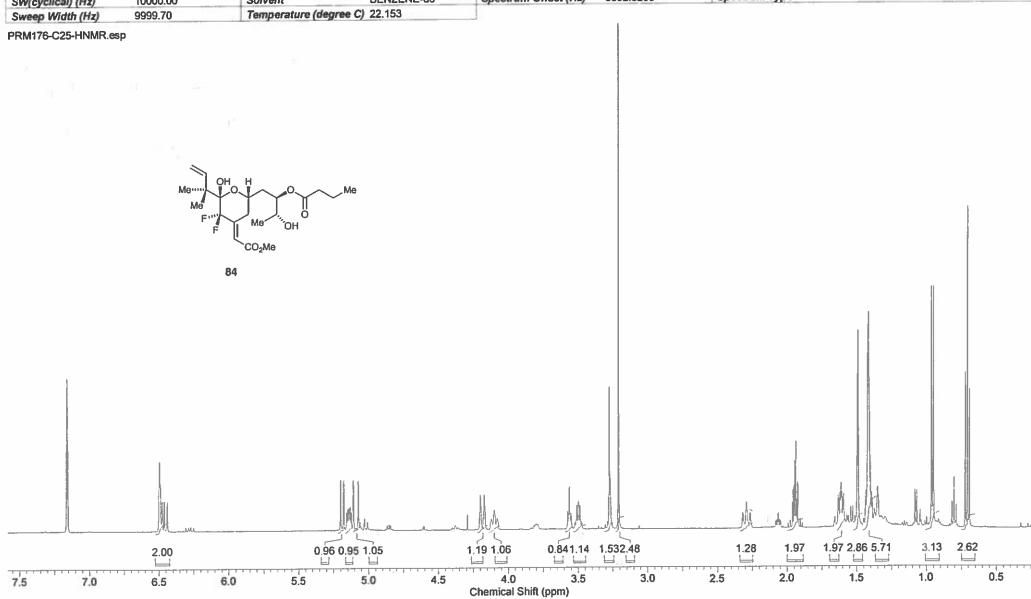
101.0



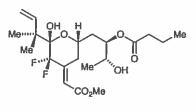
Acquisition Time (sec)	1.1010						
Comment	Research Group EJT Ac	ad/Staff/PDRA/PG/UG PDRA	4 0215 129 EJT-PRM175 F	6-28 11mg Mears P. mCAR	BON C6D6 (E:\bruk500	ocdata\2015\Feb) staff 53	· · · · · · · · · · · · · · · · · · ·
Date	28 Feb 2015 19:50:24	Date Stamp	28 Feb 2015 19:50:24				
File Name	\\ss7a ds man ac.uk\vol5	vol3\users\snmrdata\bruk500	ocdata\2015\Feb\data\staff\r	mr\2015-02-27-staff-53\11\	fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	8192	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12660.7109	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.00	Temperature (degree C	22.153				

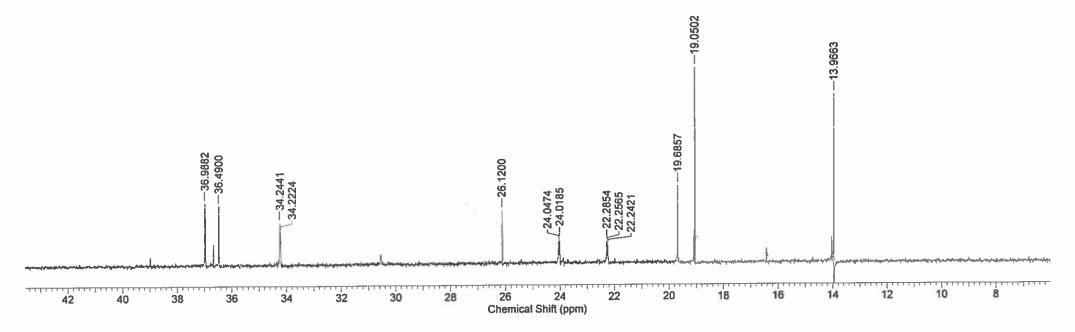


Acquisition Time (sec)	1,1010						
Comment	Research Group EJT Ac	ad/Staff/PDRA/PG/UG PDR	A 0215 129 EJT-PRM175 F	6-28 11mg Mears P. mCAR	BON C6D6 (E:\bruk500	ocdata\2015\Feb} staff 53	
Date	28 Feb 2015 19:50:24	Date Stamp	28 Feb 2015 19:50:24				
File Name	\\ss7a ds.man.ac.uk\vol5	\vol3\users\snmrdata\bruk50(ocdata\2015\Feb\data\staff\	nmr\2015-02-27-staff-53\11\	fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	8192	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12660.7109	Spectrum Type	STANDARD
Sweep Width (Hz)	29761.00	Temperature (degree C) 22.153				

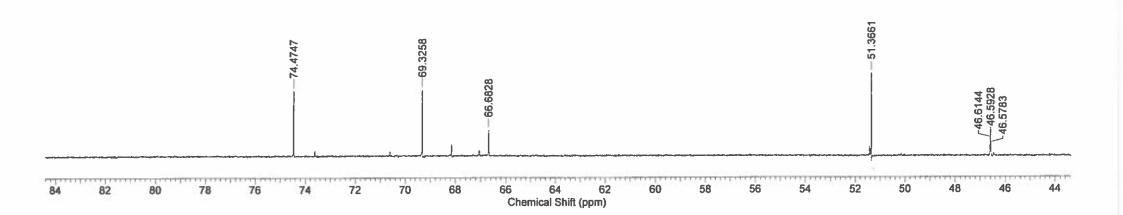

PRM175-CNMR.esp

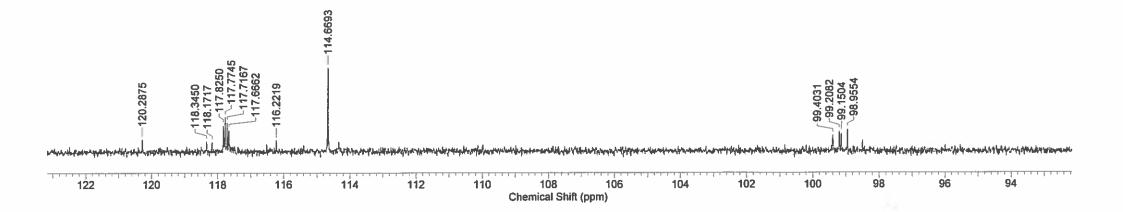
	0.770.40		E IT DD14475 66 00	11mm ==E10CDD CEDE to:\	aut 400 adata 2015 Eable	ii AE	•
Acquisition Time (sec)	0.7340	Comment	EJ1-PKM1/510-28	11mg mF19CPD C6D6 (e:\	nukannanaran 154-en) e	<u> </u>	
Date	25 Feb 2015 18:46:24			Date Stamp	25 Feb 2015 18:46:24		
File Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bru	ık400adata\2015\Feb\	data\ejt\nmr\2015-02-25-ejt-4	5\14\PDATA\1\1r	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients		Origin	AV400	Original Points Count	65536
Owner	nmrsu	Points Count	262144	Pulse Sequence	zgig	Receiver Gain	322.00
SW(cyclical) (Hz)	89285.71	Solvent	BENZENE-d6	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
Swoon Width (Hz)	80285 37	Temperature (degree C	1 19 900				



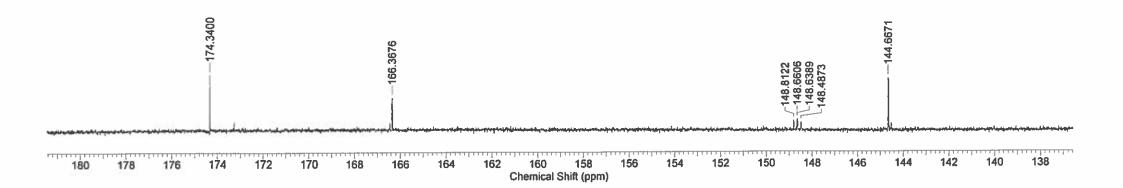

	This report mas o	routed by riebirini.					
Acquisition Time (sec)	3.2768	Comment	0315 160 Mears P.	EJT-PRM176 "C25" mPROT	ON C6D6 (E:\bruk500cd	ata\2015\Mar} staff 56	7/2
Date	21 Mar 2015 20:43:44			Date Stamp	21 Mar 2015 20:43:44		
File Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bru	k500cdata\2015\Mar\	data\staff\nmr\2015-03-20-sta	ff-56\10\fid	Frequency (MHz)	500.19
Nucleus	1H	Number of Transients		Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	61.38
SW(cyclical) (Hz)	10000.00	Solvent	BENZENE-d6	Spectrum Offset (Hz)	3092.6208	Spectrum Type	STANDARD
Striction (112)	10000:00		00.450				

Acquisition Time (sec)	1.1010	Comment	0315 160 Mears P. EJT	-PRM176 "C25" mCARB	ON C6D6 (E:\bruk500	Cdata\2015\Mar) staff 56	
Date		Date Stamp	22 Mar 2015 05:45:36				
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	:500cdata\2015\Mar\data\	staff\nmr\2015-03-20-staff	-56\11\fid	Frequency (MHz)	125.77
Nucleus	13C	Number of Transients	10240	Origin	spect	Original Points Count	32768
Owner		Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40
	nmrsu 29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12661.6182	Spectrum Type	STANDARD
SW(cyclical) (Hz)		Temperature (degree C				77	
Sweep Width (Hz)	29761.00	remperature (negree c)	7 22.107	J.			

