Towards 20,20-difluorinated bryostatin: synthesis and biological evaluation of C17,C27-fragments

Paul R. Mears, Steven Hoekman, Claire E. Rye, Fiona P. Bailey, Dominic P. Byrne, Patrick A. Eyers and Eric J. Thomas*

Supplementary data

Experimental procedures not included in the main text

General experimental details

Flash column chromatography was performed using Merck silica gel ($60 \mathrm{H}, 230-300$ mesh). Base washed silica was prepared by stirring silica in saturated aqueous potassium hydrogen carbonate for 24 h then rinsing with deionised water until the washings were pH 7 , followed by rigorous drying in an oven.

Light petroleum refers to the fraction boiling between 40 and $60^{\circ} \mathrm{C}$ and was redistilled. Tetrahydrofuran was dried over sodium-benzophenone and was distilled under nitrogen. Dichloromethane was dried over CaH_{2} and was distilled. Ether refers to diethyl ether. Reactions under non-aqueous conditions were carried out under an atmosphere of nitrogen or argon.

Mass spectra used electron impact ionisation (EI^{+}), chemical ionisation using ammonia (Cl^{+}), electrospray ionisation in the positive mode (ES^{+}), atmospheric pressure chemical ionisation in the positive mode (APCI^{+}) and time of flight MS with electrospray ionisation (TOF ES ${ }^{+}$). Low resolution mass spectra were recorded on a Waters SQD2 or on an Agilent 5975C Triple axis spectrometer. High resolution mass spectra were recorded using a Thermo Finnigan MAT95XP or on a Waters QTOF spectrometer. Infra-red spectra were measured using a Bruker Alpha P FTIR spectrometer on NaBr plates, either neat or as evaporated films. Nuclear magnetic resonance spectra were recorded using Bruker Avance 300, Bruker Ultrashield 400 or on Bruker Ultrashield 500 spectrometers at ca. $25^{\circ} \mathrm{C}$ unless otherwise stated. Coupling constants () are given in Hertz (Hz) and chemical shifts are relative to tetramethylsilane. Residual non-deuteriated solvent was used as the internal standard.

3-(Benzothiazol-2-ylsulfanyl)-2,2-dimethylpropanal (8). Triphenylphosphine ($18 \mathrm{~g}, 68 \mathrm{mmol}$) and 2-mercaptobenzothiazole (11.4 g , 68 mmol) was added to neopentyl glycol ($10 \mathrm{~g}, 96 \mathrm{mmol}$) in THF (150 mL) and the solution cooled to $0{ }^{\circ} \mathrm{C}$. Di-isopropyl azodicarboxylate (13.4 mL) in THF (200 mL) was added dropwise over 1 h and the solution stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and at rt for 16 h . Water (200 mL) was added followed by EtOAc (200 mL) and the aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The organic extracts were washed with aqueous $\mathrm{NaOH}(1 \mathrm{M}, 100 \mathrm{~mL})$ and brine (100 mL), dried (MgSO_{4}) and concentrated under reduced pressure. Chromatography of the residue ($90: 10$ light petroleum:EtOAc) gave 3-(benzothiazol-2-ylsulfanyl)-2,2-dimethylpropanol ($14.5 \mathrm{~g}, 84 \%$) as a colourless oil, $R_{\mathrm{f}}=0.8$ (EtOAc) (Found: Found: $\mathrm{M}^{+}+\mathrm{H}, 254.0667 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NOS}_{2}$ requires $\mathrm{M}, 254.0668$); $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.99\left(6 \mathrm{H}, \mathrm{s}, 2 \times 2-\mathrm{CH}_{3}\right), 3.27$ and 3.31 (each $2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}$ or $\left.3-\mathrm{H}_{2}\right), 5.10(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 7.23(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 8.0,1.6$, ArH$)$, $7.35(1 \mathrm{H}, \mathrm{td}, J 7.6,1.6, \mathrm{ArH})$ and 7.66 and 7.73 (each $1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.2,37.5,42.1,67.8,120.9,121.0$, 124.6, 126.3, 134.8, 152.0 and 169.9; $m / z\left(E S^{+}\right) 276\left(\mathrm{M}^{+}+23,100 \%\right)$ and $254\left(\mathrm{M}^{+}+1,32\right)$.

Dess-Martin periodinone ($2.5 \mathrm{~g}, 5.9 \mathrm{mmol}$) was added to this alcohol ($1.0 \mathrm{~g}, 3.95 \mathrm{mmol}$) in DCM (20 mL) and the mixture was stirred at rt for 16 h . Saturated aqueous sodium bisulfite (15 mL) and saturated sodium bicarbonate (15 mL) were added and the mixture stirred until gas evolution stopped. The aqueous layer was extracted with DCM ($3 \times 20 \mathrm{~mL}$) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (75:25 light petroleum:EtOAc) gave the title compound $\mathbf{8}\left(0.8 \mathrm{~g}, 81 \%\right.$) as a yellow oil, $R_{\mathrm{f}}=0.9$ (EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{H}, 252.0516$. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NOS}_{2}$ requires $\mathrm{M}, 252.0512$); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2976,1774,1726,1460,1428,1241,1095,1017$ and $757 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.18\left(6 \mathrm{H}, \mathrm{s}, 2 \times 2-\mathrm{CH}_{3}\right), 3.58\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right), 7.22$ and 7.33 (each $\left.1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0, \mathrm{ArH}\right), 7.67$ and 7.78 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$, ArH) and $9.57(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.3,31.0,39.1,121.1,121.4,124.4,126.1,135.3,152.8,166.7$ and $203.7 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$ $274\left(\mathrm{M}^{+}+23,100 \%\right)$ and $252\left(\mathrm{M}^{+}+1,52\right)$.

3-(Benzyloxymethyloxy)-2,2-dimethylpropanal (9). Di-isopropylethylamine ($3.9 \mathrm{~mL}, 22 \mathrm{mmol}$) and chloromethyl benzyl ether ($2.0 \mathrm{~mL}, 14 \mathrm{mmol}$) were added to neopentyl glycol $(3.0 \mathrm{~g}, 29 \mathrm{mmol})$ in DCM $(30 \mathrm{~mL})$ and the solution was stirred at rt for 16 h . Water (20 mL) was added and the aqueous layer was extracted with DCM $(3 \times 20 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (75:25 light petroleum:EtOAc) gave 3-benzyloxymethoxy-2,2-dimethylpropanol ($2.5 \mathrm{~g}, 81 \%$) as a colourless oil, $R_{\mathrm{f}}=0.35$ ($65: 35$ light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 247.1306$. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}$ requires $\mathrm{M}, 247.1305$); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3367,3029,2879,1578,1496,1457,1308,1207,1041,1023,908$ and $735 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95\left(6 \mathrm{H}, \mathrm{s}, 2 \times 2-\mathrm{CH}_{3}\right), 3.45$ and 3.47 (each $2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}$ or $\left.3-\mathrm{H}_{2}\right), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$ and $7.34-$ $7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.9,36.1,69.6,71.1,76.5,91.6,127.8,128.5$ and $137.6 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 247\left(\mathrm{M}^{+}+23,100 \%\right)$.

Molecular sieves (7.0 g), NMO ($1.65 \mathrm{~g}, 14 \mathrm{mmol}$) and TPAP ($82 \mathrm{mg}, 0.23 \mathrm{mmol}$) were added to this alcohol ($2.1 \mathrm{~g}, 9.4$ $\mathrm{mmol})$ in DCM (20 mL) and acetonitrile (5 mL) and the mixture stirred at rt for 2 h and then filtered through a pad of silica that was washed with DCM $(3 \times 30 \mathrm{~mL})$ and EtOAc $(3 \times 30 \mathrm{~mL})$. The filtrate and washings were concentrated under reduced
pressure and chromatography of the residue the gave title compound 9 ($1.52 \mathrm{~g}, 73 \%$) as a colourless oil, $R_{\mathrm{f}}=0.6$ (65 :35 light petroleum:EtOAc); $v_{\max } / \mathrm{cm}^{-1} 3032,2936,2877,1703,1474,1455,1157,1109,1044$ and $738 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.12(6 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{CH}_{3}$), $3.61\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right), 4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 7.31-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.56(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.0,46.8,69.5,72.7,94.8,127.8,127.9,128.4,137.6$ and $205.0 ; m / z\left(\mathrm{ES}^{+}\right) 245\left(\mathrm{M}^{+}+23,100 \%\right)$.

Ethyl 5-(2-benzothiazolylsulfanyl)-2,2-difluoro-3-hydroxy-4,4-dimethylpentanoate (12). Acid washed zinc powder ($0.9 \mathrm{~g}, 14 \mathrm{mmol}$) and copper(I) chloride (cat.) were added to THF (10 mL) under nitrogen and the suspension stirred at rt for 30 min . Ethyl bromodifluoroacetate $\mathbf{1 1}(1.3 \mathrm{~mL}, 10 \mathrm{mmol})$ was added followed, after 10 min , by 3-(2-benzothiazolyl)sulfanyl-2,2-dimethylpropanal $8(1.7 \mathrm{~g}, 6.8 \mathrm{mmol})$ in THF (5 mL). The mixture was stirred under reflux for 16 h then cooled to rt and diluted with EtOAc (20 mL). The black suspension was filtered through a plug of silica that was washed with ether ($4 \times 40 \mathrm{~mL}$). The filtrate was concentrated under reduced pressure and chromatography of the residue (80:20 light petroleum:ether) gave the title compound $12(2.11 \mathrm{~g}, 83 \%)$ as a yellow oil, $R_{\mathrm{f}}=0.55$ ($70: 30$ light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{H}, 376.0843 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~F}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}, 376.0848$); $v_{\text {max }} / \mathrm{cm}^{-1} 3182,2956,1775,1459,1428$, $1307,1074,1004$ and $756 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97\left(3 \mathrm{H}, \mathrm{t}, J 8.8, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.15\left(3 \mathrm{H}, \mathrm{d}, J 5.2,4-\mathrm{CH}_{3}\right), 1.23(3 \mathrm{H}, \mathrm{d}, J 2.8,4-$ CH_{3}), 2.69 and 3.91 (each $\left.1 \mathrm{H}, \mathrm{d}, J 14.4,5-\mathrm{H}\right), 4.03(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0,3-\mathrm{H}), 4.20-4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 6.66(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 8.0, \mathrm{OH}), 7.25$ and 7.33 (each $1 \mathrm{H}, \mathrm{td}, J 7.5,1.1, \mathrm{ArH}$) and $7.68-7.63(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.7,18.8,19.5,36.1,46.4,62.5,71.4$ ($\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CF}} 22$), 117.5 ($\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 251$), $120.5,121.2,124.9,126.5,134.7,151.6,164.1\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 30\right)$ and $170.4 ; \delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ -122.42 and -103.68 (each d, ${ }^{2} J_{\mathrm{F}-\mathrm{F}} 246.7$); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 398\left(\mathrm{M}^{+}+23,52 \%\right)$ and $376\left(\mathrm{M}^{+}+1,100\right)$.

