Supporting Information

Aryltrifluoromethylative Cyclization of Unactivated Alkenes by the Use of PhICF₃CI under Catalyst-Free Condition

Jia Guo,^a Cong Xu,^b Xiaowei Liu,^a and Mang Wang*,a,c

 ^a Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun (China)
 ^b National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, 2555 Jingyue Street, Changchun (China)
 ^c State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Weijin Road 94, Tianjin (China). E-mail: wangm452@nenu.edu.cn.

Table of Contents

I. General Information	2
II. Screen of Reaction Conditions	2
III. Procedures for the synthesis of substrates	4
IV. Synthetic Procedures and Analytical Data	9
V. Mechanistic Study	.12
VI. References	.13
VIII. NMR Spectra	.14

I. General Information

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. PIFA and TMSCF₃ were purchased from Energy Chemical Co. Ltd., Anhydrous MeCN, THF (Tetrahydrofuran), DMF (N, N-dimethylformamide), 1,4dioxane were purchased from Innochem Co. Ltd., DCM (dichloromethane) was distilled over CaH₂ before use. The products were purified by column chromatography over silica gel (particle size 300-400 mesh ASTM, purchased from Taizhou, China). ¹H NMR, ¹³C NMR spectra were recorded at 25 °C on a Bruker 600 MHz or Varian 500 MHz, 400 MHz, and 151 MHz or 125 MHz spectrometer, respectively by using TMS as internal standard. ¹⁹F-NMR were recorded at 25 °C on a Bruker 565 MHz or Varian 470 MHz spectrometer by using (trifluoromethyl)benzene (δ -63.2 ppm) as external standard. Data for ¹H, ¹³C, ¹⁹F were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, td = triplet of doublets). High-resolution mass spectra (HRMS) were obtained using a Bruker micro TOF II focus spectrometer (ESI). Melting points were uncorrected. PhICF₃CI reagent was prepared according to literature procedures.^[1]

II. Screen of Reaction Conditions

Table S1. Screen of solvents.[a]

DMF

[a] Reaction conditions: 1a (0.1 mmol), PhICF₃Cl (0.15 mmol), solvent (1 mL).

[b] 19 F NMR yields using PhCF₃ as an internal standard.

Table S2. Screen of temperature.^[a]

6

85

[a] Reaction conditions: 1a (0.1 mmol), PhICF₃CI (0.15 mmol), DMF (1 mL).

[b] ¹⁹F NMR yields using PhCF₃ as an internal standard.

[a] Reaction conditions: 1a (0.1 mmol), PhICF₃Cl (0.15 mmol), DMF (1 mL).

[b] $^{19}\mathsf{F}$ NMR yields using PhCF_3 as an internal standard.

Table S4. Screen of reaction atomosphere.^[a]

[a] Reaction conditions: 1a (0.1 mmol), PhICF₃CI (0.15 mmol), DMF (1 mL).

[b] ¹⁹F NMR yields using PhCF₃ as an internal standard.

Table S5. Screen of the ratio of 1a / PhICF₃CI.^[a]

[a] Reaction conditions: 1a (0.1 mmol), PhICF₃CI (x mmol), DMF (1 mL).

[b] $^{19}\mathsf{F}$ NMR yields using PhCF_3 as an internal standard.

Table S6. Catalyst-free trifluoromethylation-carbocyclizations using Togni's reagent.^[a]

[a] Reaction conditions: 1a (0.1 mmol), Togin's reagent II (0.15 mmol), DMF (1 mL).

[b] $^{19}\mathsf{F}$ NMR yields using PhCF_3 as an internal standard.

Table S7. Catalyst-free trifluoromethylation-carbocyclizations using Umemoto's reagent.^[a]

[a] Reaction conditions: 1a (0.1 mmol), Umemoto's reagent II (0.15 mmol), DMF (1 mL).

[b] ¹⁹F NMR yields using PhCF₃ as an internal standard.