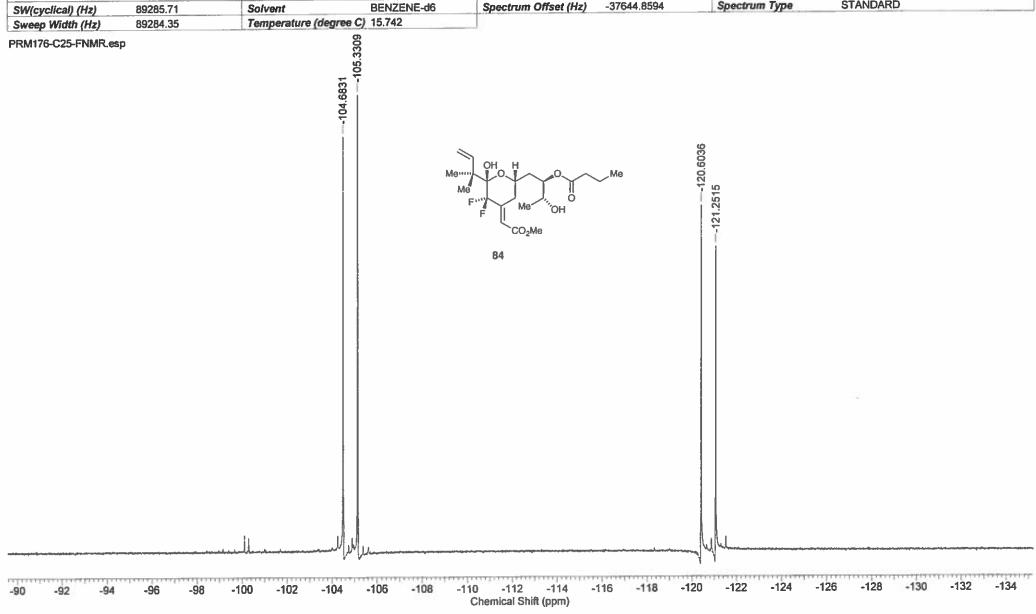

PRM176-C25-CNMR.esp

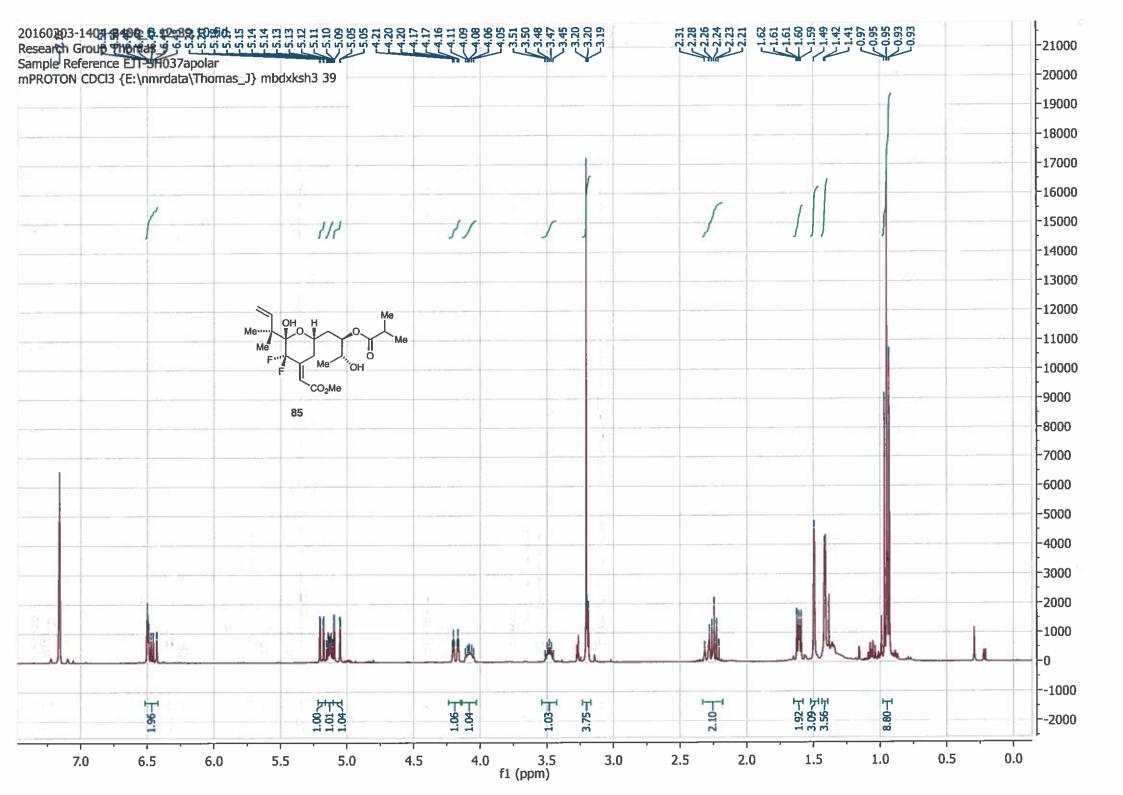

Acquisition Time (sec)	1.1010	Comment	0315 160 Mears P. EJT-PRM176 "C25" mCARBON C6D6 {E:\bruk500cdata\2015\Mar} staff 56						
Date	22 Mar 2015 05:45:36	Date Stamp	22 Mar 2015 05:45:36						
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500cdata\2015\Mar\data\	staff\nmr\2015-03-20-staff	-56\11\fid	Frequency (MHz)	125.77		
Nucleus	13C	Number of Transients	10240	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40		
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12661.6182	Spectrum Type	STANDARD		
Sweep Width (Hz)	29761.00	Temperature (degree C)	22.164						

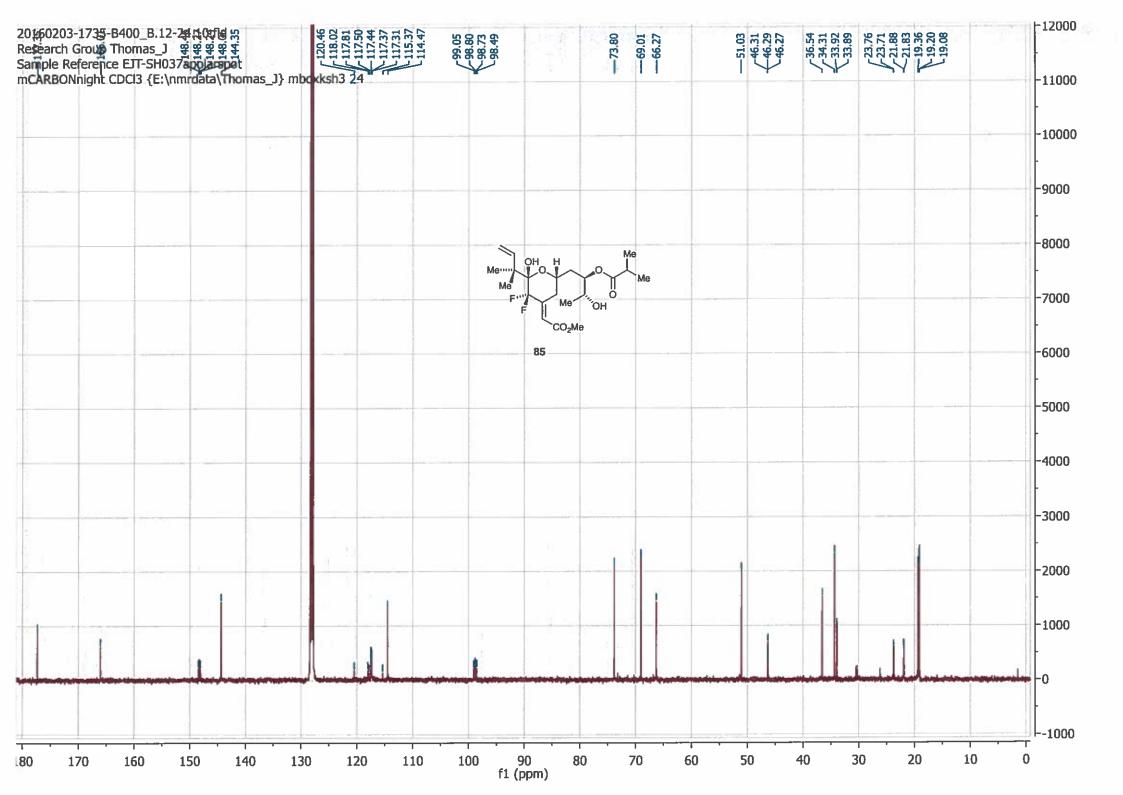
PRM176-C25-CNMR.esp

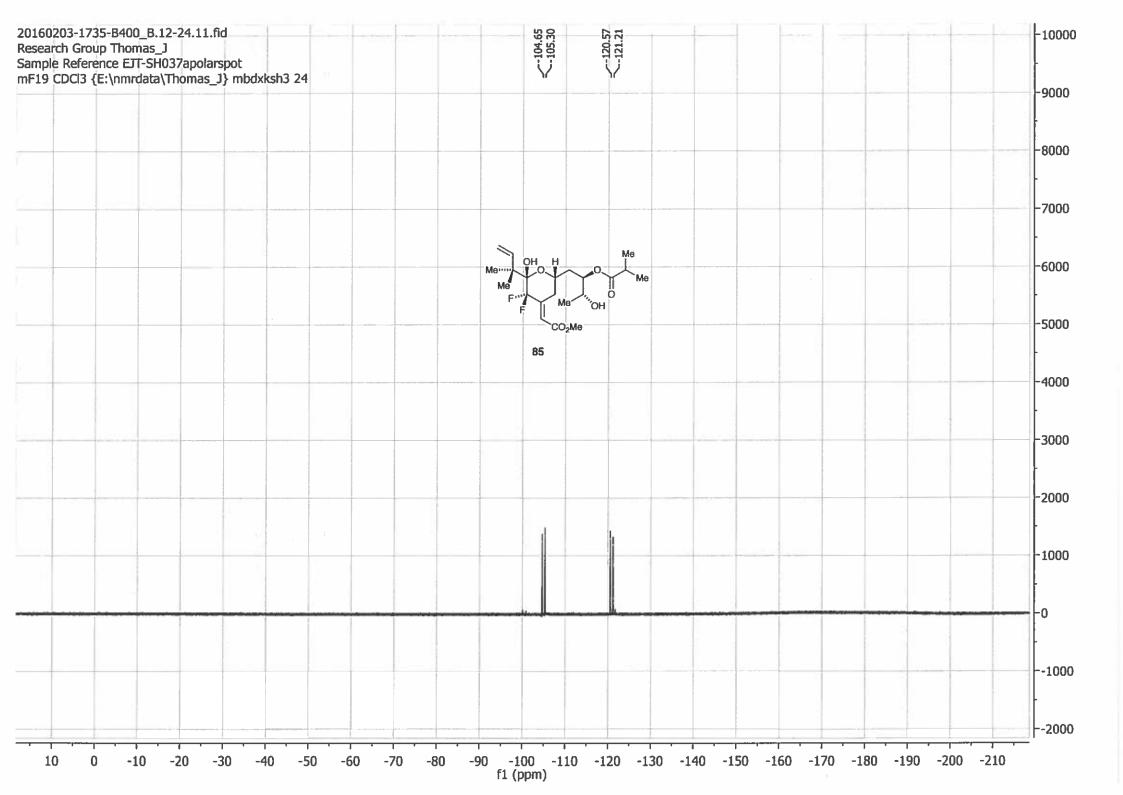

Acquisition Time (sec)	1,1010	Comment	0315 160 Mears P. EJT-PRM176 "C25" mCARBON C6D6 {E:\bruk500cdata\2015\Mar} staff 56						
Date	22 Mar 2015 05:45:36	Date Stamp	22 Mar 2015 05:45:36			000000000000000000000000000000000000000			
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500cdata\2015\Mar\data\	staff\nmr\2015-03-20-staff	-56\11\fid	Frequency (MHz)	125.77		
Nucleus	13C	Number of Transients	10240	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40		
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12661.6182	Spectrum Type	STANDARD		
Sweep Width (Hz)	29761.00	Temperature (degree C)	22.164						

PRM176-C25-CNMR.esp

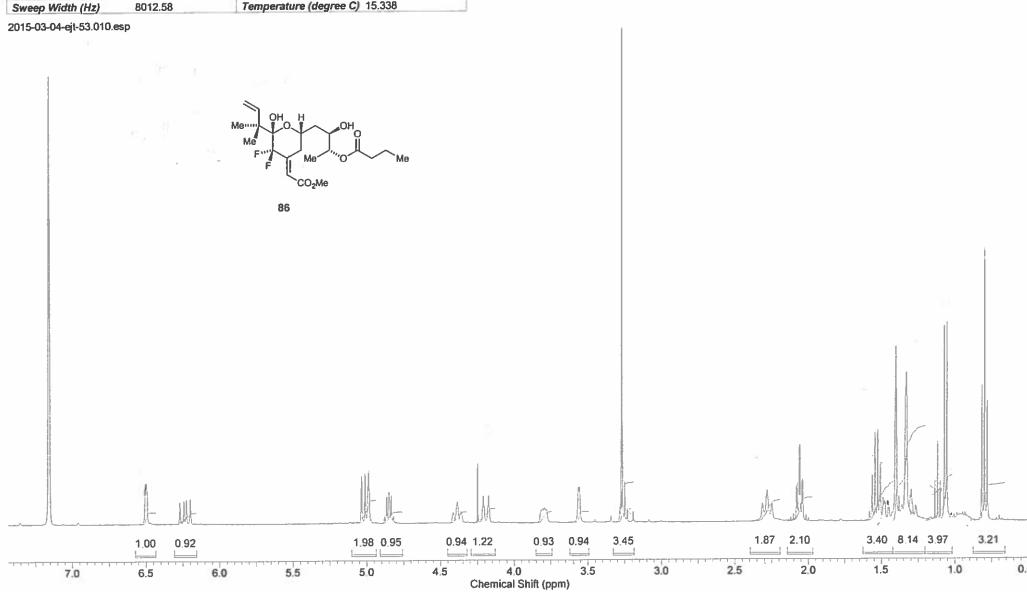



Acquisition Time (sec)	1.1010	Comment	0315 160 Mears P. EJT-PRM176 "C25" mCARBON C6D6 {E:\bruk500cdata\2015\Mar} staff 56						
Date	22 Mar 2015 05:45:36	Date Stamp	22 Mar 2015 05:45:36				<u> </u>		
File Name	\\ss7a.ds.man.ac.uk\vol	5\vol3\users\snmrdata\bruk	500cdata\2015\Mar\data\	staff\nmr\2015-03-20-staff	-56\11\fid	Frequency (MHz)	125.77		
Nucleus	13C	Number of Transients	10240	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	184.40		
SW(cyclical) (Hz)	29761.90	Solvent	BENZENE-d6	Spectrum Offset (Hz)	12661.6182	Spectrum Type	STANDARD		
Sweep Width (Hz)	29761.00	Temperature (degree C)	22.164						