Ethyl 5-benzyloxymethoxy-2,2-difluoro-3-hydroxy-4,4-dimethylpentanoate (13). Following the procedure outlined for the synthesis of the hydroxyester 12, zinc powder ($60 \mathrm{mg}, 0.9 \mathrm{mmol}$), copper(I) chloride, ethyl bromodifluoroacetate $11(0.11 \mathrm{~mL}, 0.59 \mathrm{mmol})$ and 3-benzyloxymethoxy-2,2-dimethylpropanal 9 ($0.1 \mathrm{~g}, 0.45 \mathrm{mmol}$), after heating under reflux for 36 h and chromatography ($85: 15$ light petroleum:EtOAc), gave the title compound 13 ($0.12 \mathrm{~g}, 75 \%$) as a colourless oil, $R_{\mathrm{f}}=0.6$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 369.1483. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~F}_{2} \mathrm{Na}$ requires $\mathrm{M}, 369.1485$); $v_{\max } / \mathrm{cm}^{-1} 3458,2942,2884,1759,1455,1308,1045,910$ and $740 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.09$ and 1.22 (each $3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}$), $1.37\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.40$ and 3.83 (each $\left.1 \mathrm{H}, \mathrm{d}, J 7.5,5-\mathrm{H}\right), 3.93-4.02(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{OH}), 4.36\left(2 \mathrm{H}, \mathrm{q}, J 6.2,0 \mathrm{OH}_{2}\right), 4.61$ and 4.62 (each $1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{PhHCH}$), 4.76 and 4.77 (each $1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{OHCHO}$) and 7.33-7.39 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) 14.0, 18.2, 21.0, 24.2, 62.9, 69.9, 76.5, 76.8, 94.8, $117.0\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 261\right), 127.9,128.5,137.3$ and $164.0\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 30\right) ; \delta_{\mathrm{F}}(376$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) -124.57 and -105.93 (each d, ${ }^{2}{ }_{\mathrm{FF-F}} 255.7$); $m / z\left(\mathrm{ES}^{+}\right) 369\left(\mathrm{M}^{+}+23,100 \%\right)$.

Ethyl 5-tert-butyldiphenylsilyloxy-2,2-difluoro-3-hydroxy-4,4-dimethylpentanoate (14). The procedure outlined for the synthesis of the hydroxyester 12 using zinc powder ($0.61 \mathrm{~g}, 9.4 \mathrm{mmol}$), copper(I) chloride, ethyl bromodifluoroacetate $\mathbf{1 1}(0.8 \mathrm{~mL}, 6.1 \mathrm{mmol})$ and 3-tert-butyldiphenylsilyloxy-2,2-dimethylpropanal $\mathbf{1 0}$ ($1.6 \mathrm{~g}, 4.7 \mathrm{mmol}$), after heating under reflux for 36 h , an aqueous extraction using ether (15 mL), water (10 mL) and aqueous hydrogen chloride ($1 \mathrm{M}, 10 \mathrm{~mL}$), and with extraction of the aqueous layer using ether ($3 \times 15 \mathrm{~mL}$), gave, after chromatography (90:10 light petroleum:EtOAc), the title compound $14(0.7 \mathrm{~g}, 78 \%)$ as a colourless oil, $R_{\mathrm{f}}=0.7$ ($70: 30$ light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+$ Na , 487.2089. $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 487.2087$); $v_{\text {max }} / \mathrm{cm}^{-1} 3445,2931,2858,1761,1724,1428,1305,1110,1071,820$ and 739; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10\left[15 \mathrm{H}, \mathrm{s}, 2 \times 4-\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.40$ and 3.89 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $12.0,5-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 24.0,3-\mathrm{H}), 4.39\left(2 \mathrm{H}, \mathrm{q}, J 8.0, \mathrm{OCH}_{2}\right.$), 7.38-7.44 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.70-7.76 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 13.9, 19.1, 23.8, 26.5, 26.8, 29.7, 38.0, 62.8, 73.4, 117.0 (t, ${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 258.0$), 127.7, 127.8, 129.6, 130.0, 132.1, 134.8, 135.6, 135.7 and 164.1 ($\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 31.5$); $m / z\left(\mathrm{ES}^{+}\right) 487\left(\mathrm{M}^{+}+23,100 \%\right)$.

Ethyl 5-(2-benzothiazolyl)sulfanyl-2,2-difluoro-4,4-dimethyl-3-triethylsilyloxypentanoate (15). 2,6-Lutidine $(1.3 \mathrm{~mL}, 11 \mathrm{mmol})$ and triethylsilyl triflate ($1.9 \mathrm{~mL}, 8.4 \mathrm{mmol}$) were added to the hydroxyester $\mathbf{1 2}(2.1 \mathrm{~g}, 5.6 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture stirred at rt for 24 h . Water (20 mL) was added and the aqueous layer was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (80:20 light petroleum:EtOAc) gave the title compound 15 ($2.05 \mathrm{~g}, 75 \%$) as a yellow oil, $R_{\mathrm{f}}=0.65$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{H}, 490.1717 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~F}_{2} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{M}, 490.1712$); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2955,1758,1459,1427$, $1307,1082,994,830$ and $726 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.61-0.66\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, J 7.6,3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05$ and 1.08 (each $3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}$), $1.30\left(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.38$ and 3.47 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0,5-\mathrm{H}\right), 4.13(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.26(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.8$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $7.22(1 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{ArH}), 7.34(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArH}), 7.67(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH})$ and $7.77(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) $5.4,6.9,13.9,22.7,23.3,39.5,42.8,63.1,76.8,115.2\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 255.0\right), 121.0,121.5,124.2,125.9,135.2,153.2,164.2\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}}\right.$ ${ }_{\mathrm{F}} 33.2$) and $167.3 ; \delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-111.42$ and -105.89 (each d, ${ }^{2} \mathrm{~J}_{\mathrm{FF}} 263.2$); $m / z\left(\mathrm{ES}^{+}\right) 512\left(\mathrm{M}^{+}+23,100 \%\right)$ and $490\left(\mathrm{M}^{+}\right.$ $+1,61$).

Ethyl 5-benzyloxymethoxy-2,2-difluoro-4,4-dimethyl-3-triethylsilyloxypentanoate (16). Following the procedure outlined for the preparation of the silyl ether 15, the hydroxyester $13(0.2 \mathrm{~g}, 0.58 \mathrm{mmol}), 2,6$-lutidine ($0.2 \mathrm{~mL}, 1.7$ mmol) and triethylsilyl triflate ($0.2 \mathrm{~mL}, 0.87 \mathrm{mmol}$) with stirring for 10 d , after chromatography (85:15 light petroleum:EtOAc) gave the title compound $16(0.24 \mathrm{~g}, 85 \%)$ as a colourless oil, $R_{\mathrm{f}}=0.75$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 483.2337 . \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 483.2349$); $v_{\max } / \mathrm{cm}^{-1} 2972,2878,1760,1455,1379,1306,1086$, $1046,879,834$ and $732 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.65-0.69\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}\right), 0.92-1.03\left[15 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{CH}_{3}, 3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.37$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.31$ and 3.44 (each $\left.1 \mathrm{H}, \mathrm{d}, J 10.0,5-\mathrm{H}\right), 4.24-4.34\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{OCH}_{2}\right), 4.58$ and 4.62 (each $1 \mathrm{H}, \mathrm{d}, J 10.0$,

PhHCH), 4.73 and 4.75 (each $1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{OHCHO}$) and $7.32-7.37$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.1,6.8,13.8,18.0,20.5$, $21.2,38.9,62.7,69.3,74.7,75.1,94.7,115.7$ ($\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 261$), $127.7,127.8,128.4,137.8$ and $164.4\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 30\right)$; $\delta_{\mathrm{F}}(376 \mathrm{MHz})$ -111.35 and -106.22 (each d, ${ }^{1} J_{\mathrm{F}-\mathrm{F}} 263.2$); $m / \mathrm{z}\left(\mathrm{ES}^{+}\right) 483\left(\mathrm{M}^{+}+23,75 \%\right)$ and 369 (100).

Ethyl 5-tert-butyldiphenylsilyloxy-2,2-difluoro-4,4-dimethyl-3-triethylsilyloxypentanoate (17). Following the procedure outlined for the preparation of the silyl ether 15, the hydroxyester $\mathbf{1 4}(0.2 \mathrm{~g}, 0.43 \mathrm{mmol}), 2,6$-lutidine (0.12 $\mathrm{mL}, 1.0 \mathrm{mmol}$) and triethylsilyl triflate ($0.2 \mathrm{~mL}, 0.86 \mathrm{mmol}$) with stirring for 10 days, after chromatography ($85: 15$ light petroleum:EtOAc) gave the title compound $17(0.23 \mathrm{~g}, 94 \%)$ as a colourless oil, $R_{\mathrm{f}}=0.8$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 601.2957. $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{~F}_{2} \mathrm{Si}_{2} \mathrm{Na}$ requires $\mathrm{M}, 601.2952$); $v_{\max } / \mathrm{cm}^{-1} 2886,1670,1432,1243$ and 1032 ; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.50-0.62\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}\right), 0.88-0.97\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.07-1.10\left[15 \mathrm{H}, \mathrm{s}, 2 \times 4-\mathrm{CH}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.34(3 \mathrm{H}$, $\mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.30 and 3.50 (each $1 \mathrm{H}, \mathrm{d}, J 12.0,5-\mathrm{H}$), 4.27-4.39 ($\left.3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{OCH}\right)_{2}$), 7.38-7.45 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.64-7.67 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 601\left(\mathrm{M}^{+}+23,10 \%\right), 565$ (50) and 487 (100).

6-(2-Benzothiazolyl)sulfanyl-3,3-difluoro-5,5-dimethyl-4-triethylsilyloxyhexan-2-one (18). Methyllithium $(1.0 \mathrm{M}, 4.0 \mathrm{~mL}, 4.0 \mathrm{mmol})$ was added to the ester $\mathbf{1 5}(1.3 \mathrm{~g}, 2.66 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 5.5 h . Water (20 mL) was added followed by ether (20 mL) and the aqueous layer was extracted with ether ($3 \times$ $10 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (90:10 light petroleum:EtOAc) gave the title compound 18 ($0.93 \mathrm{~g}, 77 \%$) as a yellow oil, $R_{\mathrm{f}}=0.7$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{H}, 460.1617 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~F}_{2} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{M}, 460.1607$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 0.61-0.67 ($6 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{SiCH}_{2}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.4,3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.03$ and 1.05 (each $\left.3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 1.8,1-\mathrm{H}_{3}\right), 3.49$ and 3.53 (each 1 H , d, J 12.0, 6-H), $4.14(1 \mathrm{H}, \mathrm{t}, J 12.8,4-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{td}, J 8.4,1.2, \mathrm{ArH}), 7.33(1 \mathrm{H}, \mathrm{td}, J 7.8,1.2, \mathrm{ArH}), 7.67(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH})$ and 7.77 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 5.1, 6.9, 23.1, 23.5, 26.2, 31.0, 39.4, 42.7, 76.6, 116.9, 121.0, 121.4, 124.2 126.0, $135.3,153.1,167.3$ and $199.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 30\right)$; $\delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-110.73$ and -107.56 (each d, ${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 270.7$); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 482\left(\mathrm{M}^{+}+\right.$ $23,100 \%)$ and $460\left(\mathrm{M}^{+}+1,55\right)$.