III. Procedures for the synthesis of substrates

1. Synthesis of substrates 1.

Substrates **1a-1q** were synthesized according to the literature, and the NMR spectroscopy were consistented with reported data.^[2,3] Substrates **1c**, **1e-1i**, **1I-1n** were new compounds synthesized according to the literature.^[2] The NMR spectroscopy were as follow:

Synthesis of substrates 1a-1k (taking 1c as an example):

A 15 mL Schlenk tube was charged with a stir bar. The tube was evacuated and backfilled with N₂ (3 times). Diethyl malonate (0.92 mL, 6.0 mmol) was added drop-wise to a suspension of NaH (0.24 g, 60%, 6.0 mmol) in THF (5 mL) at 0 °C under N₂ and was stirred for 15 min. 1-(Bromomethyl)-4-methylbenzene (0.92 g, 5.0 mmol) was then added in one portion and the resulting milky mixture was stirred at reflux for 1 h. The reaction was then cooled and quenched by the addition of H₂O. THF was removed under reduced pressure and the resulting crude was dissolved in Et₂O and washed with water. The aqueous layer was extracted with Et₂O (3 x 10 mL), and the combined organics were washed with brine, dried over anhydrous MgSO₄ and concentrated under reduce pressure. Residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 15/1, v/v) to give 1.02 g (77%) of benzylated intermediate as a colourless oil. The NMR spectroscopy were consistented with reported data.^[2]

A 15 mL Schlenk tube was charged with a stir bar. The tube was evacuated and backfilled with N₂ (3 times). NaH (0.06 g, 60%, 1.5 mmol) was dissolved in dry THF (5 mL) under N₂ atmosphere. The benzylated intermediate (0.27g, 1.0 mmol) was added slowly. The suspension was stirred 0.5 h at room temperature and 3-bromo-2-methylprop-1-ene (0.13 mL 1.5 mmol) was added. Two hours later, the reaction was quenched with sat. NH₄Cl (10 mL). The reaction mixture was extracted with Et₂O (3×10 mL) and brine (3×10 mL), dried over anhydrous MgSO₄ and concentrated under reduce pressure. Residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 15/1, v/v) to give **1c** as a colourless oil.

Diethyl-2-(2-methylallyl)-2-(4-methylbenzyl)malonate (1c). 254.6 mg, 80% yield. Colourless oil. ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.03 (dd, *J* = 22.2 Hz, 7.8 Hz, 4H), 4.91 (s, 1H), 4.81 (s, 1H), 4.11 - 4.19 (m, 4H), 3.27 (s, 2H), 2.62 (s, 2H), 2.30 (s, 3H), 1.72 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.2, 171.1, 141.2, 136.3, 133.3, 130.0, 130.0, 128.9, 128.8, 114.9, 61.2, 60.2, 58.5, 40.1, 38.4, 38.2, 23.8, 21.0, 13.9. HRMS (ESI): Calcd for [C₁₉H₂₆O₄, M+Na]⁺: 341.1723, measured: 341.1730.

Diethyl-2-(4-(tert-butyl)benzyl)-2-(2-methylallyl)malonate (1e). 281.2 mg, 78% yield. Light yellow oil. **1H-NMR** (600 MHz, CDCl₃): δ = 7.25 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 4.91 (t, *J* = 1.2 Hz, 1H), 4.81 (s, 1H), 4.09 - 4.17 (m, 4H), 3.27 (s, 2H), 2.64 (s, 2H), 1.73 (s, 3H), 1.28 (s, 9H), 1.20 (t, *J* = 7.2 Hz, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.3 (2C), 149.6, 141.1, 133.3, 129.8 (2C), 125.0 (2C), 115.0, 61.2 (2C), 58.5, 40.3, 38.2, 34.4, 31.3 (3C), 23.8, 13.9 (2C). HRMS (ESI): Calcd for [C₂₂H₃₂O₄, M+Na]⁺: 383.2193, measured: 383.2191.

Diethyl-2-([1,1'-biphenyl]-4-ylmethyl)-2-(2-methylallyl)malonate (1f). 323.5 mg, 85% yield. Colourless oil. ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.56 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.21 (d, *J* = 7.8 Hz, 2H), 4.94 (s, 1H), 4.84 (s, 1H), 4.12 - 4.20 (m, 4H), 3.34 (s, 2H), 2.68 (s, 2H), 1.75 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.2 (2C), 141.1, 140.9, 139.7, 135.6, 130.5 (2C), 128.7 (2C), 127.2, 127.0 (2C), 126.8 (2C), 115.0, 61.3 (2C), 58.5, 40.4, 38.4, 23.8, 14.0 (2C). HRMS (ESI): Calcd for [C₂₄H₂₈O₄, M+Na]⁺: 403.1880, measured: 403.1868.