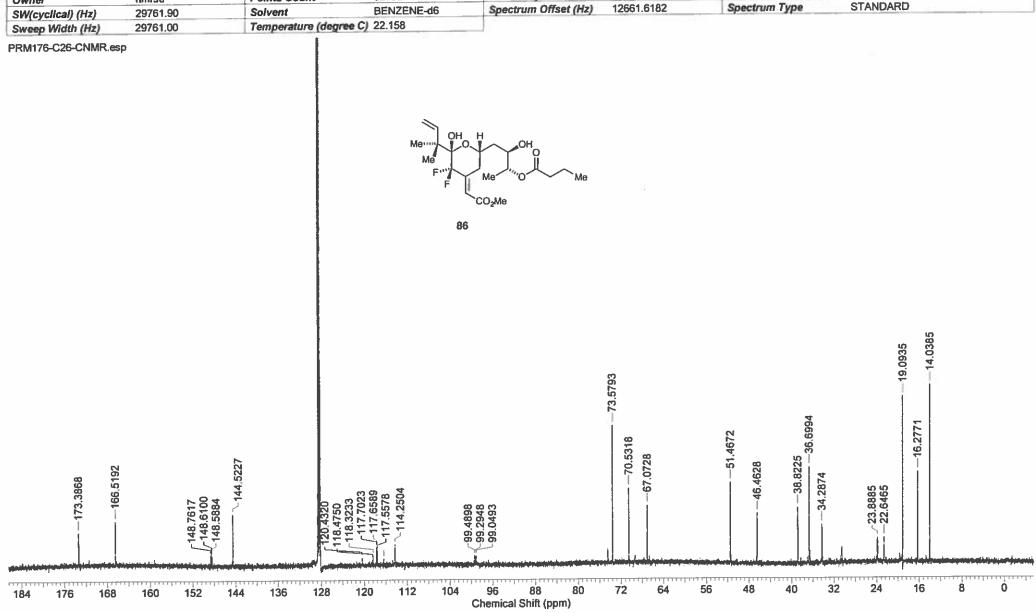

PRM176-C25-CNMR.esp



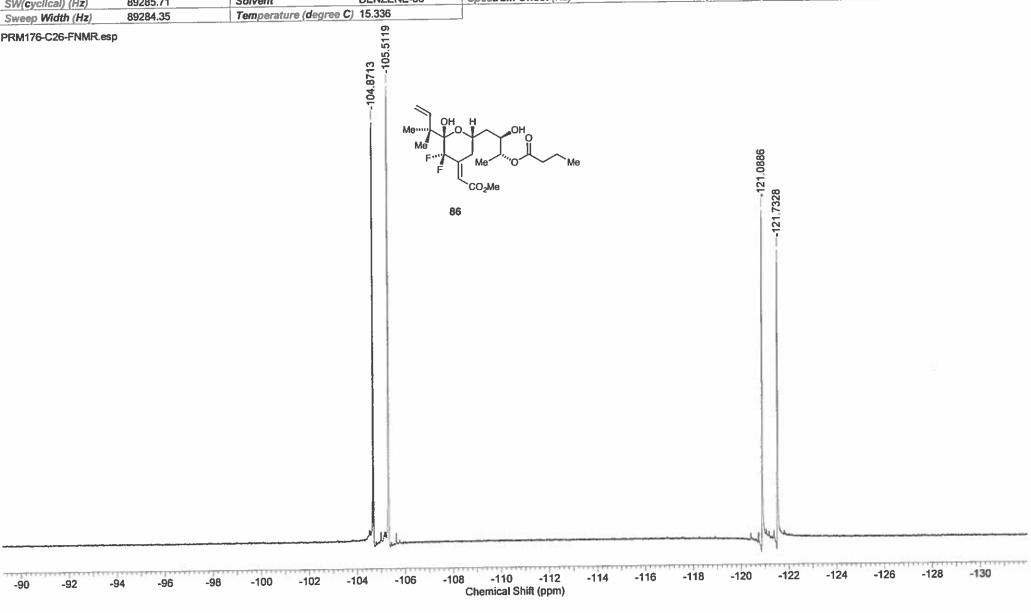
Acquisition Time (sec)	0.7340	.7340 Comment EJT-PRM176 2nd re-col. f4-12 7mg mF19_cryo_zgbs C6D6 {e:\bruk400cdata\2015\Feb} ejt 44									
	05 Mar 2015 17:46:40			Date Stamp	05 Mar 2015 17:46:40						
	\\ss7a.ds.man.ac.uk\vo	l5\vol3\users\snmrdata\bruk	400cdata\2015\Feb\data	Nejt\nmr\2015-03-05-ejt-44	\11\fid	Frequency (MHz)	376.44				
Nucleus		Number of Transients	16	Origin	spect	Original Points Count	65536				
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgbs	Receiver Gain	22.60				
SW(cyclical) (Hz)	89285.71	Solvent	BENZENE-d6	Spectrum Offset (Hz)	-37644.8594	Spectrum Type	STANDARD				
Curson Width /Uzl	80284 35	Temperature (degree C)	15 742								

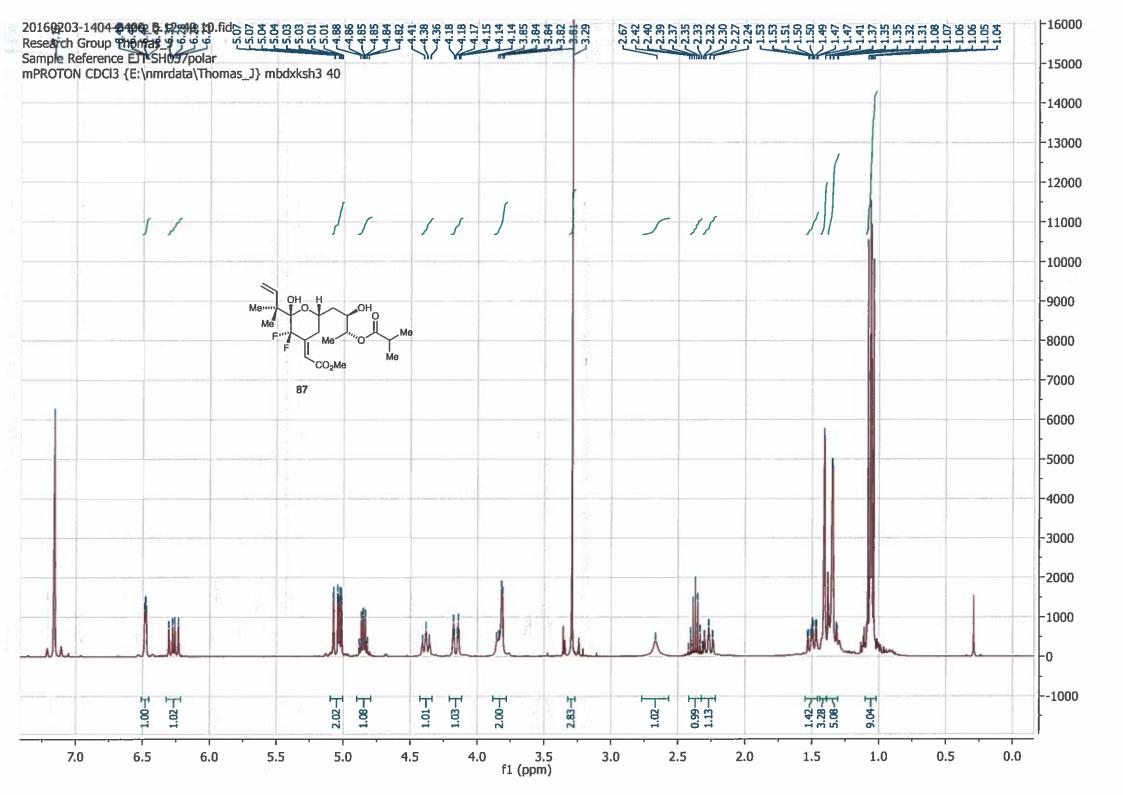


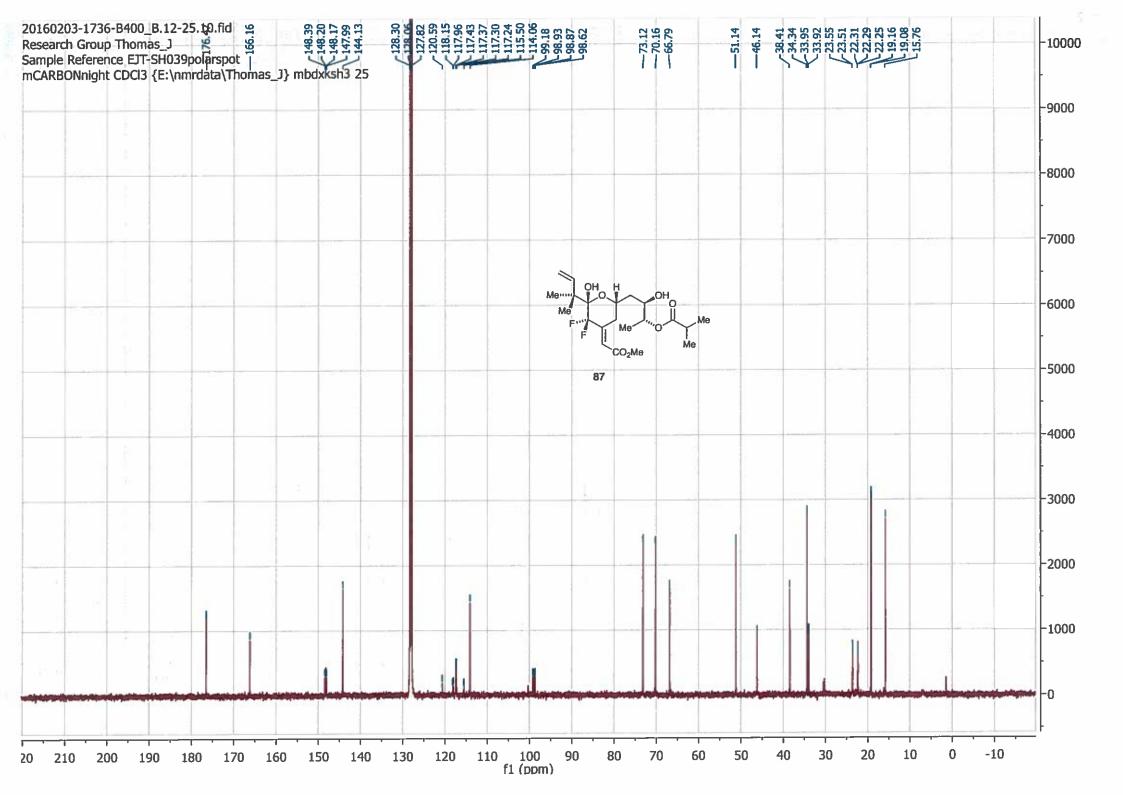
	imo report i	vas created by AOD/Min					•
Acquisition Time (sec)	4.0894	Comment	EJT-PRM176 f6-1	7 6mg mPROTON_A C6D6 {	e:\bruk400cdata\20	015\Feb} ejt 53	
Date	04 Mar 2015 10:	:14:24		Date Stamp	04 Mar 2015 10:	14:24	
	\\ss7a.ds.man.a	c.uk\vol5\vol3\users\snmrdata\br	uk400cdata\2015\Fe	b\data\ejt\nmr\2015-03-04-ejt-	-53\10\fid	Frequency_(MHz)	400.07
Nucleus	1H	Number of Transients		Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	161.00
SW(cyclical) (Hz)	8012.82	Solvent	BENZENE-d6	Spectrum Offset (Hz)	1903.3687	Spectrum Type	STANDARD
Sween Width (Hz)	8012 58	Temperature (degree C	1 15 338	-			