Methyllithium ($1.0 \mathrm{M}, 0.07 \mathrm{~mL}, 0.7 \mathrm{mmol})$ was added to the ester $15(0.13 \mathrm{~g}, 0.27 \mathrm{mmol})$ in THF (2 mL) at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred at rt for 1.5 h . Water (10 mL) was added followed by ether (10 mL) and the aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (80:20 light petroleum:ether) gave 6-(2-benzothiazolyl)sulfanyl-3,3-difluoro-4-triethylsilyloxy-2,5,5-trimethylhexan-2-ol ($86 \mathrm{mg}, 72 \%$) as a colourless oil, $R_{\mathrm{f}}=0.5$ (70:30 light petroleum:EtOAc) (Found: M^{+} $+\mathrm{H}, 476.1922 . \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{~F}_{2} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{M}, 476.1920$); $v_{\text {max }} / \mathrm{cm}^{-1} 3452,2954,1536,1458,1428,1238,1159,1070,1003$ and $740 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.44-0.46\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}\right), 0.74\left(9 \mathrm{H}, \mathrm{t}, J 10.0,3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.14$ and 1.19 (each $\left.3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 1.28$ and 1.31 (each $3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}$ or $2-\mathrm{CH}_{3}$), 3.01 and 3.86 (each $\left.1 \mathrm{H}, \mathrm{d}, J 15.0,6-\mathrm{H}\right), 4.15(1 \mathrm{H}, \mathrm{dd}, J 20.0,5.0,4-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{d}, J 5.0$, OH), 7.22 and 7.34 (each $1 \mathrm{H}, \mathrm{t}, J 10.0, \mathrm{ArH}$) and 7.66 and 7.73 (each $1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{ArH}$); $\delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-124.40$ and -113.61 (each d, ${ }^{2} J_{\text {FFF }} 225.6$); $m / z\left(\mathrm{ES}^{+}\right) 476$ ($\left.\mathrm{M}^{+}+1,100 \%\right)$.

6-Benzyloxymethyloxy-3,3-difluoro-5,5-dimethyl-4-triethylsilyloxyhexan-2-one (19). Following the procedure outlined for the synthesis of the ketone 18 , the ester $16(50 \mathrm{mg}, 0.11 \mathrm{mmol})$ in THF (2 mL) and methyllithium (1.0 $\mathrm{M}, 0.16 \mathrm{~mL}, 0.16 \mathrm{mmol}$), after chromatography ($90: 10$ light petroleum: EtOAc) gave the title compound 19 ($44 \mathrm{mg}, 86 \%$) as a yellow oil, $R_{f}=0.7$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 453.2245. $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~F}_{2}$ SiNa requires M, 453.2244); $v_{\max } / \mathrm{cm}^{-}$ ${ }^{1} 2993,2864,1783,1432,1304,1048,1032$ and 728 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.53-0.82\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}\right), 0.93-1.03(15 \mathrm{H}, \mathrm{m}, 2$ $\times 5-\mathrm{CH}_{3}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.36\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.34$ and 3.37 (each $\left.1 \mathrm{H}, \mathrm{d}, J 8.0,6-\mathrm{H}\right), 4.26(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.56$ and 4.62 (each $1 \mathrm{H}, \mathrm{d} J$ $12.0, \mathrm{PhHCH}), 4.70$ and 4.72 (each $1 \mathrm{H}, \mathrm{d} \mathrm{J} 8.0, \mathrm{OHCHO}$) and $7.27-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.0,6.8,17.9,20.9$, $21.6,26.0,38.8,69.4,74.2,74.8\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 24\right), 94.5,117.1\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 257.0\right), 127.7,127.8,128.4,137.7$ and $199.4\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 30.5\right)$; δ_{F} ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -109.85 and -108.48 (each d, ${ }^{2} \mathrm{~J}_{\mathrm{FF}-\mathrm{F}}, 270.7$); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 453\left(\mathrm{M}^{+}+23,100 \%\right)$.

6-tert-Butyldiphenylsilyloxy-3,3-difluoro-5,5-dimethyl-4-triethylsilyloxyhexan-2-one (20). Following the procedure outlined for the synthesis of the ketone $\mathbf{1 8}$, the ester $\mathbf{1 7}(0.5 \mathrm{~g}, 0.8 \mathrm{mmol})$ in THF (20 mL) and methyllithium (1.0 $\mathrm{M}, 1.3 \mathrm{~mL}, 1.3 \mathrm{mmol}$), after chromatography ($90: 10$ light petroleum: EtOAc) gave the title compound 20 ($0.22 \mathrm{~g}, 55 \%$) as a colourless oil, $R_{\mathrm{f}}=0.8$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 571.2854. $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{Si}_{2} \mathrm{Na}$ requires M, 571.2846); $v_{\max } / \mathrm{cm}^{-1} 2980,1724,1423,1201$ and $1109 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.55-0.65\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}\right), 0.92(9 \mathrm{H}, \mathrm{t}, J 6.0,3 \times$ $\left.\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.09\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 1.12\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.28\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 3.35$ and 3.48 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $10.0,6-\mathrm{H}), 4.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.0,4-\mathrm{H}), 7.37-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.66-7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.5,6.9,19.2$, $19.4,20.9,26.2,26.9,40.1,70.0,74.3\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 32\right), 127.4,127.6,134.3,134.4,135.1,135.5,135.8,135.9$ and $199.8\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 30\right)$; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 571\left(\mathrm{M}^{+}+23,100 \%\right)$.

6-Benzyloxymethoxy-3,3-difluoro-4-triethylsilyloxy-2,5,5-trimethylhex-1-ene (21). Potassium

 hexamethyldisilazide (1.0 M in $\mathrm{THF}, 0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}$) was added to methyl(triphenyl)phosphonium bromide (0.2 g , 0.56 $\mathrm{mmol})$ in toluene (2 mL) at $0^{\circ} \mathrm{C}$ and the solution was stirred for 30 min . The ketone $19(80 \mathrm{mg}, 0.19 \mathrm{mmol})$ in toluene (1 mL) was added and the mixture was stirred at rt for 48 h . Water (2 mL) was added followed by EtOAc (5 mL) and the aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue ($90: 10$ light petroleum:ether) gave the title compound $\mathbf{2 1}$ ($60 \mathrm{mg}, 75 \%$) as a colourless oil, $R_{\mathrm{f}}=0.9$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 451.2458. $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 451.2451$);$v_{\max } / \mathrm{cm}^{-1} 2954,2877,1455,1379,1239,1159,1105,1047,1025,1002,921,833$ and $729 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 0.65-0.71(6 $\mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}$), $0.96-1.03\left(15 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{CH}_{3}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.91\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.31$ and 3.41 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0,6-\mathrm{H}\right), 4.05$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12.0,4-\mathrm{H}$), 4.57 and 4.64 (each $1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{PhHCH}$), 4.74 and 4.75 (each H, d, J 7.0, OHCHO), 5.15 and 5.40 (each 1 $\mathrm{H}, \mathrm{s}, 1-\mathrm{H}$) and $7.28-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.0,7.0,19.1,20.6,21.1,30.3,38.8,69.3,75.0,76.6$ ($\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C} \text { - }} 24.0$), 94.7, 116.2 ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 9.0$), $121.3\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 245.6\right), 127.7,127.8,128.4,137.9$ and $140.6\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 24.0\right)$; $\delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-98.90$ and -98.69 (each d, ${ }^{2} J_{\text {F-F }} 244$); $m / z\left(\mathrm{ES}^{+}\right) 451\left(\mathrm{M}^{+}+23,100 \%\right)$.

6-tert-Butyldiphenylsilyloxy-3,3-difluoro-4-triethylsilyloxy-2,5,5-trimethylhex-1-ene (22). Following the procedure outlined for the synthesis of the alkene 21, methyl(triphenyl)phosphonium bromide ($0.16 \mathrm{~g}, 0.45 \mathrm{mmol}$) in toluene (2 mL), potassium hexamethyldisilazide (1.0 M in $\mathrm{THF}, 0.41 \mathrm{~mL}, 0.41 \mathrm{mmol}$) and the ketone $20(84 \mathrm{mg}, 0.15 \mathrm{mmol})$ in toluene (1 mL), after chromatography ($90: 10$ light petroleum:EtOAc) gave the title compound 22 ($61 \mathrm{mg}, 73 \%$) as a colourless oil, $R_{\mathrm{f}}=0.9$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 569.3050. $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{Si}_{2} \mathrm{Na}$ requires M, 569.3054); $v_{\text {max }} / \mathrm{cm}^{-1} 2955,1466,1107$ and 826 ; $\delta_{\text {H }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.55-0.67\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}\right), 0.92-0.98\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.11$ $\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 1.13\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.30\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 1.89\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 3.40$ and 3.51 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0,6-\mathrm{H}\right), 4.09(1$ $\mathrm{H}, \mathrm{t}, J 8.0,4-\mathrm{H}), 5.08$ and 5.33 (each $1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 7.35-7.48(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.68-7.73(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.9$, $7.0,19.1,19.3,20.5,26.9,40.3,70.2,72.9,74.1,116.1,121.2\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 23\right), 127.4,128.6,129.6,132.0,135.7,137.3$ and $140.6 ; \delta_{\mathrm{F}}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -98.9 and -98.2 (t, ${ }^{2} J_{\mathrm{FFF}} 248$); $m / z\left(\mathrm{ES}^{+}\right) 569\left(\mathrm{M}^{+}+23,20 \%\right)$ and 293 (100).

2-Bromomethyl-6-tert-butyldiphenylsilyloxy-3,3-difluoro-4-triethylsilyloxy-5,5-dimethylhex-1-ene (23). N Bromosuccinimide ($12 \mathrm{mg}, 0.065 \mathrm{mmol}$) was added to the alkene 22 ($30 \mathrm{mg}, 0.055 \mathrm{mmol}$) in chloroform (1 mL). The suspension was exposed to UV light for 10 min and then heated under reflux for 24 h . After cooling to rt, the mixture was concentrated under reduced pressure. Chromatography of the residue ($90: 10$ light petroleum: EtOAc) gave the title compound 23 ($25 \mathrm{mg}, 72 \%$) as a colourless oil, $R_{\mathrm{f}}=0.9$ (70:30 light petroleum:EtOAc) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 647.2169 . \mathrm{C}_{31} \mathrm{H}_{47} \mathrm{O}_{2}{ }^{79} \mathrm{BrF}_{2} \mathrm{Si}_{2} \mathrm{Na}$ requires $\mathrm{M}, 647.2159$; Found: $\mathrm{M}^{+}+\mathrm{Na}$, 649.1790. $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{O}_{2}{ }^{81} \mathrm{BrF}_{2} \mathrm{Si}_{2} \mathrm{Na}$ requires $\mathrm{M}, 649.2159$); $v_{\max } / \mathrm{cm}^{-1} 2956,2876,1471$, $1428,1107,1078,1006,822,739$ and 700 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.57-0.64\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{SiCH}_{2}\right), 0.88-0.96(9 \mathrm{H}, \mathrm{m}, 3 \times$ $\left.\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right], 1.08\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.11$ and 1.27 (each $\left.3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 3.32-3.49\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 4.06-4.11\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 2-\mathrm{CH}_{2}\right)$, 5.67-5.70 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}$), $7.38-7.45(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.64-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-98.96$ and -91.89 (each d, $\left.{ }^{2} J_{\mathrm{FF}-\mathrm{F}} 256\right) ; m / z\left(\mathrm{ES}^{+}\right) 649\left(\mathrm{M}^{+}+23,20 \%\right), 647\left(\mathrm{M}^{+}+23,5\right)$ and 258 (100).