Diethyl-2-(4-chlorobenzyl)-2-(2-methylallyl)malonate (1g). 254.0 mg, 75% yield. White solid. mp: 46-47 °C. ¹H-NMR (600 MHz, CDCl₃): δ = 7.54 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 4.94 (s, 1H), 4.80 (s, 1H), 4.08 - 4.18 (m, 4H), 3.31 (s, 2H), 2.66 (s, 2H), 1.71 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ = 170.7 (2C), 142.5, 140.5, 131.8 (2C), 131.0 (2C), 115.5, 110.8, 61.5 (2C), 58.2, 41.0, 38.8, 23.5, 13.9 (2C). HRMS (ESI): Calcd for [C₁₈H₂₃ClO₄, M+Na]⁺: 361.1177, measured: 361.1180.

Diethyl-2-(2-methylallyl)-2-(4-nitrobenzyl)malonate (1h). 262.0 mg, 75% yield. White solid. mp: 38-39 °C. ¹H-NMR (600 MHz, CDCl₃): δ = 8.11 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 4.95 (s, 1H), 4.81 (s, 1H), 4.09 - 4.19 (m, 4H), 3.36 (s, 2H), 2.67 (s, 2H),

1.72 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 170.7 (2C), 147.0, 144.6, 140.5, 131.1 (2C), 123.2 (2C), 115.5, 61.6 (2C), 58.2, 41.0, 38.6, 23.5, 13.9 (2C). HRMS (ESI): Calcd for [C₁₈H₂₃NO₆, M+Na]⁺: 372.1418, measured: 372.1423.

Diethyl-2-allyl-2-(4-nitrobenzyl) malonate (1i). 251.4 mg, 75 % yield. White solid. mp: 66-67 °C. ¹H-NMR (600 MHz, CDCl₃): δ = 8.13 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 5.69 - 5.76 (m, 1H), 5.16 - 5,21 (m, 2H), 4.13 - 4.23 (m, 4H), 3.32 (s, 2H), 2.58 (d, *J* = 7.2 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ = 170.2 (2C), 147.1, 144.2, 132.0, 131.0 (2C), 123.4 (2C), 119.8, 61.6 (2C), 58.6, 38.1, 37.0, 14.0 (2C). HRMS (ESI): Calcd for [C₁₇H₂₁NO₆, M+Na]⁺: 358.1261, measured: 358.1265.

Diethyl-2-(3-methoxybenzyl)-2-(2-methylallyl)malonate (11). 260.6 mg, 78 % yield. Colourless oil. ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.15 (t, *J* = 7.8 Hz, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 6.71 (d, *J* = 9.0 Hz, 2H), 4.92 (s, 1H), 4.82 (s, 1H), 4.11 - 4.19 (m, 4H), 3.76 (s, 3H), 3.28 (s, 2H), 2.65 (s, 2H), 1.73 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.2 (2C), 159.3, 141.1, 137.9, 129.0, 122.5, 115.9, 114.9, 112.2, 61.3 (2C), 58.3, 55.1, 40.1, 38.6, 23.8, 14.0 (2C). HRMS (ESI): Calcd for $[C_{19}H_{26}O_5, M+Na]^+$: 357.1672, measured: 357.1679.

Diethyl-2-(2-chlorobenzyl)-2-(2-methylallyl)malonate (1m). 1m can't be completely separated from the reaction mixture. 202.9 mg, 60 % yield. Colourless oil. ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.34 - 7.35 (m, 1H), 7.30 - 7.32 (m, 1H), 7.12 - 7.17 (m, 2H), 4.89 (s, 1H), 4.77 (s, 1H), 4.07 - 4.18 (m, 4H), 3.50 (s, 2H), 2.73 (s, 2H), 1.72 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.1 (2C), 141.1, 135.2, 134.9, 131.8, 129.4, 128.0, 126.4, 114.6, 61.4 (2C), 57.7, 41.4, 35.5, 23.9, 13.8 (2C). HRMS (ESI): Calcd for [C₁₈H₂₃ClO₄, M+Na]⁺: 361.1177, measured: 361.1174.