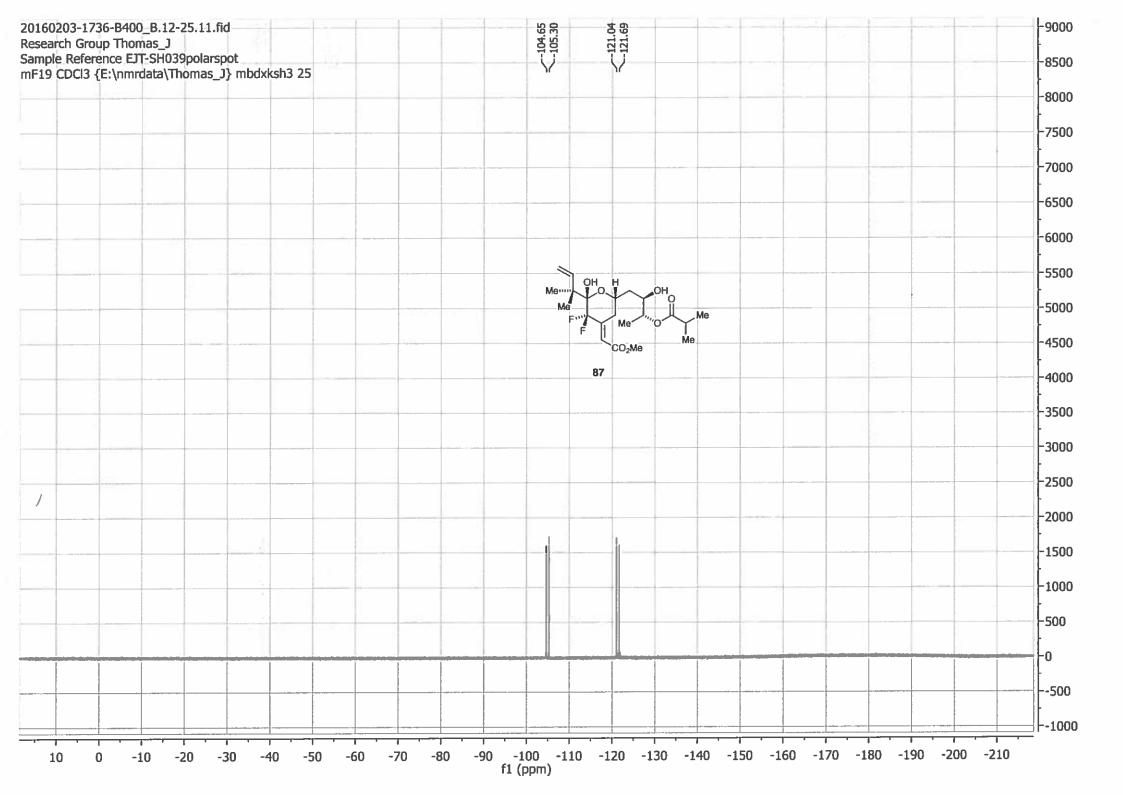

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ 0315 159 Mears P. EJT-PRM176 "C26" mCARBON C6D6 (E:\bruk500cdata\2015\Mar) staff 55 Acquisition Time (sec) 1.1010 Comment 21 Mar 2015 19:39:44 Date Stamp 21 Mar 2015 19:39:44 \\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk500cdata\2015\Mar\data\staff\nmr\2015-03-20-staff-55\11\fid Frequency (MHz) 125.77 32768 Original Points Count Origin spect 10240 Number of Transients 13C Receiver Gain 184.40 Pulse Sequence zgpg30 32768 Points Count nmrsu STANDARD 12661.6182 Spectrum Type

Date

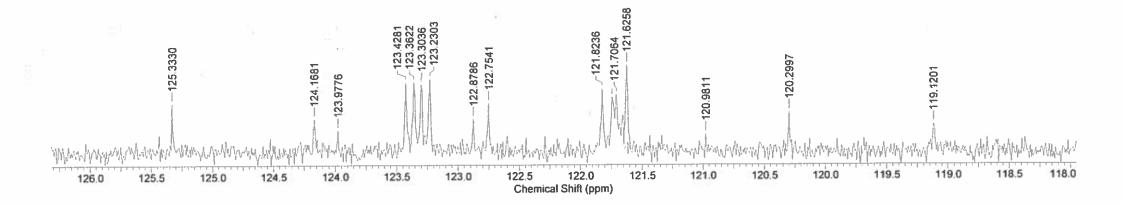

File Name


Nucleus

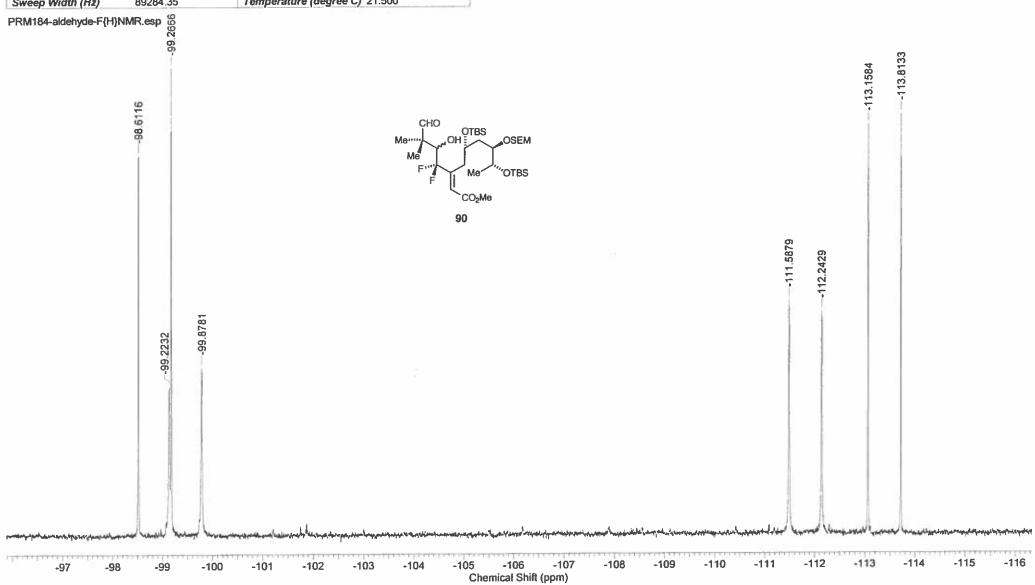

Owner



This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM176 f6-17 6mg mF19_cryo_zgbs C6D6 {e:\bruk400cdata\2015\Feb} ejt 53 Acquisition Time (sec) 0.7340 Соттепт Date Stamp 04 Mar 2015 10:16:32 04 Mar 2015 10:16:32 Date Frequency (MHz) 376.44 \lss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk400cdata\2015\Feb\data\ejt\nmr\2015-03-04-ejt-53\11\fid File Name Original Points Count 65536 Origin spect Number of Transients 16 Nucleus 20.20 Receiver Gain Pulse Sequence zgbs 65536 Points Count nmrsu Owner STANDARD Spectrum Type -37644.8594 BENZENE-d6 Spectrum Offset (Hz) Solvent SW(cyclical) (Hz) 89285.71 Temperature (degree C) 15.336 Sweep Width (Hz) 89284.35 -105,5119 PRM176-C26-FNMR.esp -104.8713 -121.0886 86



Acquisition Time (sec)	3.9649	Comment	EJT-PRM184 f8-25 1	157mg mPROTON CDC13	e:\bruk400adata\2015	Jul} ejt 52		
ate	14 Jul 2015 19:25:0			Date Stamp	14 Jul 2015 19:25:0			
ile Name	\\ss7a.ds.man.ac.ul	<\vol5\vol3\users\snmrdata\br	uk400adata\2015\Jul\da	ata\ejt\nmr\2015-07-14-ejt-5	2\10\fid	Frequency (MHz)	400.13	
lucieus	1H	Number of Transients	16	Origin	AV400	Original Points Count	32768	
Owner	nmrsu	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	36,00	
W(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2465.1792	Spectrum Type	STANDARD	
weep Width (Hz)	8264.21	Temperature (degree C	21.300					
RM184-aldehyde-HNMR	esp				-3.7377			0.0749 0.0503 0.0452
	CI Me····· Me F'	OTBS OSEM Me "OTBS CO ₂ Me						\-0 0033
1				4,7367 4,7556 4,7292 14,7166				
9.5663			6.2539 6.1934	4.2791 4.2640 4.6989		3.3040 3.4420 2.8224 2.8023 2.7884 2.6560 2.6384 2.6233 1.8360 1.7660	1,5385 1,5214 1,5126 1,4773	100
1.84			0.99 1.00 4.14 1.62	4.14 2.29 5.72 2.36 2.19 1	1.95 1.02 0.94 1.01 1.	04 0.97 1.19 2.18 0.56 2.96	3 24 5 31 0 52 6 62 3 94 3	7.50 23.51 1


			FIUCESSUI ACAU	eniic Edition, i oi ii	some introduction g	O to www.acdiabs.c	ommuni broce
	1.3566	Comment		157mg mCARBONnight CD	UCIS (e:\bruk400adata\20	10 Null et 52	
Date	14 Jul 2015 22:30:40	Date Stamp	14 Jul 2015 22:30:40		7/42/64	Frequency (MHz)	100.61
				ta\ejt\nmr\2015-07-14-ejt-52	V/400	Original Points Count	32768
Nucleus	13C	Number of Transients	3000	Origin	AV400	Receiver Gain	512.00
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30 10059.2100	Spectrum Type	STANDARD
	24154.59	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10059.2100	Spectrum Type	STANDARD
Sweep Width (Hz)	24153.85	Temperature (degree C)	22.900				
RM184-aldehyde-CNMR.	esp				77.3150 -77.0000 75.6850	25.9049	
	Me Me F	OTBS OH OTBS OSEM Me "OTBS CO ₂ Me				51.5257	812
<u>204.1223</u> 204.2835	.165 7827	165.6581		7578		49.4010 49.3571 -36.5210 -35.2682	19.6774
204	เรอบุลลักกรลี และเลือกในเรอบรอบรอบรอบรอบร ได้ประชาชายายาย	151.2469 150.9904 150.7926 148.6020 148.3602	125,3330 123,4281 123,3622 123,2303 122,7541 121,8236 121,6258	L120.2997 L119.1201	74.3844	200	
220 210 200	190 180 170) 130 120	110 100 90 Chemical Shift (ppm)	80 70 60	50 40 30	20 10 0 -10 -20

Acquisition Time (sec)	1.3566	Comment	EJT-PRM184 f8-25 15	EJT-PRM184 f8-25 157mg mCARBONnight CDCl3 {e:\bruk400adata\2015\Uul} ejt 52						
Date	14 Jul 2015 22:30:40	Date Stamp	14 Jul 2015 22:30:40							
File Name	\\ss7a.ds.man.ac.uk\vo	l5\vol3\users\snmrdata\bru	k400adata\2015\Jul\data	\ejt\nmr\2015-07-14-ejt-52\	13\fid	Frequency (MHz)	100,61			
Nucleus	13C	Number of Transients	3000	Origin	AV400	Original Points Count	32768			
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	512.00			
SW(cyclical) (Hz)	24154.59	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10059.2100	Spectrum Type	STANDARD			
Sweep Width (Hz)	24153.85	Temperature (degree C	22.900							

PRM184-aldehyde-CNMR.esp

Acquisition Time (sec)	0.7340	Comment	EJT-PRM184 f8-25 1	157mg mF19CPD CDCI3 (e	:\bruk400adata\2015\J	ul} ejt 52	
Date	14 Jul 2015 19:29:20	Date Stamp	14 Jul 2015 19:29:20				4
File Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bru	ık400adata\2015\Jul\da	ata\ejt\nmr\2015-07-14-ejt-5	2\12\fid	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients	16	Origin	AV400	Original Points Count	65536
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	362.00
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
Swoon Width (Ha)	R0284 35	Temperature (degree C	21 500	3 - A - O - O - O - O - O - O - O - O - O			

Acquisition Time (sec)	3.9649	Comment	EJT-PRM185 f15-33	118mg mPROTON CDCI3	{e:\bruk400adata\2015\.	Jul} ejt 40		
Date	16 Jul 2015 16:08:48			Date Stamp	16 Jul 2015 16:08:48			
ile Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bru	ık400adata\2015\Jul\da	talejt\nmr\2015-07-16-ejt-4	0\10\fid	Frequency (MHz)	400.13	
lucleus	1H	Number of Transients	16	Origin	AV400	Original Points Count	32768	
Owner	nmrsu	Points Count	32768	Pulse Sequence	zg30b	Receiver Gain	80.60	
SW(cyclical) (Hz)	8264.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2464.9270	Spectrum Type	STANDARD	
Sweep Width (Hz)	8264.21	Temperature (degree C)	21.500					
RM185-HNMR.esp		Cu.		I			——————————————————————————————————————	0.0818 0.0503 0.0503 0.0143 0.0125
	Me····· Me F	OH OTBS OSEM Me OTBS CO ₂ Me	-4.7336					
		51					71.0260	
-7.2700								
	-6.2609	-6.2545 -2010	7 8 ~4.7134	245 0074 917 5 6 3.6980 3.5980 3.5246 3.5246	3.3595 3324 3324		-0.9195	
		90	4.1909 4.1909 4.0875 4.0402	3.8656 3.	2.8811-3. 2.8628 2.8476 2.876 2.876 2.7304 -2.7128 2.6976	1.8297 1.7729 1.7729 1.7739 1.6549	2 (140)	
	1.07	0.79 4	1.07 1.19 1.60 2.62 0.6	63 0.80 8.50 2.15 5.00 1.0	7 1.10 0.90 0.98 0.07 1.	45 2.18 2.20 5.81 3	3.238.57 0.40 3.97 3	7.45 41.68
3.0 7.5	7.0 6.5	6.0 5.5	5.0 4.5	4.0 3.5 Chemical Shift (ppm)	3.0 2.5	2.0 1.5	1.0 0.5	Ó