2-Iodo-4-tert-butyldimethylsilyloxyhex-1-ene (29). Trimethylsilyl chloride ($0.52 \mathrm{~mL}, 4.0 \mathrm{mmol}$) and water ($0.037 \mathrm{~mL}, 2.0$ $\mathrm{mmol})$ were added to sodium iodide ($0.62 \mathrm{~g}, 4.0 \mathrm{mmol}$) in acetonitrile (4 mL) and the yellow suspension was stirred at rt for 20 min . Hex-5-yn-3-ol $27(0.2 \mathrm{~mL}, 1.8 \mathrm{mmol})$ in acetonitrile (1 mL) was added dropwise and the mixture stirred for 4 h . Water (5 mL) was added and the mixture was extracted with ether $(3 \times 10 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (light petroleum to 90:10 light petroleum:EtOAc) gave 5-iodohex-5-en-3-ol 28 ($0.33 \mathrm{~g}, 80 \%$) as a colourless oil, $R_{\mathrm{f}}=0.55$ (70:30 light petroleum:EtOAc); $v_{\max } / \mathrm{cm}^{-1} 3402,2964,2933$, $1710,1617,1461,1205,1113,1021,979$ and 899 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.00\left(3 \mathrm{H}, \mathrm{t}, J 8.0,1-\mathrm{H}_{3}\right), 1.56\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.63(1 \mathrm{H}$, br. s, OH), $2.46(1 \mathrm{H}, \mathrm{dd}, J 12.0,8.0,4-\mathrm{H}), 2.56\left(1 \mathrm{H}, \mathrm{dd}, J 12.0,3.0,4-\mathrm{H}^{\prime}\right), 3.82(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and 5.86 and 6.18 (each $\left.1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.9,28.9,52.4,71.3,107.7$ and 128.7 .

Imidazole ($0.21 \mathrm{~g}, 3.1 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($0.26 \mathrm{~g}, 1.7 \mathrm{mmol}$) were added to 5 -iodohex-5-en3 -ol $28(0.32 \mathrm{~g}, 1.4 \mathrm{mmol})$ in DCM (10 mL) and the solution stirred at rt for 24 h . Water (10 mL) was added, the aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$) and the organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (90:10 light petroleum:EtOAc) gave the title compound 29 ($0.36 \mathrm{~g}, 75 \%$) as a pale yellow oil, $R_{\mathrm{f}}=0.6$ (70:30 light petroleum:EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2956,2928,2856,1618,1462,1361,1252,1101,1033,894,835$ and 774; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.09$ and 0.10 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.87-0.90\left[12 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.44-1.56\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right)$, 2.47-2.51 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $3.86(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and 5.74 and 6.07 (each $\left.1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.6,-4.4,9.2,18.1,25.8$, 29.1, 52.4, 71.8, 108.7 and 127.8 .

Ethyl 5-tert-butyldimethylsilyloxy-2,2-difluoro-3-methyleneheptanoate (30). Copper powder ($65 \mathrm{mg}, 1.02$ mmol) was added to a vigorously stirred solution of ethyl 2-iodo-2,2-difluoroacetate $25(0.025 \mathrm{~mL}, 0.170 \mathrm{mmol}$) in anhydrous DMSO (0.20 mL). After 3 h , the alkenyl iodide 29 ($19 \mathrm{mg}, 0.057 \mathrm{mmol}$) in anhydrous DMSO (0.20 mL) was added and the mixture stirred 1.25 h . A mixture of ice and saturated aqueous ammonium chloride ($1: 1,10 \mathrm{~mL}$) was added followed by ether (10 mL). The aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$) and the organic extracts were filtered through Celite ${ }^{\circledR}$ using ether (20 mL). The filtrate was washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using base-washed silica (0.5:99.5 to 1:99 ether:light petroleum) gave the title compound $\mathbf{3 0}$ ($8 \mathrm{mg}, 0.024 \mathrm{mmol}, 8 \%$) as a colourless oil, $R_{\mathrm{f}}=0.27$ (1:99 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{H}, 337.2005$. $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{Si}$ requires $\mathrm{M}, 337.2005$); $v_{\max } / \mathrm{cm}^{-1} 2958,2929,2857,1768,1464,1372,1292,1255,1077,1006,837$ and 775 ; δ_{H} $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 0.89\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,7-\mathrm{H}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.40-$ $1.56\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.31\left(2 \mathrm{H}, \mathrm{d}, J 6.2,4-\mathrm{H}_{2}\right), 3.80(1 \mathrm{H}$, pent, $J 6.2,5-\mathrm{H}), 4.33\left(2 \mathrm{H}, \mathrm{q}, J 7.0,0 \mathrm{CH}_{2}\right)$ and 5.40 and 5.60 (each $1 \mathrm{H}, \mathrm{t}$, $J 1.9,3-\mathrm{CH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.6,-4.5,9.2,13.9,18.0,25.9,29.4,37.7,63.0,71.5,114.0\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 252.1\right), 120.5\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 8.2\right)$, $137.7\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 22.8\right)$ and $163.9\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 34.6\right) ; \delta_{\mathrm{F}}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-106.99$ and -105.25 (both d, $\left.J_{\mathrm{FFF}} 253.4\right) ; \mathrm{m} / e\left(\mathrm{ES}^{+}\right) 359.2\left(\mathrm{M}^{+}\right.$ $+23,50 \%$) and 210.2 (100). This capricious reaction required copper powder that was very fine, bronze-pink in colour and extremely lustrous, anhydrous solvent and vigorous stirring, to generate the active copper-reagent species.

This procedure gave ethyl (E)-2,2-difluoro-5-tert-butyldimethylsilyloxy-3-(tert-butyldimethylsilyloxymethyl)pent3 -enoate 33 ($3 \mathrm{mg}, 0.007 \mathrm{mmol}, 12 \%$) as a colourless oil (Found: $\mathrm{M}^{+}+\mathrm{H}, 439.2510 . \mathrm{C}_{20} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{~F}_{2} \mathrm{Si}_{2}$ requires $\mathrm{M}, 439.2511$); $v_{\max } / \mathrm{cm}^{-1} 2954,2931,2886,2858,1769,1472,1255,1095,836$ and $778 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.07$ and 0.09 (each $6 \mathrm{H}, \mathrm{s}, 2 \times$ SiCH_{3}), 0.89 and 0.91 [each $9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $1.34\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.29\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 4.29\left(2 \mathrm{H}, \mathrm{q}, J 7.3,0 \mathrm{OH}_{2} \mathrm{CH}_{3}\right)$, 4.39-4.42 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$) and $6.39(1 \mathrm{H}, \mathrm{t}, J 6.3,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.7,-5.3,13.9,18.3(2), 25.8,25.9,57.4,59.7,62.7$, $113.0\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 251.1\right), 130.6\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 21.4\right), 135.6\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 8.8\right)$ and $163.6\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 34.6\right) ; \delta_{\mathrm{F}}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-106.47 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$ 461.3 ($\mathrm{M}^{+}+23,100 \%$).

This procedure gave ethyl (E)-2,2-difluoro-5-tert-butyldiphenylsilyloxy-3-(tert-butyldiphenylsilyloxymethyl)pent-3enoate $34(4 \mathrm{mg}, 0.006 \mathrm{mmol}, 14 \%)$ as a colourless oil, $R_{\mathrm{f}}=0.39$ ($5: 95$ ether:light petroleum); $v_{\max } / \mathrm{cm}^{-1} 3072,2957,2930$, $2857,1769,1472,1428,1290,1112,1022,844,740$ and $702 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.92$ and 1.01 [each $\left.9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.29$ ($3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.02\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 4.21-4.28\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.32(1 \mathrm{H}, \mathrm{t}, J 5.6,4-\mathrm{H}), 7.26-7.44(12 \mathrm{H}, \mathrm{m}$, ArH) and 7.53 and 7.59 (each $4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0,1.5, \mathrm{ArH}$); $\delta_{\mathrm{F}}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-105.74 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 704.5\left(\mathrm{M}^{+}+18,100 \%\right)$.

2-Difluoromethylenedecan-1-ol (54). Methyllithium (1.6 M in ether, $0.37 \mathrm{~mL}, 0.60 \mathrm{mmol}$) was added dropwise to the ketone 52^{28} ($68 \mathrm{mg}, 0.30 \mathrm{mmol}$) and di-iodomethane ($0.048 \mathrm{~mL}, 0.60 \mathrm{mmol}$) in dry THF (1.8 mL) at $-78{ }^{\circ} \mathrm{C}$ and the mixture allowed to warm to rt over 30 min then cooled to $-78^{\circ} \mathrm{C}$. tert-Butyllithium (1.7 M in pentane, $5.15 \mathrm{mmol}, 3.03 \mathrm{~mL}$) was added and the mixture was stirred at rt for 16 h . Aqueous hydrogen chloride ($1 \mathrm{M}, 20 \mathrm{~mL}$) and ether (20 mL) were added and the aqueous phase was extracted with ether ($3 \times 20 \mathrm{~mL}$). The organic extracts were washed with brine (80 mL), dried (MgSO_{4}) and concentrated under reduced pressure. Chromatography of the residue (1:99 to 5:95 ether:light petroleum) gave the title compound 54 ($94 \mathrm{mg}, 0.46 \mathrm{mmol}, 44 \%$) as a colourless oil, $R_{\mathrm{f}}=0.18$ ($10: 90$ ether:light petroleum) (Found: $\mathrm{M}^{+}, 206.1477$. $\mathrm{C}_{11} \mathrm{H}_{20} 0 \mathrm{FF}_{2}$ requires $\mathrm{M}, 206.1477$); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3333,2955,2925,2856,1746,1466,1264,1001$ and $730 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,10-\mathrm{H}_{3}\right), 1.20-1.35\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.40-1.48\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.96(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 2.09\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $4.14\left(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.0,22.6,24.4,27.5,29.2(2), 29.3,31.8,57.7,90.0\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 16.4,13.7\right)$ and $154.2(\mathrm{t}$, ${ }^{1} J_{\text {C-F }} 288.5$); $\delta_{\mathrm{F}}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-93.14$ and -92.87 (both d, ${ }^{2} \mathrm{~J}_{\mathrm{FF}} 48.1$).