Diethyl-2-(2-methylallyl)-2-(naphthalen-1-ylmethyl)malonate (1n). 301.3 mg, 85% yield. Colourless oil. **¹H-NMR** (600 MHz, CDCl₃): δ = 8.07 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 9.6 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.40 - 7.46 (m, 3H), 7.36 (t, *J* = 8.4 Hz, 1H), 4.94

(s, 1H), 4.86 (s, 1H), 3.96 - 4.02 (m, 2H), 3.87 - 3.93 (m, 2H), 3.83 (s, 2H), 2.76 (s, 2H), 1.73 (s, 3H), 1.05 (t, J = 7.2 Hz, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.4 (2C), 141.4, 133.8, 133.2, 132.9, 128.7, 128.1, 127.5, 125.6, 125.4, 125.1, 124.0, 114.3, 61.3 (2C), 58.3, 41.1, 34.2, 24.0, 13.7 (2C). HRMS (ESI): Calcd for [C₂₂H₂₆O₄, M+Na]⁺: 377.1723, measured: 377.1730.

Synthesis of substrates 10-1q: [3]

2. Synthesis of substrates 3.

Substrates 3a-3e were synthesized according to the literature, and the NMR spectroscopy were consistented with reported data.^[2]

3. Synthesis of substrates 5.

Substrates **5a-5i** were synthesized according to the literature, and the NMR spectroscopy were consistented with reported data.^[4,5,6,7] Substrates **5d-5f** were new compounds synthesized according to the literature.^[5] The NMR spectroscopy were as follow:

Synthesis of substrates 5a-5c:

Synthesis of substrate 5d-5g (taking 5d as an example):

A solution of *p*-toluidine (0.54g, 5.0 mmol) and di-tert-butyl dicarbonate (1.28 mL, 6.0 mmol) in 20 mL of dry THF was stirred for 12 h at room temperature. The crude mixture was concentrated under reduced pressure, and purified by silica column chromatography (eluent: petroleum ether/EtOAc = 9/1, v/v) to give 0.88 g (85%) of *t*ert-butyl p-tolylcarbamate as a white solid. The yield and NMR spectroscopy were consistented with reported data.^[5]

A solution of *t*ert-butyl p-tolylcarbamate (0.83 g, 4.0 mmol) and NaH (0.19 g, 60%, 4.8 mmol) in 15 mL of dry THF was stirred at 0 $^{\circ}$ C under N₂ for 15 min. 3-Bromo-2-methylprop-1-ene (0.60 Ml, 6.0 mmol) was added and the reaction was stirred at room temperature for 12 h. The reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were rinsed with brine, dried over anhydrous MgSO₄ and concentrated under reduce pressure. Residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 15/1, v/v) to give **5d** as a colourless oil.

Tert-butyl (2-methylallyl) (p-tolyl)carbamate (5d). 835.7 mg, 80 % yield. Colourless oil. ¹H-NMR (600 MHz, CDCl₃): δ = 7.10 - 7.13 (m, 4H), 4.83 (s, 1H), 4.80 (s, 1H), 4.14 (s, 2H), 2.31 (s, 3H), 1.74 (s, 3H), 1.44 (s, 9H). ¹³C-NMR (151 MHz, CDCl₃): δ = 154.8, 141.7, 140.3, 135.2, 129.1 (2C), 125.9 (2C), 111.3, 80.2, 55.9, 28.3 (3C), 20.9, 20.1. HRMS (ESI): Calcd for [C₁₆H₂₃NO₂, M+Na]⁺: 284.1621, measured: 284.1630.