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM185 Prod mCARBON_B CDCl3 {e:\bruk400cdata\2015\Jul} ejt 20 Acquisition Time (sec) 1.3631 Comment Date Stamp 22 Jul 2015 23:41:04 Date 22 Jul 2015 23:41:04 \\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk400cdata\2015\Jul\data\ejt\nmr\2015-07-22-ejt-20\10\fid Frequency (MHz) 100,60 File Name Original Points Count 32768 Origin Nucleus 13C Number of Transients 1024 spect zgpg30 45.20 Receiver Gain Points Count 32768 Pulse Sequence nmrsu Owner Spectrum Offset (Hz) 10050,6006 STANDARD SW(cyclical) (Hz) CHLOROFORM-d Spectrum Type 24038.46 Solvent Temperature (degree C) 17.967 24037.73 Sweep Width (Hz) 18.0119 25.8731 4.6236 PRM185-CNMR-2.esp OTBS OSEM OTBS 91 17.2900 68.8471 80.4055 51.4621 65.7187 95 8727 95 7779 65 2374 165.9962 165.8941 71.9099 70.0722 69.1169 36.2793 39.1234 22.9051 20.4038 5926 78.2616 75.75

80

Chemical Shift (ppm)

88

120

152

144

160

168

136

128

112

104

96

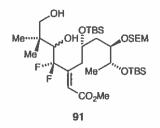
72

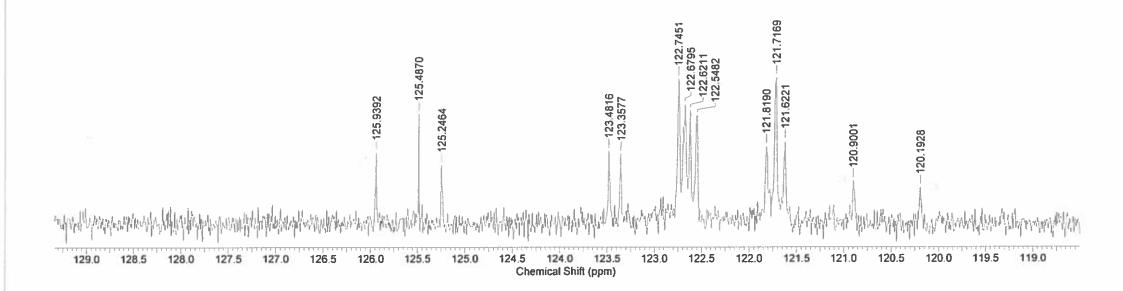
64

56

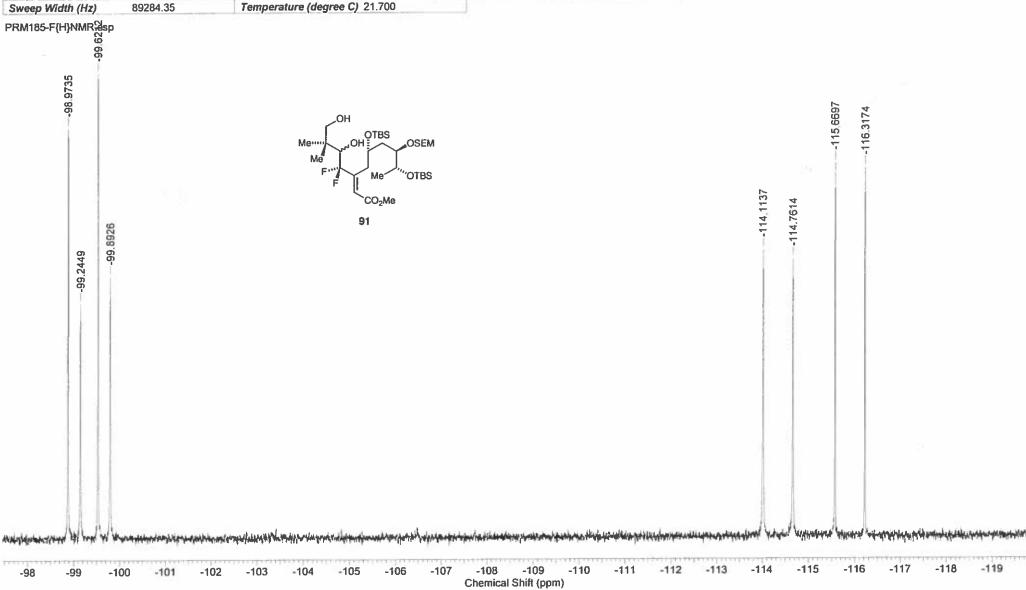
48

40


32


24

16


Acquisition Time (sec)	1.3631	Comment	EJT-PRM185 Prod m	CARBON_B CDCl3 {e:\bri	uk400cdata\2015\Jul} ejt	20	
Date	22 Jul 2015 23:41:04			Date Stamp	22 Jul 2015 23:41:04		
File Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bri	uk400cdata\2015\Jul\da	sta\ejt\nmr\2015-07-22-ejt-2	0\10\fid	Frequency (MHz)	100.60
Nucleus	13C	Number of Transients	1024	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10050.6006	Spectrum Type	STANDARD
Sweep Width (Hz)	24037.73	Temperature (degree C) 17.967	100			

2015-07-22-ejt-20.010.esp

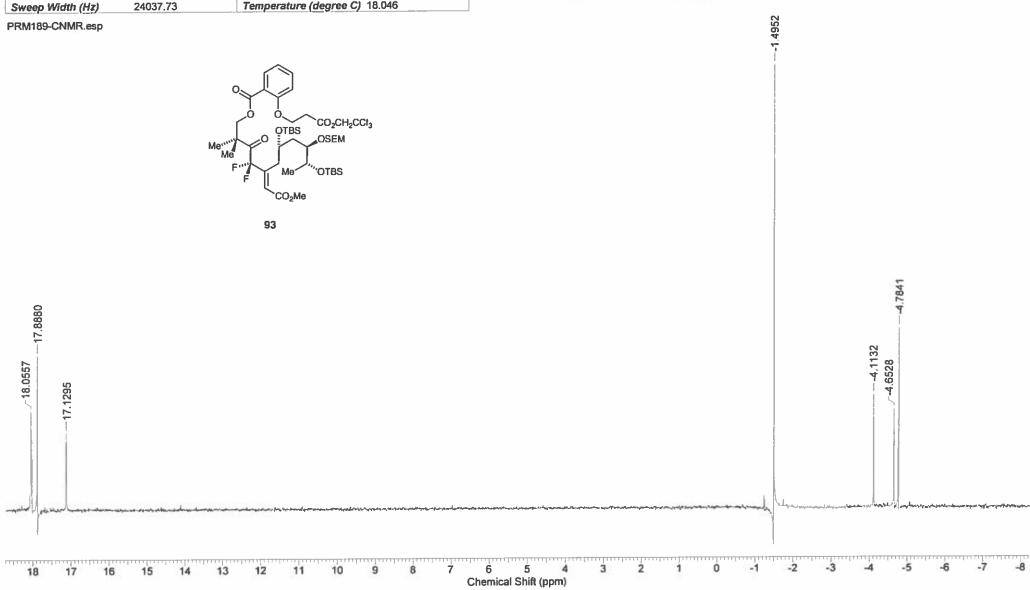
	title repett mae a						
Acquisition Time (sec)	0.7340	Comment	EJT-PRM185 f15-33	118mg mF19CPD CDCI3 {	e:\bruk400adata\201	5\Jul} ejt 40	
Date	16 Jul 2015 16:13:04	Date Stamp	16 Jul 2015 16:13:04				
File Name	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bri	uk400adata\2015\Jul\da	atalejt\nmr\2015-07-16-ejt-4	0\12\fid	Frequency (MHz)	376.50
Nucleus	19F	Number of Transients	16	Origin	AV400	Original Points Count	65536
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgig	Receiver Gain	362.00
SW(cyclical) (Hz)	89285.71	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-37649.5977	Spectrum Type	STANDARD
Courses Milelely (Ma)	90394 35	Temperatura (degree C	21 700				

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM189 f3-15 16mg mPROTON_A CDCl3 {e:\bruk400cdata\2015\Jul\} ejt 32 Acquisition Time (sec) 4.0894 Comment 05 Aug 2015 12:46:08 Date Stamp 05 Aug 2015 12:46:08 Date \\ss7a.ds.man.ac.uk\vol5\vol3\users\snmrdata\bruk400cdata\2015\Jul\data\ejt\nmr\2015-08-05-ejt-32\10\fid Frequency (MHz) 400.07 File Name Original Points Count 32768 Origin Number of Transients spect Nucleus zg30 Receiver Gain 161.00 Pulse Seguence **Points Count** 32768 nmrsu Owner **STANDARD** 1894,3132 Spectrum Type CHLOROFORM-d Spectrum Offset (Hz) 8012.82 Solvent SW(cyclical) (Hz) Temperature (degree C) 18.208 Sweep Width (Hz) 8012.58 8760 8485 0.0087 PRM189-HNMR.esp o o CO2CH2CCI3 **OTBS** OSEM **OTBS** 93 -0.0625 -0.0502 -0.0435 1.3784 3,6326 4.8037 4.6961 1.0337 3.0324 4436 7.0078 7.0078 6.9882 0.9011 6.9699 2.13 2.14 1.39 1.26 6.66 3.45 23.35 23.52 4.382.16 2.16 2.13 2.11 2.13 1.03 4.26 1.00 1.03 1.5 7.0 2.5 2.0 1.0 0.5 -0.5 7.5 4.0 3.5 3.0

Chemical Shift (ppm)