1-Bromo-2-(difluoromethylene)decane (55). Dimethyl sulfide ($0.094 \mathrm{~mL}, 1.280 \mathrm{mmol}$) was added to N bromosuccinimide ($0.185 \mathrm{~g}, 1.04 \mathrm{mmol}$) in dry DCM $(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture stirred for 10 min then cooled to $-20^{\circ} \mathrm{C}$. The alcohol 54 ($0.143 \mathrm{~g}, 0.693 \mathrm{mmol}$) in DCM (3 mL) was added and the mixture stirred at rt for 16 h . Saturated aqueous sodium hydrogen carbonate (10 mL) and DCM (10 mL) were added and the aqueous phase was extracted with DCM $(3 \times 10$ $\mathrm{mL})$. The organic extracts were washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (light petroleum) gave the title compound $\mathbf{5 5}(0.12 \mathrm{~g}, 0.435 \mathrm{mmol}, 63 \%)$ as a colourless oil, R_{f} $=0.41$ (light petroleum); $v_{\max } / \mathrm{cm}^{-1} 2956,2925,2856,1735,1465,1290,1223,1188$ and $1058 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.0,10-\mathrm{H}_{3}\right), 1.25-1.35\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.46\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.14\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $4.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{F}} 1.9,1-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 14.0, 22.6, 25.2, $27.1(\mathrm{~m}), 27.8\left(\mathrm{dd},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 7.4,1.8\right), 29.1,29.2,29.3,31.8,89.0\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 22.0,12.9\right)$ and $153.9\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}\right.$ 291.2); $\delta_{\mathrm{F}}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-89.64$ and -88.32 (both d, ${ }^{2} J_{\mathrm{FFF}} 35.5$).

Following this procedure, N-bromosuccinimide ($63 \mathrm{mg}, 0.36 \mathrm{mmol}$) in DCM (1.38 mL), dimethyl sulfide (0.032 mL , $0.44 \mathrm{mmol})$ and the alcohol $54(49 \mathrm{mg}, 0.237 \mathrm{mmol})$ in DCM (1 mL) with heating the crude product in toluene $-d_{8}(0.5 \mathrm{~mL})$ under reflux for 16 h gave, after chromatography (light petroleum) a mixture ($57 \mathrm{mg}, 0.212 \mathrm{mmol}, 89 \%$) of the title compound 55 and 2-(bromodifluoromethyl)dec-1-ene 56 as a colourless oil, 55:56 = 20:80; $v_{\max } / \mathrm{cm}^{-1} 2956,2926,2856$, $1738,1465,1131,1114,1101,926$ and 895 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ isomer $560.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,10-\mathrm{H}_{3}\right), 1.25-1.41(10 \mathrm{H}, \mathrm{m}, 5 \times$ $\left.\mathrm{CH}_{2}\right), 1.56\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.28\left(2 \mathrm{H}, \mathrm{t}, J 7.9,3-\mathrm{H}_{2}\right), 5.17\left(1 \mathrm{H}, \mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 1.6,1-\mathrm{H}\right)$ and $5.60\left(1 \mathrm{H}, \mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 1.0,1-\mathrm{H}^{\prime}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) 14.1, 22.7, 27.4, 29.2(2), 29.2, 29.4, 29.7, 31.8, $114.3\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 7.4\right), 119.7\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 306.7\right)$ and $145.4\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C} \text { - }} 19.3\right)$; $\delta_{\mathrm{F}}(377$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-48.43$.

Difluorinated alcohols 57: general procedure. Indium powder ($43 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added to a vigorously stirred solution of 1-bromo-2-(difluoromethylene)decane 55 ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) in DMF (1.0 mL) in a 10 mL Schlenk tube. After 10 min , the aldehyde (0.41 mmol) was added and the mixture stirred for 14 h . Aqueous hydrogen chloride ($10 \%, 10$ mL) and ether (10 mL) were added and the aqueous phase was extracted with ether ($3 \times 30 \mathrm{~mL}$). The organic extracts were washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (light petroleum to 5:95 ether:light petroleum) gave the alcohols 57 as colourless oils.

2,2-Difluoro-3-methylene-1-phenylundecan-1-ol 57 a . ($46 \mathrm{mg}, 0.155 \mathrm{mmol}, 84 \%$), $R_{\mathrm{f}}=0.14$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}$, 314.2285. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NOF}_{2}$ requires $\mathrm{M}, 314.2290$; $v_{\max } / \mathrm{cm}^{-1} 3380,2954,2925,2855,1455,1164$, $1086,1060,1026,920$ and $743 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, J 7.0,11-\mathrm{H}_{3}\right), 1.23-1.33\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.43(2 \mathrm{H}, \mathrm{m}, 5-$ H_{2}), 1.89-2.00 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$), $2.43(1 \mathrm{H}$, br. s, OH$), 4.93\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 11.0,1-\mathrm{H}\right), 5.18$ and 5.31 (each $\left.1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}\right), 7.33-7.38(3 \mathrm{H}$, m, ArH) and 7.40-7.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1,22.6,27.6,29.2(2), 29.3,30.5\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 2.9\right), 31.8,75.4\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$
 $\left.\mathrm{CDCl}_{3}\right)-109.53 ; \mathrm{m} / \mathrm{z}(\mathrm{APCI}) 314.2\left(\mathrm{M}^{+}+18,100 \%\right)$.

2,2-Difluoro-3-methylene-1-(4-methoxyphenyl)undecan-1-ol 57b. ($40 \mathrm{mg}, 0.12 \mathrm{mmol}, 65 \%$), $R_{\mathrm{f}}=0.65$ (50:50 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 344.2390 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~F}_{2}$ requires $\mathrm{M}, 344.2396$); $v_{\max } / \mathrm{cm}^{-1} 3457,2925,2855,1613$, $1514,1464,1249,1174,1062,1032,921,855$ and $794 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, J 7.0,11-\mathrm{H}_{3}\right), 1.23-1.35(10 \mathrm{H}, \mathrm{m}, 5 \times$ CH_{2}), $1.43\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.89-2.01\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.48(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.87\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 11.4,1-\mathrm{H}\right), 5.18$ and 5.31 (each $1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}), 6.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J} .9, \mathrm{ArH})$ and $7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J} .5, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1,22.6,27.6,29.2(2)$,
 $142.9\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 22.6\right)$ and $159.8 ; \delta_{\mathrm{F}}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-109.52$ and -110.20 (both d, ${ }^{2} J_{\mathrm{F}-\mathrm{F}} 244.7$); $m / z(\mathrm{GC} / \mathrm{MS}-\mathrm{CI}) 327\left(\mathrm{M}^{+}+1\right)$.

2,2-Difluoro-3-methylene-1-(3-chlorophenyl)undecan-1-ol 57c. ($60 \mathrm{mg}, 0.17 \mathrm{mmol}, 93 \%$), $R_{\mathrm{f}}=0.2$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 348.1897 . \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}^{35} \mathrm{ClF}_{2}$ requires M , 348.1900); $v_{\max } / \mathrm{cm}^{-1} 3428,2954,2926,2855,1599$, $1576,1467,1433,1199,1163,1079,925$ and $776 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,11-\mathrm{H}_{3}\right), 1.22-1.36\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right)$, $1.44\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.96\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.0,4-\mathrm{H}_{2}\right), 2.56(1 \mathrm{H}$, br. s, OH$), 4.90\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 10.8,1-\mathrm{H}\right), 5.22$ and 5.32 (each $\left.1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}\right)$, 7.26-7.35 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.42-7.44 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 14.1, 22.6, 27.6, 29.2, 29.4, 30.5 ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 2.9$), 31.8, $74.8\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 30.0\right), 116.7\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 8.1\right), 120.9\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 250.4\right), 126.0,128.0,128.8,129.3,134.1,138.0\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 1.5\right)$ and $142.4\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ 22.8); $\delta_{\mathrm{F}}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-109.99$ and -108.92 (both d, ${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 244.7$); m / z (APCI) 348.2 ($\mathrm{M}^{+}+18,100 \%$).

5,5-Difluoro-6-methylenetetradecan-4-ol 57d. ($50 \mathrm{mg}, 0.18 \mathrm{mmol}, 98 \%$), $R_{\mathrm{f}}=0.23$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 280.2442 . \mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NOF}_{2}$ requires $\mathrm{M}, 280.2446$); $v_{\max } / \mathrm{cm}^{-1} 3387,2959,2926,2856,1466,1185,1075,1029$, 964 and $922 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 6.6,14-\mathrm{H}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.0,1-\mathrm{H}_{3}\right), 1.21-1.38\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.38-1.70(6$ $\mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}$), $1.85\left(1 \mathrm{H}, \mathrm{br}\right.$. s, OH), 2.04-2.19 ($2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}$), $3.83(1 \mathrm{H}, \mathrm{q}, J 9.6,4-\mathrm{H})$ and 5.23 and 5.44 (each $\left.1 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}\right)$; δ_{C} $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.8,14.1,18.8,22.6,27.8,29.2,29.3,29.4,30.5\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 2.9\right), 31.8,31.9\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 2.2\right), 72.3\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 28.7\right), 115.5$ $\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 8.8\right), 121.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 247.5\right)$ and $142.9\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 22.8\right) ; \delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-112.29$ and -111.60 (both $\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{FFF}} 246.3$); m / z (APCI) $280.2\left(\mathrm{M}^{+}+18,100 \%\right)$.

4,4-Difluoro-2-methyl-5-methylenetridecan-3-ol 57 e . $33 \mathrm{mg}, 0.126 \mathrm{mmol}, 68 \%$), $R_{\mathrm{f}}=0.39$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 280.2443$. $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NOF}_{2}$ requires $\mathrm{M}, 280.2446$); $v_{\max } / \mathrm{cm}^{-1} 3458,2958,2926,2856,1467,1264$, $1186,1077,1021,907$ and $725 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,13-\mathrm{H}_{3}\right), 0.99$ and 1.05 (each $3 \mathrm{H}, \mathrm{d}, J 6.9,1-\mathrm{H}_{3}$ or $2-\mathrm{CH}_{3}$), 1.23-1.38 ($10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}$), $1.51\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.82(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 1.98(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.05-2.19\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.66(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}$) and 5.22 and 5.47 (each $1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 14.1, $16.2\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 2.2\right), 20.8\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 1.5\right), 22.6,27.8,28.3,29.2$, 29.3, 29.4, $30.4\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 3.0\right), 31.8,76.2\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C} \text { - }} 27.3\right.$), $115.1\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 9.6\right), 122.3\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 248.2\right)$ and $143.4\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C} \text { - }} 22.8\right)$; $\delta_{\mathrm{F}}(471$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) -109.36 and -108.49 (both d, ${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 248.2$); $m / z(\mathrm{APCI}) 280.2\left(\mathrm{M}^{+}+18,100 \%\right)$.