Tert-butyl (4-chlorophenyl)(2-methylallyl)carbamate (5e). 865.8 mg, 77 % yield. Colourless oil. ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.25 - 7.26 (m, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 4.86 (s, 1H), 4.78 (s, 1H), 4.14 (s, 2H), 1.74 (s, 3H), 1.44 (s, 9H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 154.4, 141.4, 130.9, 128.6,(2C) 127.2, 111.6, 80.7, 55.7, 28.2 (3C), 20.1. HRMS (ESI): Calcd for [C₁₅H₂₀CINO₂, M+Na]⁺: 304.1075, measured: 304.1084

Tert-butyl (4-methoxyphenyl)(2-methylallyl)carbamate (5f). 909.1 mg, 82 % yield. Colourless oil. ¹H-NMR (600 MHz, CDCl₃): δ = 7.13 (s, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 4.83 (s, 1H), 4.79 (s, 1H), 4.12 (s, 2H), 3.78 (s, 3H), 1.75 (s, 3H), 1.43 (s, 9H). ¹³C-NMR (151 MHz, CDCl₃): δ = 157.3, 155.0, 141.7, 135.8, 127.5 (2C), 113.7 (2C), 111.6, 80.1, 56.2, 55.4, 28.3 (3C), 20.1. HRMS (ESI): Calcd for [C₁₆H₂₃NO₃, M+Na]⁺: 300.1570, measured: 300.1578.

Synthesis of substrate 5h: [6]

IV. Synthetic Procedures and Analytical Data

Typical procedures for catalyst-free intramolecular aryltrifluoromethylation of unactivated alkenes (taking 1a as an example):

To a dried polytetrafluoroethene (PTFE) sealed pressure tube was added **1a** (91.3 mg, 0.3 mmol), PhICF₃Cl (138.6 mg, 4.5 mmol) and anhydrous DMF (3.0 mL) in sequence under N₂. After the reaction mixture was stirred at 60 °C for 12 h, PhCF₃ (30 µL, 0.2436 mmol) was added as the internal standard and the NMR yield of **2a** was calculated from ¹⁹F-NMR integrals. Then the mixture was washed with water and brine, extracted by CH_2CI_2 . The combined organic phase was dried over anhydrous MgSO₄ and concentrated under reduce pressure. The residue was purified by silica column chromatography (eluent: petroleum ether/EtOAc = 20/1 to 15/1, v/v) to give **2a** as a yellow oil.^[8]

Analytical data for compounds 2a-2o:

Diethyl-4-methyl-4-(2,2,2-trifluoroethyl)-3,4-dihydronaphthalene-2,2(1H)-dicarboxylate (2a). 100.5 mg, 90% yield. Colourless oil.^[8] ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.24 (d, *J* = 7.8 Hz, 1H), 7.19 - 7.22 (m, 1H), 7.14 - 7.17 (m, 2H), 4.06 - 4.24 (m, 4H), 3.32 (d, *J* = 16.2 Hz, 1H), 3.32 (d, *J* = 16.2 Hz, 1H), 2.65 (d, *J* = 15.0 Hz, 1H), 2.47 - 2.56 (m, 1H), 2.34 - 2.44 (m, 2H), 1.42 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.7, 171.2, 140.8, 133.2, 129.1, 126.9, 126.8, 126.4 (q, *J* = 277.5 Hz), 126.0, 61.7, 61.5, 52.5, 45.9 (q, *J* = 25.7 Hz), 39.7, 35.2, 35.1, 29.6 (q, *J* = 0.9 Hz), 13.9, 13.9. ¹⁹**F-NMR** (565 MHz, CDCl₃): δ = -58.8 (t, *J* = 11.3 Hz). HRMS (ESI): Calcd for [C₁₉H₂₃F₃O₄, M+Na]⁺: 395.1441, measured: 395.1421.