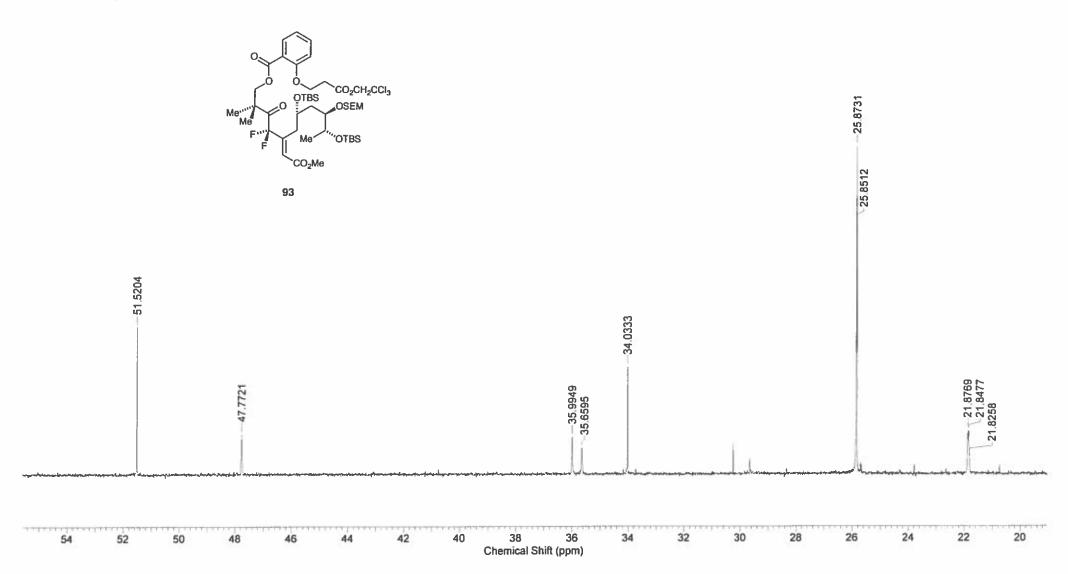
6.5

8.0

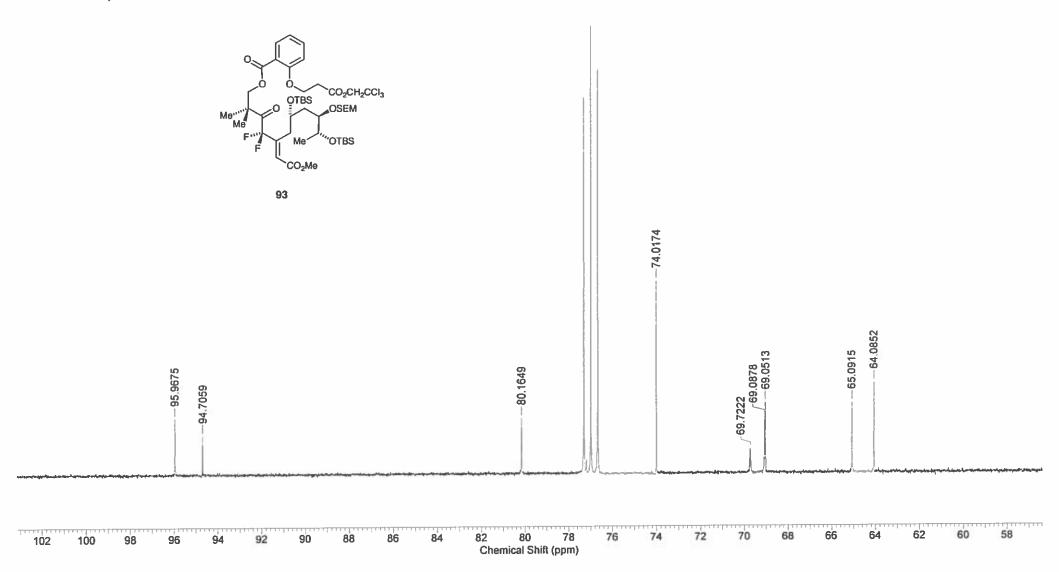

6.0

5.5

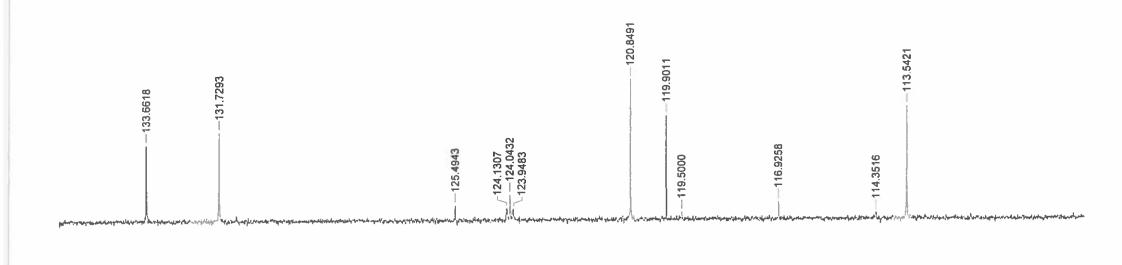
5.0


4.5

Acquisition Time (sec)	1.3631	Comment	EJT-PRM189 prod m	CARBON_A CDCl3 (e:\bru	uk400cdata\2015\Aug} ejl	54	
Date	20 Aug 2015 16:00:16			Date Stamp	20 Aug 2015 16:00:16		
File Name	\\ss7a.ds.man.ac.uk\w	ol5\vol3\users\snmrdata\bru	uk400cdata\2015\Aug\d	lata\ejt\nmr\2015-08-20-ejt-	54\11\fid	Frequency (MHz)	100,60
Nucleus	13C	Number of Transients	256	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	71.80
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049.8672	Spectrum Type	STANDARD
	0.4007.70	T	1 10 046	1922			

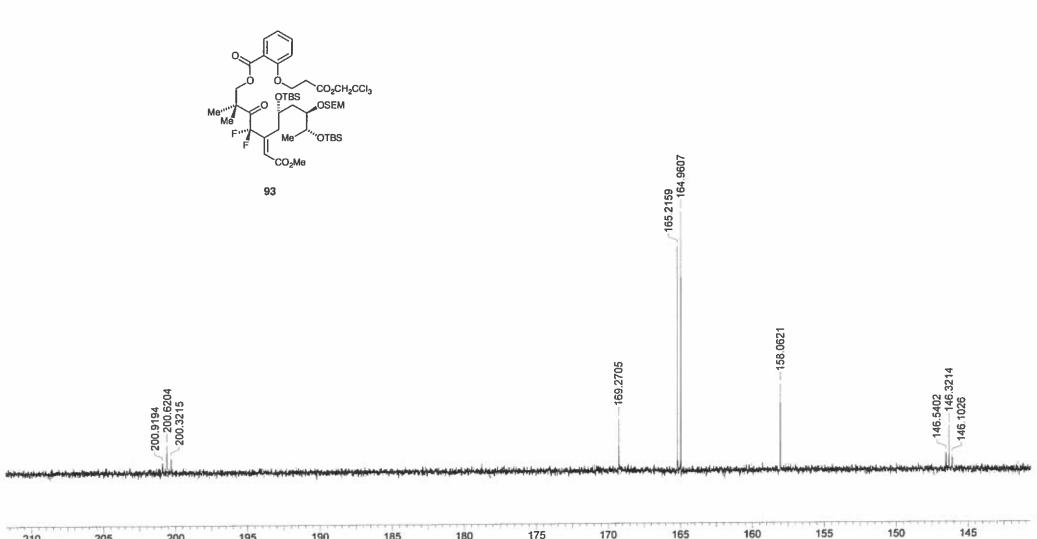

Acquisition Time (sec)	1.3631	Comment	EJT-PRM189 prod m	CARBON_A CDCI3 (e:\bru	ik400cdata\2015\Aug}	ejt 54	
Date	20 Aug 2015 16:00:16	Set House		Date Stamp	20 Aug 2015 16:00:	16	
File Name	\\ss7a.ds.man.ac.uk\w	ol5\vol3\users\snmrdata\bru	k400cdata\2015\Aug\d	fatalejt\nmr\2015-08-20-ejt-:	54\11\fid	Frequency (MHz)	100.60
Nucleus	13C	Number of Transients	256	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	71.80
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049.8672	Spectrum Type	STANDARD
Sween Width (Hz)	24037.73	Temperature (degree C)	18.046				

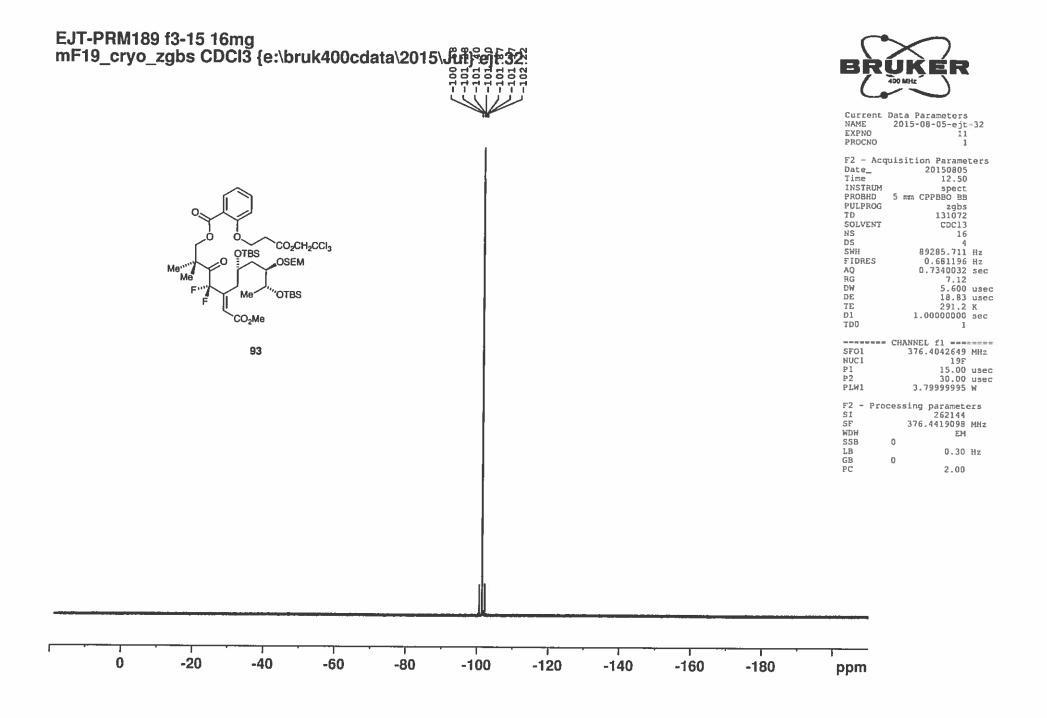
PRM189-CNMR.esp


Acquisition Time (sec)	1.3631	Comment	EJT-PRM189 prod m	CARBON_A CDCl3 (e:\bru	k400cdata\2015\Aug} ej	54	
Date	20 Aug 2015 16:00:16			Date Stamp	20 Aug 2015 16:00:16		
	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bru	k400cdata\2015\Aug\d	lata\ejt\nmr\2015-08-20-ejt-5	54\11\fid	Frequency (MHz)	100.60
Nucleus	13C	Number of Transients	256	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	71.80
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049.8672	Spectrum Type	STANDARD
Swaan Width (Hz)	24037.73	Temperature (degree C)	18.046				

PRM189-CNMR.esp

Acquisition Time (sec)	1,3631	Comment	EJT-PRM189 prod m	CARBON_A CDCI3 (e:\bru	ık400cdala\2015\Aug} e	ijt 54	
Date	20 Aug 2015 16:00:16			Date Stamp	20 Aug 2015 16:00:1	6	
	\\ss7a.ds.man.ac.uk\v	ol5\vol3\users\snmrdata\bru	ık400cdata\2015\Aug\d	lata\ejt\nmr\2015-08-20-ejt-	54\11\fid	Frequency (MHz)	100.60
Nucleus	13C	Number of Transients	256	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	71.80
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049.8672	Spectrum Type	STANDARD
Sweep Width (Hz)	24037.73	Temperature (degree C)	18.046			150H	

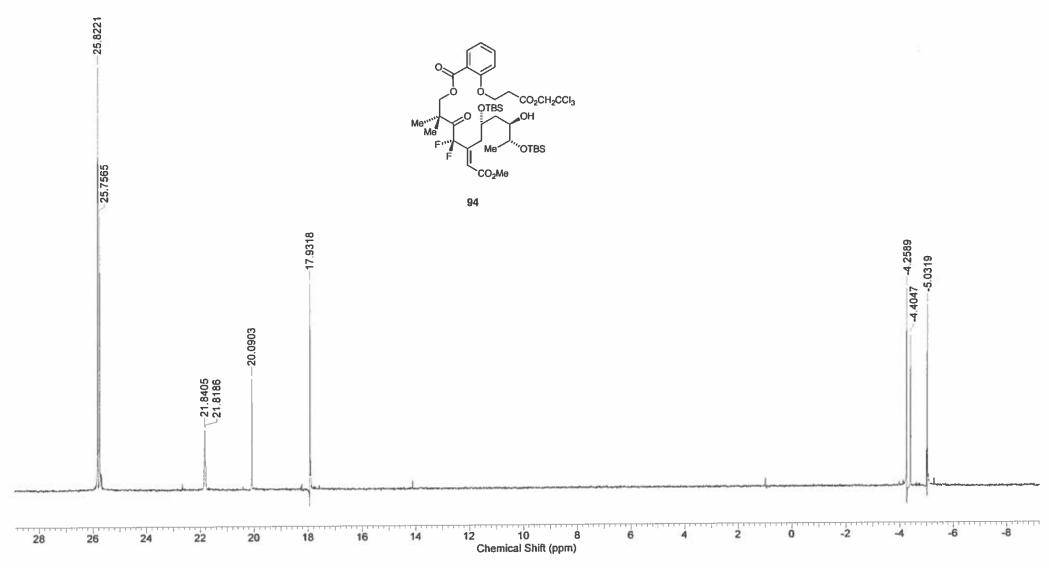

PRM189-CNMR.esp


1 123 122 12 Chemical Shift (ppm)

Acquisition Time (sec)	1.3631	Comment	EJT-PRM189 prod m	CARBON_A CDCI3 {e:\bru	ik400cdata\2015\Aug}	ejt 54	
Date	20 Aug 2015 16:00:10	3		Date Stamp	20 Aug 2015 16:00:	16	
		ol5\vol3\users\snmrdata\bru	k400cdata\2015\Aug\d	lata\ejt\nmr\2015-08-20-ejt-	54\11\fid	Frequency (MHz)	100.60
Nucleus	13C	Number of Transients	256	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	71.80
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049,8672	Spectrum Type	STANDARD
Sweep Width (Hz)	24037.73	Temperature (degree C)	18.046				