4,4-Difluoro-2,2-dimethyl-5-methylenetridecan-3-ol 57f. ($24 \mathrm{mg}, 0.087 \mathrm{mmol}, 47 \%$), $R_{\mathrm{f}}=0.29$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 294.2602 . \mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NOF}_{2}$ requires M , 294.2603); $v_{\max } / \mathrm{cm}^{-1} 3491,2957,2925,2856,1741,1714$, $1466,1368,1166,1057,1016$ and $922 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.84-0.92\left(3 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}_{3}\right), 1.07$ [$\left.9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.23-1.38(10 \mathrm{H}$, $\left.\mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.52\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.83(1 \mathrm{H}$, br. s, OH$), 2.15\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.9,6-\mathrm{H}_{2}\right), 3.52\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 19.9,6.3,3-\mathrm{H}\right), 5.21\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{H}}\right.$ $\left.{ }_{\mathrm{F}} 1.6,5-\mathrm{CH}\right)$ and $5.47\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{F}} 2.5,5-\mathrm{H}^{\prime}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1,22.7,26.9\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 2.2\right), 27.8,29.2,29.4(2), 30.5\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$ $3.7,2.2$), 31.9, $34.8,78.1$ ($\mathrm{dd},{ }^{2} J_{C-F} 29.5,26.5$), 114.8 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 10.3,8.1$), 123.0 ($\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 253.4,249.0$) and 144.7 (t, ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 22.8$); δ_{F} ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -111.59 and -100.68 (both d, ${ }^{2} \mathrm{~J}_{\mathrm{FF}} 249.9$); $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 277.3\left(\mathrm{M}^{+}+1,20 \%\right)$.

1-tert-Butyldiphenylsilyloxy-4,4-difluoro-5-methylenetridecan-3-ol 57g. ($85 \mathrm{mg}, 0.169 \mathrm{mmol}, 91 \%$), $R_{\mathrm{f}}=0.27$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{H}$, 503.3138. $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{Si}$ requires $\mathrm{M}, 503.3151$); $v_{\max } / \mathrm{cm}^{-1} 3471,2956,2928,2856$, $1427,1106,1084,936,822$ and $737 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.6,13-\mathrm{H}_{3}\right), 1.06\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.24-1.39(10 \mathrm{H}$, $\mathrm{m}, 5 \times \mathrm{CH}_{2}$), $1.53\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.81$ and 1.88 (each $\left.1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right), 2.08-2.23\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.09(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.86$ and 3.96 (each $1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), $4.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.25$ and 5.48 (each $1 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}), 7.37-7.49(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.63-7.73 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1,19.1,22.7,26.8,27.8,29.3,29.4(2), 30.5,31.7,31.9,61.9,71.3\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 30.7\right), 115.4\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 9.1\right), 121.4$ ($\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 248.4,245.7$), $127.8,129.9,132.9,133.0,135.5(2)$ and $143.0\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 22.7\right) ; \delta_{\mathrm{F}}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-114.15$ and -110.23 (both d, ${ }^{2} J_{\text {F-F }} 247.3$); $m / z(A P C I) 503.3\left(\mathrm{M}^{+}+1,100 \%\right)$.

1-tert-Butyldiphenylsilyloxy-4,4-difluorohex-5-en-3-one (58). N-Methylmorpholine- N-oxide ($52 \mathrm{mg}, 0.446 \mathrm{mmol}$) and TPAP ($5 \mathrm{mg}, 0.015 \mathrm{mmol}$) were added to the alcohol $40(0.116 \mathrm{~g}, 0.297 \mathrm{mmol}$) and $4 \AA 8$ molecular sieves (0.168 g) in dry DCM $(2.0 \mathrm{~mL})$ and the mixture stirred for 16 h then concentrated under reduced pressure. Chromatography of the residue (light petroleum to 2:98 ether:light petroleum) gave the title compound $\mathbf{5 8}$ ($90 \mathrm{mg}, 0.23 \mathrm{mmol}, 78 \%$) as a colourless oil, $R_{\mathrm{f}}=0.43$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 411.1568 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 411.1568$); $v_{\max } / \mathrm{cm}^{-1} 2957,2931,2857$, $1746,1427,1107,998,956,821$ and $738 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.92\left(2 \mathrm{H}, \mathrm{t}, J 6.2,2-\mathrm{H}_{2}\right), 4.00(2 \mathrm{H}, \mathrm{t}, J$ $\left.6.2,1-\mathrm{H}_{2}\right), 5.66(1 \mathrm{H}, \mathrm{d}, J 11.0,6-\mathrm{H}), 5.85\left(1 \mathrm{H}, \mathrm{dt}, J 17.4,2.5,6-\mathrm{H}^{\prime}\right), 6.01(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.39-7.48(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.67-7.71 (4 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.1,26.7,39.4,58.2,114.3\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 251.2\right), 123.1\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 9.6\right), 127.7,128.3\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 25.1\right), 129.8$, 133.2, 135.5 and $198.2\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 32.4\right)$; $\delta_{\mathrm{F}}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-108.32 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 427\left(\mathrm{M}^{+}+39,25 \%\right), 411\left(\mathrm{M}^{+}+23,15\right)$ and 102 (100).

Methyl (E)- and (Z)-3-(2-tert-butyldiphenylsilyloxyethyl)-4,4-difluorohexa-2,5-dienoate (59) and (60). Methoxycarbonylmethylene (triphenyl)phosphorane ($0.28 \mathrm{~g}, 0.844 \mathrm{mmol}$) was added to the ketone 58 ($0.27 \mathrm{~g}, 0.703 \mathrm{mmol}$) in dry toluene (2.5 mL) and the mixture heated at $70^{\circ} \mathrm{C}$ for 6 h . After concentration under reduced pressure, chromatography of the residue (light petroleum to $0.5: 99.5$ ether:light petroleum) gave the title compound $\mathbf{5 9}$ ($0.26 \mathrm{~g}, 0.59 \mathrm{mmol}, 84 \%$) as a colourless oil, $R_{\mathrm{f}}=0.38$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 467.1841. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{SiNa}$ requires M , 467.1824); $v_{\max } / \mathrm{cm}^{-1} 2953,2931,2857,1728,1428,1258,1199,1178,1106,1089,981,822$ and $739 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05$ [9 H, s, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.99\left(2 \mathrm{H}, \mathrm{t}, J 6.8,1^{\prime}-\mathrm{H}_{2}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81\left(2 \mathrm{H}, \mathrm{t}, J 6.8,2^{\prime}-\mathrm{H}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{d}, J 10.8,6-\mathrm{H}), 5.63(1 \mathrm{H}, \mathrm{dt}, J 17.4$, 2.2, 6-H'), 5.76-5.90 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $6.21(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.37-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.66-7.71(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 19.1, 26.8, 30.5 ($\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 1.5$), $51.5,62.4,118.7\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 243.1\right), 120.9\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 9.6\right), 121.2\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 8.8\right), 127.6,129.6,131.4\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C} \text { - }}\right.$ 28.7), 133.7, 135.6, $149.4\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C-F}} 25.0\right)$ and $165.6 ; \delta_{\mathrm{F}}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-100.52 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 467.3\left(\mathrm{M}^{+}+23,100 \%\right)$. The second fraction was the title compound $\mathbf{6 0}$ ($36 \mathrm{mg}, 0.081 \mathrm{mmol}, 11 \%$) as a colourless oil, $R_{\mathrm{f}}=0.27$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 467.1836. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 467.1824$); $v_{\max } / \mathrm{cm}^{-1} 2953,2931,2857,1735,1428,1240,1196$,

1159, 1105, 997, 822 and 737; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.41\left(2 \mathrm{H}, \mathrm{td}, J 6.4,0.8,1^{\prime}-\mathrm{H}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.80\left(2 \mathrm{H}, \mathrm{t}, J 6.4,2^{\prime}-\mathrm{H}_{2}\right), 5.43(1 \mathrm{H}, \mathrm{d}, J 11.3,6-\mathrm{H}), 5.63\left(1 \mathrm{H}, \mathrm{dt}, J 17.3,2.8,6-\mathrm{H}^{\prime}\right), 5.98(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.36-7.47$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.63-7.69(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.1,26.8,34.6\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 3.7\right), 51.8,61.8,118.7\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 239.9\right)$, $120.1\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 8.8\right), 122.9\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 5.1\right), 127.7,129.7,132.0\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 27.8\right), 133.4,135.6,142.8\left(\mathrm{t},{ }^{2}{ }_{\mathrm{J} C \mathrm{~F}} 27.0\right)$ and $166.2 ; \delta_{\mathrm{F}}(377 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-95.73 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 467.3\left(\mathrm{M}^{+}+23,100 \%\right)$ and $462.4\left(\mathrm{M}^{+}+18,85\right)$.

1-tert-Butyldiphenylsilyloxy-4,4-difluoro-5-methylenetridecan-3-one (61). Anhydrous DMSO (51 $\mu \mathrm{L}$, 0.723 mmol) was added dropwise to oxalyl chloride ($31 \mu \mathrm{~L}, 0.362 \mathrm{mmol}$) in dry DCM (1.6 mL) at $-78^{\circ} \mathrm{C}$. After 30 min , the alcohol $\mathbf{5 7 g}(91 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dry DCM (1.0 mL) was added. After a further 45 min , triethylamine ($0.20 \mathrm{~mL}, 1.45 \mathrm{mmol}$) was added and the mixture was stirred at rt for 1 h . Saturated aqueous ammonium chloride (10 mL) and DCM (10 mL) were added and the aqueous phase was extracted into DCM ($3 \times 10 \mathrm{~mL}$). The organic extracts were washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (0.25:99.75 ether:light petroleum) gave the title compound 61 ($55 \mathrm{mg}, 0.11 \mathrm{mmol}, 61 \%$) as a colourless oil, $R_{\mathrm{f}}=0.53$ ($5: 95$ ether:light petroleum) (Found: $\mathrm{M}^{+}+$ $\mathrm{Na}, 523.2809 . \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 523.2820$); $v_{\max } / \mathrm{cm}^{-1} 2955,2928,2857,1749,1428,1106,927,822$ and $737 ; \delta_{\mathrm{H}}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 6.7,13-\mathrm{H}_{3}\right), 1.03\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.22-1.34\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.47\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.08(2 \mathrm{H}$, $\left.\mathrm{t}, J 7.6,6-\mathrm{H}_{2}\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, J 6.0,2-\mathrm{H}_{2}\right), 3.97\left(2 \mathrm{H}, \mathrm{t}, J 6.0,1-\mathrm{H}_{2}\right), 5.32$ and 5.55 (each $\left.1 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}\right), 7.37-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.65-7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1,19.1,22.6,26.7,27.5,29.2,29.3,29.4\left(\mathrm{t},{ }^{4} \mathrm{~J} \mathrm{C}-\mathrm{F} .2\right), 31.8,39.3,58.0,116.1(\mathrm{t}$, $\left.{ }^{1} J_{C-F} 251.6\right), 117.1\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 8.8\right), 127.7,129.7,133.2,135.5,140.8\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 21.9\right)$ and $198.3\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 31.4\right) ; \delta_{\mathrm{F}}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ -109.74; $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 523.4\left(\mathrm{M}^{+}+23,100 \%\right)$.