Diethyl-4-(2,2,2-trifluoroethyl)-3,4-dihydronaphthalene-2,2(1H)-dicarboxylate (2b). 91.3 mg, 85% yield. Yellow oil.^[8] **1H-NMR** (600 MHz, CDCl₃): δ = 7.13 - 7.21 (m, 4H), 4.20 - 4.24 (m, 2H), 4.06 - 4.15 (m, 2H), 3.32 - 3.37 (m, 2H), 3.19 (d, *J* = 15.6 Hz, 1H), 2.84 (dd, *J* = 13.8 Hz, 6.0 Hz, 1H), 2.72 - 2.79 (m, 1H), 2.23 - 2.33 (m, 1H), 1.97 (dd, *J* = 13.8 Hz, 10.2 Hz, 1H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.5, 170.3, 136.2, 134.1, 129.3, 127.3 (q, *J* = 277.7 Hz), 126.9, 126.8, 126.7, 61.8, 61.4, 53.7, 40.9 (q, *J* = 27.3 Hz), 35.2, 34.8, 30.5 (q, *J* = 2.6 Hz), 14.0, 13.9. ¹⁹**F-NMR** (565 MHz, CDCl₃): δ = -63.5 (t, *J* = 10.7 Hz). HRMS (ESI): Calcd for [C₁₈H₂₁F₃O₄, M+Na]⁺: 381.1284, measured: 381.1294.

Diethyl 6-bromo-4-(2,2,2-trifluoroethyl)-3,4-dihydronaphthalene-2,2(1H)-dicarboxylate (2k). 65.6 mg, 50% yield. Yellow oil.^[8] **¹H-NMR** (600 MHz, CDCl₃): δ = 7.28 - 7.30 (m, 2H), 7.02 (d, *J* = 7.8 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 4.07 - 4.17 (m, 2H), 3.28 - 3.32

(m, 2H), 3.11 (d, J = 16.2 Hz, 1H), 2.82 (dd, J = 13.8 Hz, 7.2 Hz, 1H), 2.68 - 2.76 (m, 1H), 2.24 - 2.33 (m, 1H), 1.95 (dd, J = 13.2 Hz, 3.0 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): $\delta = 171.2$, 170.1, 138.5, 133.2, 130.9 129.9, 129.8, 126.6 (q, J = 277.8 Hz), 120.5, 61.9, 61.6, 53.4, 40.6 (q, J = 27.6 Hz), 34.7, 34.4, 30.5 (q, J = 2.3 Hz), 14.0, 13.9. ¹⁹**F-NMR** (565 MHz, CDCl₃): $\delta = -63.4$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for [C₁₈H₂₀BrF₃O₄, M+Na]⁺: 459.0389, measured: 459.0381.

1-(2,2,2-Trifluoroethyl)-1,2,3,4-tetrahydronaphthalene (2m). 2m was volatile and difficult to be isolated from the reaction mixture. ¹⁹F-NMR yield: 80%. Colorless oil. Its NMR spectroscopy were consistented with the literature data.^[8] **1H-NMR** (600 MHz, CDCl₃): δ = 6.99 - 7.06 (m, 4H), 3.12 - 3.14 (m, 1H), 2.64 - 2.74 (m, 2H), 2.24 - 2.43 (m, 2H), 1.84 - 1.90 (m, 1H), 1.77 - 1.83 (m, 1H), 1.70 - 1.76 (m, 2H). ¹⁹F-NMR (565 MHz, CDCl₃): δ = -63.8 (t, *J* = 11.3 Hz).

7-Fluoro-1-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydronaphthalene (2n). 2n was volatile and difficult to be isolated from the reaction mixture. ¹⁹F-NMR yield: 71%. Colorless oil. Its NMR spectroscopy were consistented with the literature data.^[8] ¹H-NMR (600 MHz, CDCl₃): δ = 7.02 - 7.04 (m, 1H), 6.82 - 6.85 (m, 2H), 3.16 - 3.20 (m, 1H), 2.67 - 2.78 (m, 2H), 2.33 - 2.48 (m, 2H), 1.92 - 1.97 (m, 1H), 1.77 - 1.87 (m, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ = 161.1 (d, *J* = 343.7 Hz), 140.4, 132.6, 130.7 (d, *J* = 7.7 Hz), 126.8 (q, *J* = 277.7 Hz), 114.7 (d, *J* = 20.8 Hz), 113.5 (d, *J* = 21.1 Hz), 40.7 (q, *J* = 27.0 Hz), 32.4, 28.6, 27.5, 19.1. ¹⁹F-NMR (565 MHz, CDCl₃): δ = -63.9 (t, *J* = 10.8 Hz, 3F), -117.0 (q, *J* = 7.1 Hz, 1F).