PRM189-CNMR.esp

30 175 Chemical Shift (ppm)



This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM190 f7-19 11mg mPROTON CDCl3 {E:\bruk500adata\2015\Aug} ejt 43

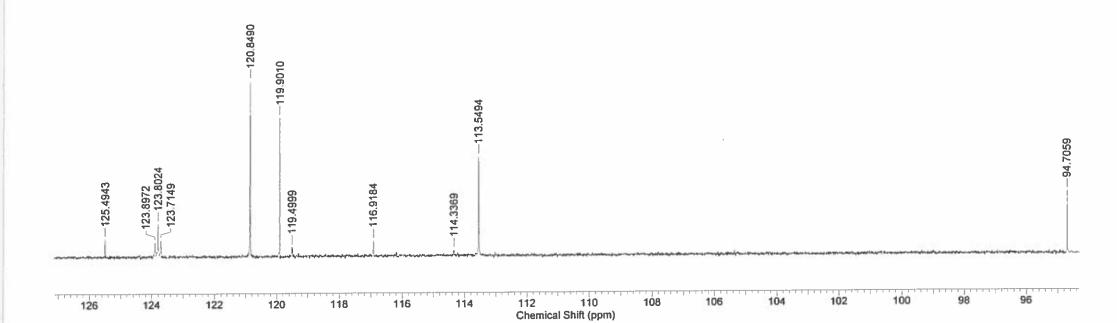
Acquisition Time (sec)	3.1719	Comment	EJT-PRM190 f7-19 1	1mg mPROTON CDC13 (E	\bruk500adata\2015\A	ug} ejt 43	
Date	13 Aug 2015 14:17	:52		Date Stamp	13 Aug 2015 14:17:	52	
ile Name	\\ss7a.ds.man.ac.u	k\vol5\vol3\users\snmrdata\bru	ık500adata\2015\Aug\da			Frequency (MHz)	500.13
lucleus	1H	Number of Transients	16	Origin	spect	Original Points Count	32768
)wner	nmrsu	Points Count	32768	Pulse Sequence	zg30	Receiver Gain	144.00
SW(cyclical) (Hz)	10330.58	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	3081.2380	Spectrum Type	STANDARD
Sweep Width (Hz)	10330.26	Temperature (degree C	25.000				
RM190-HNMR.esp		O OTBS	O ₂ CH ₂ CCI ₃				0.8724
		Me""Me	OTBS				
			.8034	3,6504		3912	0.0876 0.0624 0.0542 -0.0290
7.6942 7.6905 7.6753 7.4824 7.4679 7.4660 7.4623	-7.4478 -7.0116 -6.9750	6.1442	4.4201	4.2361 4.2190 4.2020 4.2020 3.5994 3.5994 3.5988 3.5994	3.0283 3.0283 3.0150 2.8877 2.8619	1 2 E F	1.1239
0.98 1.02	2.05	0.96	2.05 2.05 2.13	1.04 3.00 1.03 1.20 2.	17 0.88 1.05 O.	88 2.21 2.59 6.03 3	
8.0 7.5	7.0 6.5	6.0 5.5	5.0 4.5	4.0 3.5 Chemical Shift (ppm)	3.0 2.5	2.0 1.5	1.0 0.5 0


Acquisition Time (sec)	1.3631	Comment	EJT-PRM190 f13-46	54mg mCARBON_B CDCI	3 (e:\bruk400cdata\2015\	Aug} ejt 6	
Date	21 Aug 2015 22:58:24			Date Stamp	21 Aug 2015 22:58:24		
File Name			k400cdata\2015\Aug\da	ata\ejt\nmr\2015-08-21-ejt-6	\21\fid	Frequency (MHz)	100.60
Nucleus	13C	Number of Transients	1000	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049,8789	Spectrum Type	STANDARD
Sweep Width (Hz)	24037.73	Temperature (degree C)	18.170				

PRM190-CNMR.esp

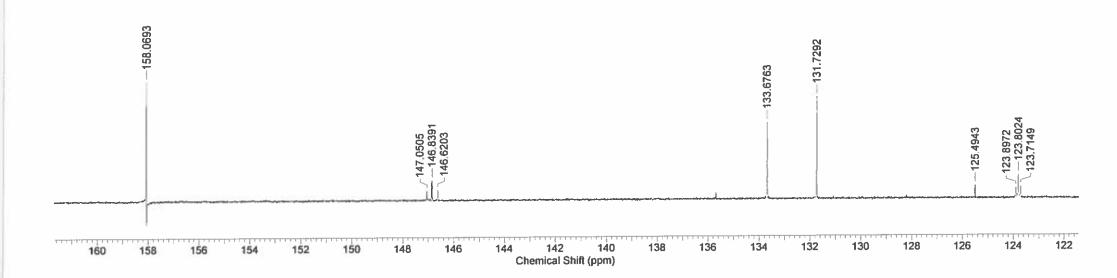
Acquisition Time (sec)	1.3631	Comment	nment EJT-PRM190 f13-46 54mg mCARBON_B CDCl3 {e:\bruk400cdata\2015\Aug} ejt 6						
Date	21 Aug 2015 22:58:2	4		Date Stamp	21 Aug 2015 22:58:2	4			
		vol5\vol3\users\snmrdata\brul	<400cdata\2015\Aug\da	ata\ejt\nmr\2015-08-21-ejt-6	1\21\fid	Frequency (MHz)	100.60		
Nucleus	13C	Number of Transients	1000	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20		
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049.8789	Spectrum Type	STANDARD		
Sweep Width (Hz)	24037.73	Temperature (degree C)	18.170						

PRM190-CNMR.esp

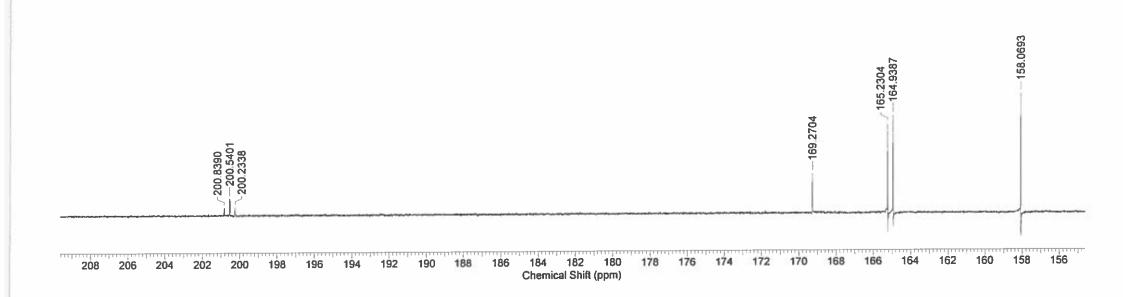


This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ EJT-PRM190 f13-46 54mg mCARBON_B CDCl3 (e:\bruk400cdata\2015\Aug\ ejt 6 Acquisition Time (sec) 1.3631 Comment 21 Aug 2015 22:58:24 Date Stamp 21 Aug 2015 22:58:24 Date Frequency (MHz) 100.60 File Name Original Points Count 32768 Origin spect Number of Transients 1000 13C Nucleus zgpg30 Receiver Gain 45.20 Pulse Sequence 32768 Points Count nmrsu Owner **STANDARD** Spectrum Offset (Hz) 10049.8789 Spectrum Type CHLOROFORM-d 24038.46 Solvent SW(cyclical) (Hz) Temperature (degree C) 18.170 Sweep Width (Hz) 24037.73 PRM190-CNMR.esp CO2CH2CCI3 OTBS 94 64.0852 74 0247 68,4971 94.7059 -69.6712

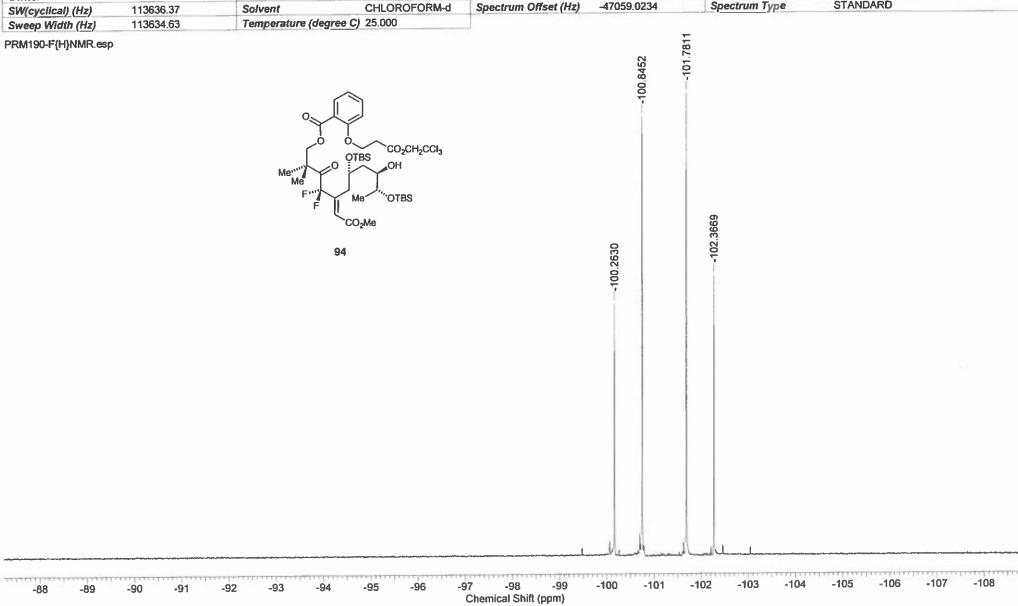
96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 Chemical Shift (ppm)


Acquisition Time (sec)	1.3631	Comment EJT-PRM190 f13-46 54mg mCARBON_B CDCl3 (e:\bruk400cdata\2015\Aug) ejt 6							
Date	21 Aug 2015 22:58:24			Date Stamp	21 Aug 2015 22:58:24				
		i5\vol3\users\snmrdata\bruk	400cdata\2015\Aug\da	ata\ejt\nmr\2015-08-21-ejt-6	1\21\fid	Frequency (MHz)	100.60		
Nucleus		Number of Transients	1000	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20		
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049.8789	Spectrum Type	STANDARD		
Sweep Width (Hz)	24037.73	Temperature (degree C)	18.170						

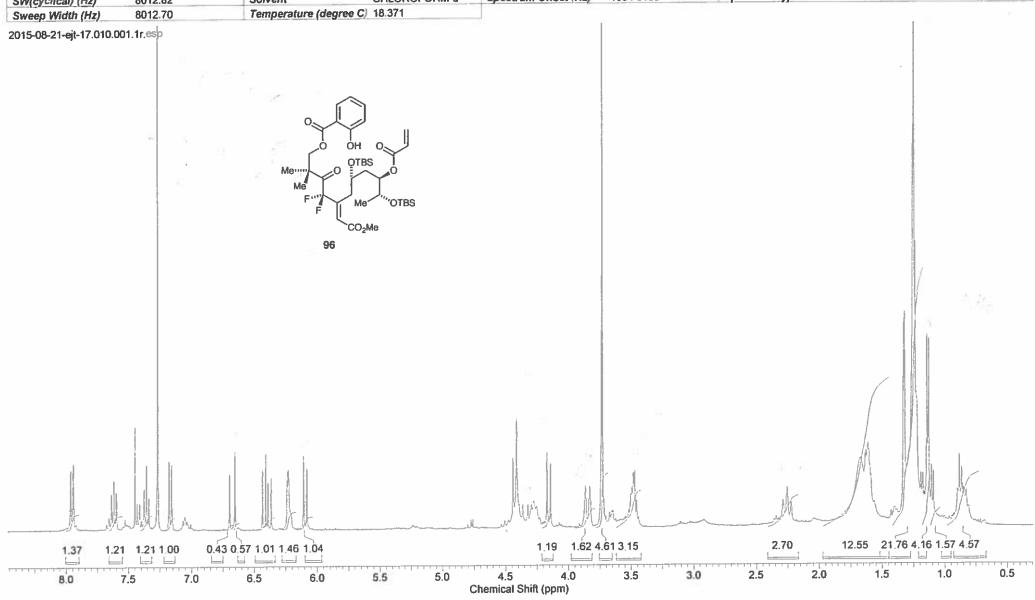
PRM190-CNMR esp


Acquisition Time (sec)	1,3631	Comment	EJT-PRM190 f13-46 54mg mCARBON_B CDCl3 (e:\bruk400cdata\2015\Aug} ejt 6						
Date	21 Aug 2015 22:58:24		367.000.0	Date Stamp	21 Aug 2015 22:58:24				
		l5\vol3\users\snmrdata\bruk	400cdata\2015\Aug\da	ta\ejt\nmr\2015-08-21-ejt-6	i\21\fid	Frequency (MHz)	100.60		
Nucleus	13C	Number of Transients	1000	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20		
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049.8789	Spectrum Type	STANDARD		
Sweep Width (Hz)	24037.73	Temperature (degree C)	18.170						