Methyl (E)-3-(2-tert-butyldiphenylsilyloxyethyl)-4,4-difluoro-5-methylenetridec-2-enoate (62). Methoxycarbonyl-methylidene (triphenyl)phosphorane ($37 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added to the ketone 61 ($32 \mathrm{mg}, 0.064 \mathrm{mmol}$) in toluene (0.23 mL) and the mixture heated at $70^{\circ} \mathrm{C}$ for 11 h . After concentration under reduced pressure, chromatography of the residue ($0.25: 99.75$ ether:light petroleum) gave the title compound $\mathbf{6 2}(17 \mathrm{mg}, 0.031 \mathrm{mmol}, 48 \%)$ as a colourless oil, R_{f} $=0.23$ (5:95 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 579.3080 . \mathrm{C}_{33} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{SiNa}$ requires M,579.3082); $v_{\text {max }} / \mathrm{cm}^{-1} 2928,2856$, $1729,1428,1256,1200,1177,1105$ and $739 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,13-\mathrm{H}_{3}\right), 1.04\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.21-1.35$ $\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.42\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.94\left(2 \mathrm{H}, \mathrm{t}, J 7.3,6-\mathrm{H}_{2}\right), 2.94\left(2 \mathrm{H}, \mathrm{t}, J 7.7,1^{\prime}-\mathrm{H}_{2}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{OH}_{3}\right), 3.76(2 \mathrm{H}, \mathrm{t}, J 7.7$, $2^{\prime}-\mathrm{H}_{2}$), 5.17 and $5.40($ each $1 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}), 6.22(1 \mathrm{H}, \mathrm{t}, J 1.8,2-\mathrm{H}), 7.35-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.66-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1,19.1,22.6,26.7,27.5,29.2(2), 29.4,29.5,30.7,31.8,51.5,62.4,115.9\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 8.1\right), 120.6\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 243.7\right), 121.3$ ($\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 9.0$), $127.6,129.5,133.7,135.6,142.5\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 24.4\right), 148.9\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 25.3\right)$ and $165.6 ; \delta_{\mathrm{F}}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-101.98 ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{ES}^{+}\right) 579.4\left(\mathrm{M}^{+}+23,100 \%\right)$.

Ethyl 5-tert-butyldiphenylsilyloxy-2,2-difluoro-3-oxopentanoate (63). With rigorous exclusion of $\mathrm{O}_{2}, \mathrm{SmI}_{2}(0.1$ M in THF, $48 \mathrm{~mL}, 48 \mathrm{mmol}$) was added to the aldehyde $\mathbf{3 9}(0.50 \mathrm{~g}, 1.6 \mathrm{mmol})$ and ethyl 2-bromo-2,2-difluoroacetate $\mathbf{1 1}$ (0.22 $\mathrm{mL}, 1.76 \mathrm{mmol})$ in dry THF (16 mL) and the yellow mixture was stirred at rt for 10 min . Aqueous hydrogen chloride ($1 \mathrm{M}, 50$ mL) was added slowly followed by ether (50 mL). The aqueous phase was extracted with ether ($3 \times 50 \mathrm{~mL}$) and the organic extracts were washed with saturated aqueous sodium thiosulfate (50 mL) then brine (250 mL) and dried (MgSO_{4}). After concentration under reduced pressure, chromatography of the residue ($0.5: 99.5$ to 10:90 ether:light petroleum) gave ethyl 5-tert-butyldiphenylsilyloxy-2,2-difluoro-3-hydroxypentanoate ($0.68 \mathrm{~g}, 1.57 \mathrm{mmol}, 98 \%$) as a colourless oil, $R_{\mathrm{f}}=0.09$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 459.1797. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 459.1779$); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3476,3071,2959,2931$, $2888,2858,1759,1472,1446,1307,1206,1106,822$ and $738 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.39(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.87-1.95\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.42(1 \mathrm{H}$, br. s, $3-\mathrm{OH}), 3.85-4.01\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 4.39\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.44(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 7.35-7.50(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.61-7.75(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.9,19.0,26.8,30.8,61.7,62.9,70.9$ (dd, ${ }^{2} \mathrm{~J} \mathrm{C}-\mathrm{F}$ 29.4, 24.8), 114.6 ($\mathrm{dd},{ }^{1}{ }_{\mathrm{C} \text {-F }} 262.6,252.5$), $127.8,129.9(2), 132.7,132.8,135.5$ (2) and 163.6 ($\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 33.1,31.2$); $\delta_{\mathrm{F}}(377 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-123.62$ and -114.47 (both d, ${ }^{2} J_{\mathrm{F}-\mathrm{F}} 261.2$); $m / \mathrm{z}\left(\mathrm{ES}^{+}\right) 459.3\left(\mathrm{M}^{+}+23,90 \%\right)$ and 102 (100).
N-Methylmorpholine- N-oxide ($83 \mathrm{mg}, 0.71 \mathrm{mmol}$) and TPAP ($8 \mathrm{mg}, 0.024 \mathrm{mmol}$) were added to a suspension of this alcohol ($0.21 \mathrm{~g}, 0.47 \mathrm{mmol}$) and $4 \AA$ molecular sieves (0.27 g) in DCM (2.7 mL) and the mixture stirred at rt for 16 h . After concentration under reduced pressure, chromatography of the residue (light petroleum to 0.25:99.75 ether:light petroleum) gave the title compound $63(0.13 \mathrm{~g}, 0.30 \mathrm{mmol}, 63 \%)$ as a colourless oil, $R_{\mathrm{f}}=0.29$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+$ Na , 457.1619. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 457.1617$); $v_{\text {max }} / \mathrm{cm}^{-1} 3071,2957,2931,2889,2857,1777,1751,1428,1111,822$ and 739; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.04\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.35\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.99\left(2 \mathrm{H}, \mathrm{t}, J 6.0,4-\mathrm{H}_{2}\right), 4.00(2 \mathrm{H}, \mathrm{t}, J 6.0,5-$ H_{2}), $4.37\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.38-7.48(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.66-7.71(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.8,19.1,26.6$, $39.6,57.8,63.7,108.1\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 262.5\right), 127.7,129.8,133.1,135.5,161.2\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 30.6\right)$ and $195.5\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 28.4\right)$; $\delta_{\mathrm{F}}(471 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-114.16 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 457.2\left(\mathrm{M}^{+}+23,60 \%\right)$.

Methyl (E)- and (Z)-5-tert-butyldiphenylsilyloxy-3-(ethoxycarbonyldifluoromethyl)pent-2-enoate (64) and (65). Methoxycarbonylmethylidene(triphenyl)phosphorane ($0.12 \mathrm{~g}, 0.36 \mathrm{mmol}$) was added to the ketone $63(0.13 \mathrm{~g}, 0.30$ $\mathrm{mmol})$ in toluene (1.10 mL) and the mixture stirred at $90^{\circ} \mathrm{C}$ for 16 h . After concentration under reduced pressure, chromatography of the residue (light petroleum to 2:98 ether:light petroleum) gave the title compound 64 ($0.12 \mathrm{~g}, 0.24$ $\mathrm{mmol}, 82 \%$) as a colourless oil, $R_{\mathrm{f}}=0.20$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 513.1893 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 513.1885) ; \mathrm{v}_{\max } / \mathrm{cm}^{-1} 2955,2932,2858,1769,1731,1279,1262,1201,1181,1109,1065,823$ and $740 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.04\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.06\left(2 \mathrm{H}, \mathrm{t}, J 7.2,4-\mathrm{H}_{2}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.78\left(2 \mathrm{H}, \mathrm{t}, J 7.2,5-\mathrm{H}_{2}\right)$,
$4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.33(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.36-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.66-7.70(4 H, m, ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.8$, 19.1, 26.7, 30.1 ($\mathrm{t},{ }^{3} J_{C-F} 1.5$), 51.6, 62.0, 63.4, 113.1 ($\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 254.9$), 123.3 ($\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 8.8$), 127.6, 129.6, 133.5, 135.5, $146.0\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$ 22.1), $162.9\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\text {C- }} 33.9\right)$ and $165.0 ; \delta_{\mathrm{F}}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-107.08 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 513.2\left(\mathrm{M}^{+}+23,80 \%\right), 491.2\left(\mathrm{M}^{+}+1,20\right)$ and 256.9 (100). The second fraction was the title compound 65 ($17 \mathrm{mg}, 0.035 \mathrm{mmol}, 12 \%$) as a colourless oil; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.07\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.63\left(2 \mathrm{H}, \mathrm{t}, J 6.4,4-\mathrm{H}_{2}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{OH}_{3}\right), 3.86\left(2 \mathrm{H}, \mathrm{t}, J 6.7,5-\mathrm{H}_{2}\right)$, $4.32\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.10(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.37-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.66-7.70(4 H, m, ArH); $\delta_{\mathrm{F}}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ -100.24.

Methyl (\boldsymbol{E})-3-(2-tert-butyldiphenylsilyloxyethyl)-4,4-difluoro-5,6-dihydroxyhex-2-enoate (66). Acetonitrile (0.71 mL) and ruthenium(III) chloride hydrate ($16 \mathrm{mg}, 0.062 \mathrm{mmol}$) were added to the alkene $59(0.14 \mathrm{~g}, 0.31 \mathrm{mmol})$ in aqueous EtOAc (1:1, 1.42 mL). Sodium periodate ($0.066 \mathrm{~g}, 0.31 \mathrm{mmol}$) was added in ten equal portions over 5 h and the mixture stirred for a further 30 min before saturated aqueous sodium thiosulfate (10 mL) and EtOAc (10 mL) were added. The aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the organic extracts were washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue (1:99 to 50:50 ether:light petroleum) gave recovered alkene 59 (61 $\mathrm{mg}, 44 \%$) followed by the title compound 66 ($65 \mathrm{mg}, 0.14 \mathrm{mmol}, 44 \%$) as a colourless oil, $R_{\mathrm{f}}=0.60$ (ether) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 501.1898. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 501.1885$); $v_{\max } / \mathrm{cm}^{-1} 3401,2952,2932,2889,2857,1727,1428,1260,1200,1105$, $1081,1039,822$ and $738 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.85$ and 3.07 (each $\left.1 \mathrm{H}, \mathrm{dt}, J 13.6,6.3,1^{\prime}-\mathrm{H}\right), 3.57(1 \mathrm{H}$, br. s, OH), $3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.91\left(2 \mathrm{H}, \mathrm{t}, J 6.3,2^{\prime}-\mathrm{H}_{2}\right), 4.00(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{d}, J$ 2.3, 2-H), 7.37-7.48 $(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.63-7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.1,26.8,30.3,51.6,60.6\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 4.4,1.5\right), 63.4,71.8\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}}\right.$. ${ }_{\mathrm{F}} 32.4,25.8$), 120.6 ($\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 254.1,247.5$), 122.3 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{\text {C-F }} 11.1,8.8$), $127.8,129.9,132.8,132.9,135.5,135.6,149.0\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C} \text {-F }}\right.$ 22.1) and 165.4; $\delta_{\mathrm{F}}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-117.88$ and -107.56 (each d, $\left.{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 249.0\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 501.3\left(\mathrm{M}^{+}+23,100 \%\right)$.