7-Methoxy-1-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydronaphthalene (20). 2o was volatile and difficult to be isolated from the reaction mixture. ¹⁹F-NMR yield: 89%. Colorless oil. Its NMR spectroscopy were consistented with the literature data.^[8] **1H-NMR** (600 MHz, CDCl₃): $\bar{\delta}$ = 6.82 - 6.86 (m, 1H), 6.72 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 6.66 (d, *J* = 2.4Hz, 1H), 3.78 (s, 3H), 3.15 - 3.19 (m, 1H), 2.65 - 2.75 (m, 2H), 2.32 - 2.50 (m, 2H), 1.90 - 1.96 (m, 1H), 1.83 - 1.87 (m, 1H), 1.73 - 1.80 (m, 2H). ¹⁹F-NMR (565 MHz, CDCl₃): $\bar{\delta}$ = -63.9 (t, *J* = 12.2 Hz).

Analytical data for compounds 4a-4f:

Diethyl-3-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-indene-1,1-dicarboxylate (4a). 69.2 mg, 67% yield. Colourless oil.^[8] ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.61 (d, *J* = 7.2 Hz, 1H), 7.30 - 7.37 (m, 2H), 7.20 (d, *J* = 7.2 Hz, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 4.14 - 4.24 (m, 2H), 3.60 - 3.65 (m, 1H), 3.09 (dd, *J* = 13.8 Hz, 7.8 Hz, 1H), 2.66 - 2.75 (m, 1H), 2.45 (dd, *J* = 13.2 Hz, 7.2 Hz, 1H), 2.23 - 2.33 (m, 1H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 170.5, 170.1, 144.8, 139.0, 129.0, 127.7, 127.0, 126.7 (q, *J* = 275.6 Hz), 123.4, 64.8, 61.9, 61.8, 40.6, 39.2 (q, *J* = 27.8 Hz), 37.0 (q, *J* = 2.6 Hz), 14.1, 14.0. ¹⁹**F-NMR** (565 MHz, CDCl₃): δ = -64.4 (t, *J* = 10.7 Hz). HRMS (ESI): Calcd for [C₁₇H₁₉F₃O₄, M+Na]⁺: 367.1128, measured: 367.1135.

Diethyl-5-methoxy-3-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-indene-1,1-dicarboxylate (4c). 4c can't be completely separated from **3c**. ¹⁹F-NMR yield: 72%. Colorless oil.^[8] ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.49 (d, J = 9.0 Hz, 1H), 6.85 - 6.87 (m, 1H), 6.70 (d, J = 2.4 Hz, 1H), 4.22 - 4.27 (m, 2H), 4.15 - 4.21 (m, 2H), 3.81 (s, 3H), 3.55 - 3.60 (m, 1H), 3.07 (dd, J = 13.8 Hz, 7.8 Hz, 1H), 2.62 - 2.71 (m, 1H), 2.45 (dd, J = 13.8 Hz, 7.8 Hz, 1H), 2.23 - 2.33 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 170.7, 170.4, 160.7, 146.4, 131.0, 128.5 (q, J = 277.2 Hz), 127.7, 113,9, 108.6, 64.0, 61.8, 61.8, 55.5, 40.9, 39.1 (q, J = 28.7 Hz), 37.0 (q, J = 2.7 Hz), 14.1, 14.0. ¹⁹**F-NMR** (565 MHz, CDCl₃): δ = -64.4 (t, J= 11.3 Hz). HRMS (ESI): Calcd for [C₁₈H₂₁F₃O₅, M+Na]⁺: 367.1128, measured: 367.1135.