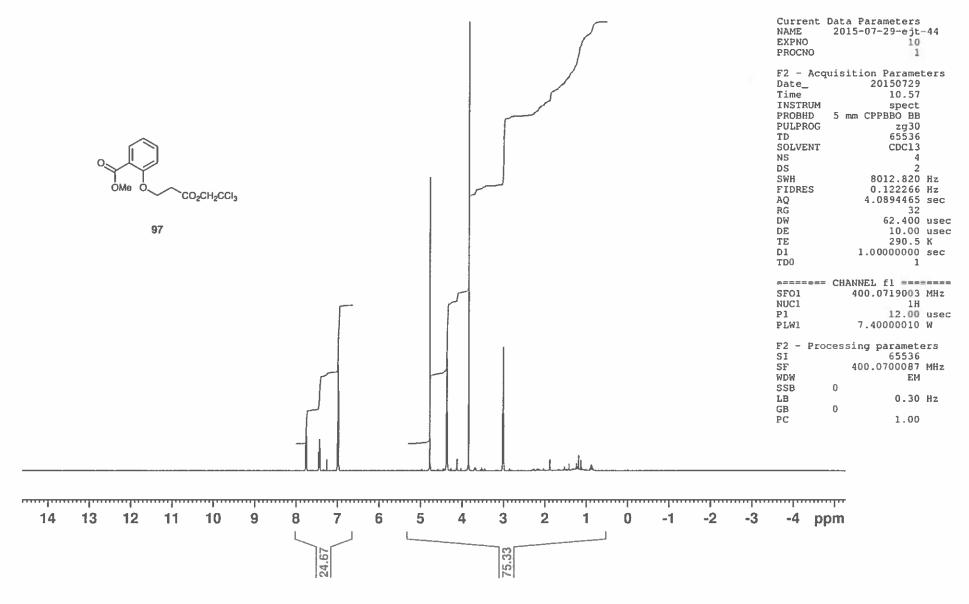
PRM190-CNMR.esp

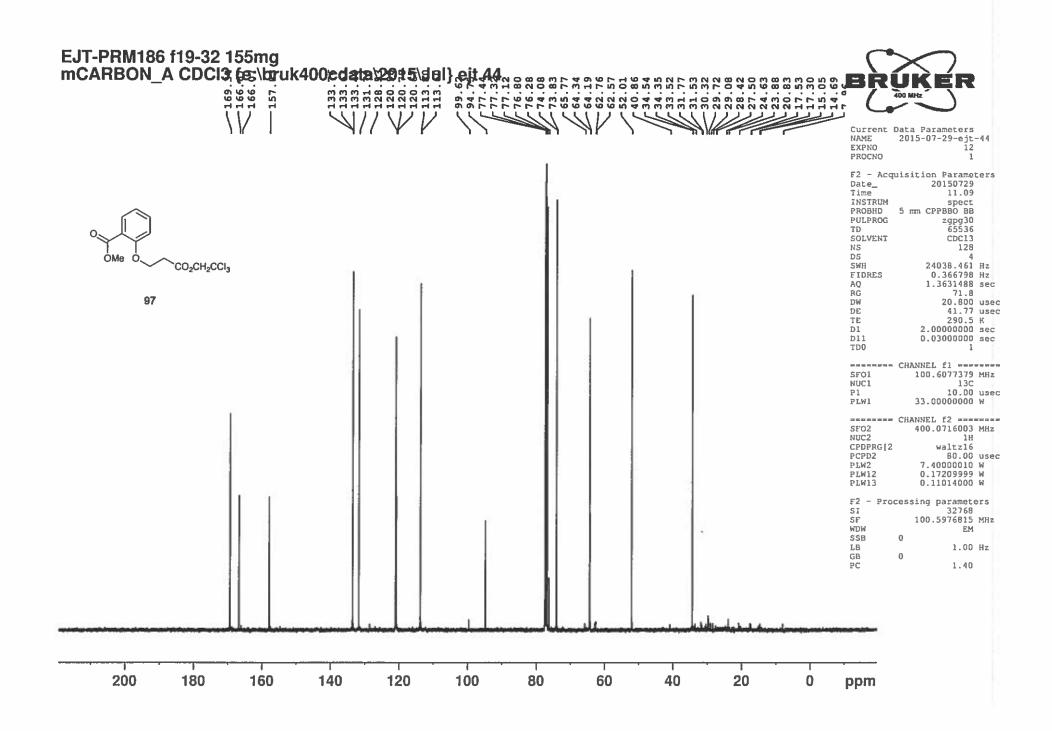


Acquisition Time (sec)	1,3631	Comment EJT-PRM190 f13-46 54mg mCARBON_B CDCl3 (e:\bruk400cdata\2015\Aug) ejt 6							
Date	21 Aug 2015 22:58:24			Date Stamp	21 Aug 2015 22:58:24		211111111111111111111111111111111111111		
File Name	\\ss7a.ds.man.ac.uk\vo	l5\vol3\users\snmrdata\bruk	400cdata\2015\Aug\da	ntalejtlnmr\2015-08-21-ejt-6	1\21\fid	Frequency (MHz)	100.60		
Nucleus	13C	Number of Transients	1000	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	45.20		
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10049.8789	Spectrum Type	STANDARD		
Sweep Width (Hz)	24037.73	Temperature (degree C)	18.170						

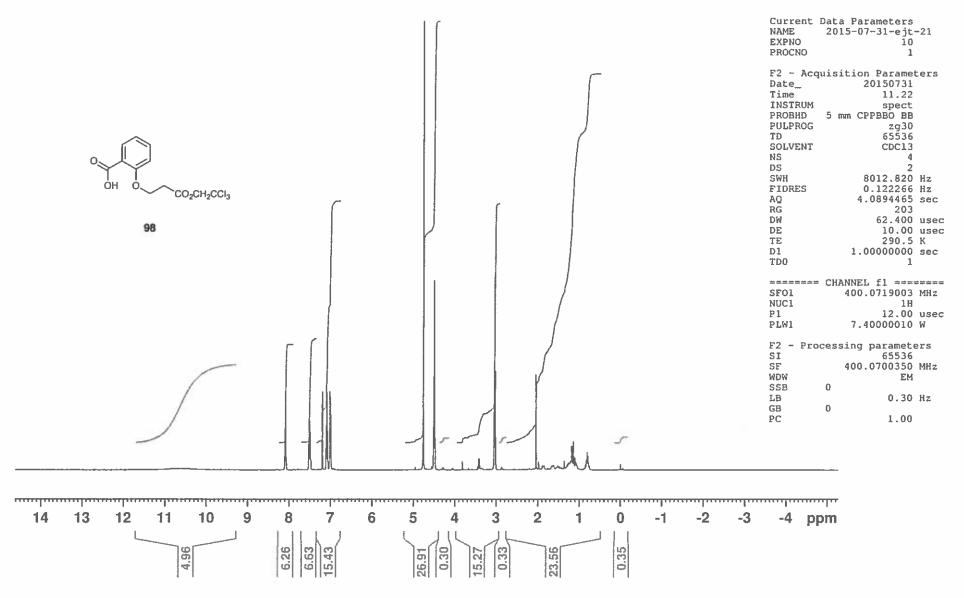

PRM190-CNMR.esp

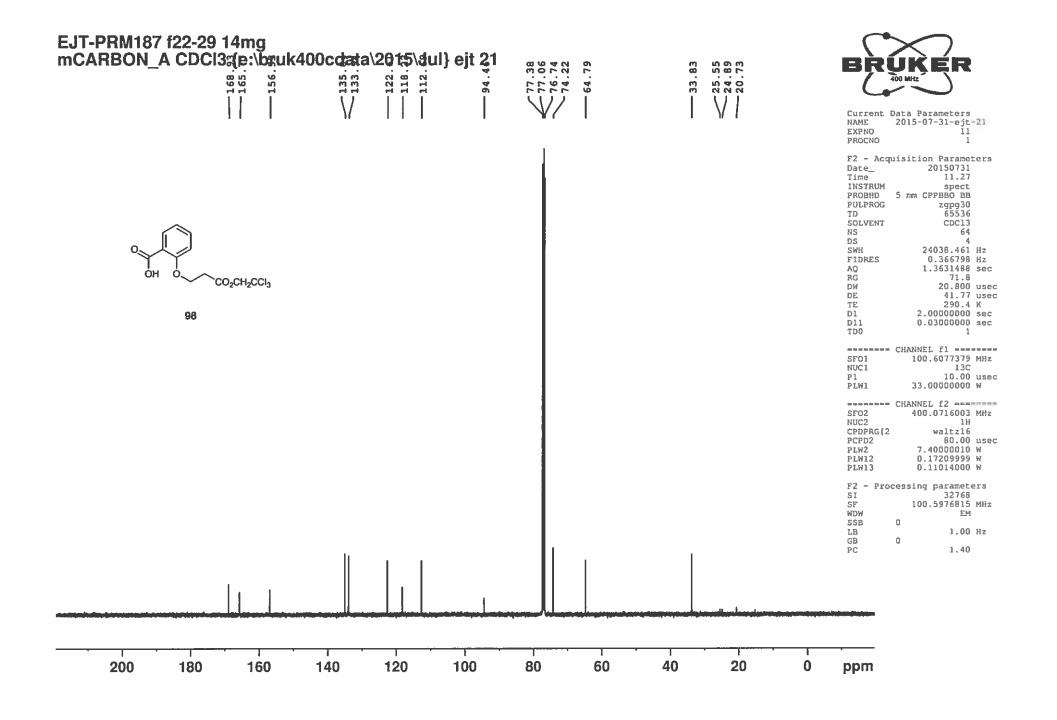
		To be seen as		The state of the s						
Acquisition Time (sec)	0.5767	Comment	EJT-PRM190 f7-19 1	11mg m19FCPD CDCl3 (E:\bruk500adata\2015\Aug) ejt 43						
Date	13 Aug 2015 14:32:48			Date Stamp	13 Aug 2015 14:32:48					
File Name			k500adata\2015\Aug\da	ata\ejt\nmr\2015-08-13-ejt-4	3\13\fid	Frequency (MHz)	470.59			
Nucleus	19F	Number of Transients	16	Origin	spect	Original Points Count	65536			
Owner	nmrsu	Points Count	65536	Pulse Sequence	zgfhigan	Receiver Gain	575.00			
SW(cyclical) (Hz)	113636.37	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	-47059.0234	Spectrum Type	STANDARD			
Style) chean (172)	110000.01	=	AE 000							




	Tino topers mas of			And the second s			•	
Acquisition Time (sec)	4.0894	Comment	EJT-PRM193 f11-18 5mg chloroform mPROTON_A CDCl3 {e:\bruk400cdata\2015\Aug} ejt 17					
Date	21 Aug 2015 15:56:00		21 Aug 2015 15:56:00					
File Name	\\ss7a.ds.man.ac.uk\vo	l5\vol3\users\snmrdata\brul	(400cdata\2015\Aug\data	\ejt\nmr\2015-08-21-ejt-17\	10\PDATA\1\1r	Frequency (MHz)	400.07	
Nucleus	1H	Number of Transients	4	Origin	spect	Original Points Count	32768	
Owner	nmrsu	Points Count	65536	Pulse Sequence	zg30	Receiver Gain	203.00	
SW(cyclical) (Hz)	8012.82	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	1894.6188	Spectrum Type	STANDARD	
011,00,000			1 40 074	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

EJT-PRM186 f19-32 155mg mPROTON_A CDCl3 {e:\bruk400cdata\2015\Jul} ejt 44





EJT-PRM187 f22-29 14mg mPROTON_A CDCl3 {e:\bruk400cdata\2015\Jul} ejt 21