Methyl (E)-3-(2-tert-butyldiphenylsilyloxyethyl)-4,4-difluoro-5-hydroxy-6,6-dimethylocta-2,7-dienoate (68). Solid sodium carbonate ($39 \mathrm{mg}, 0.37 \mathrm{mmol}$) and lead(IV) acetate ($65 \mathrm{mg}, 0.15 \mathrm{mmol}$) were added to the diol 66 (59 mg , $0.12 \mathrm{mmol})$ in DCM (1.2 mL). The mixture was stirred at rt for 30 min , filtered and concentrated under reduced pressure to give the aldehyde 67 that was azeotroped with benzene. 1-Bromo-3-methylbut-2-ene ($0.14 \mathrm{~mL}, 1.23 \mathrm{mmol}$) was added to this aldehyde in THF (2.4 mL) and the solution was added to a suspension of zinc dust ($80 \mathrm{mg}, 1.23 \mathrm{mmol}$) and titanocene dichloride ($3 \mathrm{mg}, 0.012 \mathrm{mmol}$) in THF (2.45 mL) that had been pre-stirred for 5 min . The mixture was stirred for 2.5 h before aqueous hydrogen chloride ($10 \%, 10 \mathrm{~mL}$) and ether (10 mL were added. The aqueous phase was extracted with ether (3×30 $\mathrm{mL})$ and the organic extracts were washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue ($10: 90$ ether:light petroleum) gave the title compound $\mathbf{6 8}$ ($41 \mathrm{mg}, 0.079 \mathrm{mmol}, 65 \%$) as a colourless oil, $R_{\mathrm{f}}=0.40$ (30:70 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 539.2392. $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 539.2405$); $v_{\max } / \mathrm{cm}^{-1} 3495,3071,2957,2932,2889,2858,1727,1428,1261,1202,1110,1072,916,823$ and $740 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.05\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.16\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J 2.0,6-\mathrm{CH}_{3}\right), 2.80(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 2.85$ and 3.06 (each $1 \mathrm{H}, \mathrm{dt}, J 13.4$, $\left.6.8,1^{\prime}-\mathrm{H}\right), 3.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 23.4,5-\mathrm{H}), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82-3.90\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 5.04-5.11\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 5.99(1 \mathrm{H}$, ddq, J $17.4,10.8,1.2,7-H), 6.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,2-\mathrm{H}), 7.36-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.65-7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.1$, 24.1 ($\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 3.6$), $24.2,26.8,30.9,41.0,51.5,63.3,76.5$ (dd, ${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 30.9,26.4$), $113.3,121.4$ ($\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 11.8,8.2$), 122.7 ($\mathrm{dd},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}$ 259.3, 249.3), 127.7, 129.7(2), 133.1(2), 135.6(2), 144.1 (d, $\left.{ }^{4} J_{C-F} 1.8\right), 150.7\left(t,{ }^{2} J_{\text {C-F }} 21.9\right.$) and 165.7 ; δ_{F} ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -115.62 and -99.51 (each d, ${ }^{2} J_{\text {F-F }} 245.2$); $m / z\left(\right.$ ES $\left.^{+}\right) 539.3$ ($\left.\mathrm{M}^{+}+23,100 \%\right)$.

Methyl (E)-3-(2-tert-butyldiphenylsilyloxyethyl)-4,4-difluoro-6,6-dimethyl-5-oxo-octa-2,7-dienoate (69). N -Methylmorpholine- N-oxide ($11 \mathrm{mg}, 0.09 \mathrm{mmol}$) and TPAP ($1 \mathrm{mg}, 0.003 \mathrm{mmol}$) were added to a stirred suspension of the alcohol 68 ($31 \mathrm{mg}, 0.06 \mathrm{mmol}$) and $4 \AA \AA$ molecular sieves (36 mg) in DCM (0.78 mL) and the mixture stirred at rt for 30 min then concentrated under reduced pressure. Chromatography of the residue (2:98 to 10:90 ether:light petroleum) gave the title compound 69 ($27 \mathrm{mg}, 0.053 \mathrm{mmol}, 87 \%$) as a colourless oil, $R_{\mathrm{f}}=0.48$ (10:90 ether:light petroleum) (Found: $\mathrm{M}^{+}+\mathrm{Na}$, 537.2264. $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~F}_{2} \mathrm{SiNa}$ requires $\mathrm{M}, 537.2249$); $v_{\text {max }} / \mathrm{cm}^{-1} 2932,2857,1729,1428,1261,1201,1109,1039,919,823$ and $740 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.03\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.33\left(6 \mathrm{H}, \mathrm{s}, 2 \times 6-\mathrm{CH}_{3}\right), 2.96\left(2 \mathrm{H}, \mathrm{t}, J 7.3,1^{\prime}-\mathrm{H}_{2}\right), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3), 3.74(1$ H, t, J 7.3, 2'- H_{2}), 5.15 (1 H, d, J 17.4, 8-H), 5.19 ($1 \mathrm{H}, \mathrm{d}, J 10.8,8-\mathrm{H}^{\prime}$), 5.95 ($1 \mathrm{H}, \mathrm{ddt}, J 17.4,10.8,1.0,7-\mathrm{H}$), 6.18 ($1 \mathrm{H}, \mathrm{t}, J 1.6,2-\mathrm{H}$), 7.36-7.45 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.65-7.69 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.1,24.0\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 1.8\right), 26.7,30.5,49.7,51.6,62.1$, 116.1, 116.7 ($\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 257.5$), 123.3 ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 9.9$), 127.6, 129.5, 133.6, 135.6, 139.7, $146.7\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 21.7\right.$), 165.0 and $200.5\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{C} \text { - }}\right.$ 28.9); $\delta_{\mathrm{F}}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-102.04 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 537\left(\mathrm{M}^{+}+23,100 \%\right), 437$ (20) and 259 (80).

3,3-Difluoro-2-hydroxy-2-(3-methylbut-1-en-3-yl)-4-[(E)-methoxycarbonylmethylene]tetrahydro-4H-pyran (70). Hydrogen fluoride.pyridine complex ($70 \% \mathrm{HF}, 0.2 \mathrm{~mL}$) was added rapidly to the ketone 69 ($34 \mathrm{mg}, 0.066 \mathrm{mmol}$) and pyridine (0.39 mL) in THF (3.9 mL) at $0^{\circ} \mathrm{C}$ and the mixture stirred for 2.5 h . Saturated aqueous sodium bicarbonate (10 mL) was added and the mixture was stirred at rt for 1 h . After the addition of EtOAc (10 mL), the aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the organic extracts were washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue ($10: 90$ ether:light petroleum) gave the title compound 70 ($15 \mathrm{mg}, 0.054$ $\mathrm{mmol}, 82 \%$) as a colourless oil which solidified on cooling, $R_{\mathrm{f}}=0.31$ ($30: 70$ ether:light petroleum), m.p. $54-56^{\circ} \mathrm{C}$ (Found: C, 56.61; H, 6.64. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~F}_{2}$ requires C, 56.50 ; $\mathrm{H}, 6.60 \%$; Found: $\mathrm{M}^{+}+\mathrm{Na}$, 299.1071. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~F}_{2} \mathrm{Na}$ requires $\mathrm{M}, 299.1071$); $v_{\max } / \mathrm{cm}^{-1} 3515,2956,2918,2850,1729,1127$ and $1061: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, benzene- $\left.d_{6}\right) 1.28\left(3 \mathrm{H}, \mathrm{d}, J 4.0,3^{\prime}-\mathrm{CH}_{3}\right.$ or $\left.4^{\prime}-\mathrm{H}_{3}\right), 1.37(3$ $\mathrm{H}, \mathrm{d}, J 2.5,4^{\prime}-\mathrm{H}_{3}$ or $3^{\prime}-\mathrm{CH}_{3}$), $2.41(1 \mathrm{H}, \mathrm{dd}, J 13.4,6.6,5-\mathrm{H}), 2.46(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{OH}), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.41(1 \mathrm{H}, \mathrm{dd}, J 11.1,6.6$,

5-H'), 3.76 and 3.97 (each $1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 4.82-4.93 ($2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}$), 6.06 ($1 \mathrm{H}, \mathrm{dd}, J 17.9,10.6,2^{\prime}-\mathrm{H}$) and 6.44 ($1 \mathrm{H}, \mathrm{dd}, J 4.0,2.3$, 4CH); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}\right.$, benzene- d_{6}) 21.8 and 24.1 (each d, ${ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 6.3$), 28.6 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 2.7$), $46.5,51.3,60.5,99.1$ (dd, ${ }^{2} \mathrm{~J}_{\mathrm{C} \text { - }} 30.1,24.4$), $115.4,117.4$ (dd, ${ }^{3} J_{\text {C-F }} 13.5,6.3$), 118.4 (dd, ${ }^{1} J_{\text {C-F }} 263.6,243.7$), $144.5,148.8$ (dd, ${ }^{2} J_{C-F} 20.8,18.1$) and 166.3 ; $\delta_{\mathrm{F}}(377 \mathrm{MHz}$, benzene $-d_{6}$) -119.61 and -105.38 (each d, ${ }^{2} J_{\text {F-F }} 241.5$); $m / z\left(\right.$ ES $\left.^{+}\right) 299.1\left(\mathrm{M}^{+}+23,100 \%\right)$.

X-Ray structure determination for (2RS,4RS)-2-tert-butyl-3,3-difluoro-2,4-dihydroxytetrahydro-2H-pyran (44). Single crystal X-ray diffraction data were collected on a Bruker Prospector CCD diffractometer at 100 K using graphite monochromated Cu radiation ($\lambda=1.54178 \AA$). The data were reduced by SAINTPLUS; XPREP was used to determine the space group. The crystal structure was solved by direct methods using SHELXS97 and refined by the full-matrix least-squares method on F^{2} using \quad SHELXL97. Crystal data: $\quad \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{3}$, $\quad \mathrm{M}=210.22$; monoclinic, $\mathrm{P} 2(1) / \mathrm{c}, \mathrm{a}=11.2814(2), \mathrm{b}=16.1595(2), \mathrm{c}=12.1971$ (2) $\AA, \mathrm{V}=2043.55(6) \AA^{3}, \mathrm{Z}=8,9593$ reflections measured, 3933 independent reflections $\left(R_{\text {int }}=0.0207\right)>2 \sigma(I)\left(R_{1}=0.0358\right.$ and $\left.w R_{2}=0.0952\right)$; CCDC number 1016876.