Diethyl-3-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-cyclopenta[a]naphthalene-1,1-dicarboxylate (4e). 76.9 mg, 65% yield. Yellow oil.^[8] ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.85 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.45 (t, *J* = 7.2 Hz, 1H), 7.37 (d, *J* = 7.2 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 4.26 - 4.30 (m, 1H), 4.15 - 4.20 (m, 1H), 3.46 - 3.50 (m, 1H), 3.10 (dd, *J* = 13.2 Hz, 3.6 Hz, 1H), 2.97 - 3.06 (m, 1H), 2.51 (t, *J* = 12.0 Hz, 1H), 2.37 - 2.46 (m, 1H), 1.33 (t, *J* = 7.2 Hz, 3H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 171.3, 170.2, 134.7, 134.0, 130.2, 128.8, 128.6, 127.6, 127.0 (q, *J* = 275.7 Hz), 126.3, 125.5, 125.3, 122.3, 62.1, 62.1, 59.7, 38.1 (q, *J* = 27.6 Hz), 34.9, 30.4 (q, *J* = 2.4 Hz), 14.0, 13.9. ¹⁹**F-NMR** (565 MHz, CDCl₃): δ = -62.8 (t, *J* = 11.3 Hz). HRMS (ESI): Calcd for [C₂₁H₂₁F₃O₄, M+Na]⁺: 417.1284, measured: 417.1291.

Tert-butyl-5-methyl-3-(2,2,2-trifluoroethyl)indoline-1-carboxylate (**6g**). 60.5 mg, 64% yield. Colorless oil.^[8] **1H-NMR** (600 MHz, CDCl₃): δ = 7.36 - 7.74 (br. 1H), 7.02 (d, *J* = 7.8 Hz, 1H), 6.94 (s, 1H), 4.20 (s, 1H), 3.74 (s, 1H), 3.57 - 3.61 (m, 1H), 2.56 - 2.65 (m, 1H), 2.26 - 2.35 (m, 4H), 1.56 (s, 9H). ¹³**C-NMR** (151 MHz, CDCl₃): δ = 152.2, 132.1, 129.0, 127.1, 126.5 (q, *J* = 277.5 Hz), 124.3, 124.2, 114.7, 81.4, 65.9, 53.8, 39.2 (q, *J* = 27.6 Hz), 28.5 (3C), 20.9. ¹⁹**F-NMR** (470 MHz, CDCl₃): δ = -64.8 (t, *J* = 11.3 Hz). HRMS (ESI): Calcd for [C₁₆H₂₀F₃NO₂, M+Na]⁺: 338.1338, measured: 338.1346.

V. Mechanistic Study

Experimental Procedures: To a dried polytetrafluoroethene (PTFE) sealed pressure tube was added alkene **1h** (67.1 mg, 0.2 mmol), PhICF₃Cl (92.4 mg, 0.3 mmol), TEMPO/BHT and anhydrous DMF (2 mL) in sequence under N₂. The reaction mixture was stirred at 60 °C for 12 h, monitored by ¹⁹F NMR using PhCF₃ (20 µL, 0.1564 mmol) as the internal standard.

Table S8. Control experiments for trifluoromethylation of unactivated alkenes.^[a]

[a] Reaction conditions: 1h (0.2 mmol), PhICF₃CI (0.30 mmol), DMF (2 mL)

[b] ¹⁹F NMR yields using PhCF₃ as an internal standard.

Plausible mechanistic:

Based on the above experimental results (**Table S7**), an ionic process is proposed as shown in **Scheme SI**. The unactivation of the alkene double bond of **1h** by [PhICF₃]⁺ affords iodonium complex **I**. Then exo-cyclization occurs via an attack of the aryl group affording

cyclic intermediate II. Finally, the deprotonation of II gives trifluoromethylated product 2h along with the elimination of PhI.

VI. References

[1]. C. Xu, X. Song, J. Guo, S. Chen, J. Gao, J. Jiang, F. Gao, Y. Li and M. Wang, Org. Lett., 2018, 20, 3933.

[2]. a) D. Nečas, M. Turský and M. Kotora, J. Am. Chem. Soc., 2004, **126**, 10222; b) H. Zhang and K. Muñiz, ACS Catal., 2017, **7**, 4122; c) Z. Zhang, H. Martinez and W. R. Dolbier, J. Org. Chem., 2017, **82**, 2589; d) B. Cacciuttolo, S. Poulain-Martini and E. Duñach, Eur. J. Org. Chem., 2011, **2011**, 3710; f) R. J. Armstrong, M. and D. Smith, Angew. Chem. Int. Ed., 2014, **53**, 12822.

[3]. H.-J. Zhong, B. R. Lee, J. W. Boyle, W. Wang, D.-L. Ma, P. W. H. Chan and C.-H. Leung, Chem. Commun., 2016, 52, 5788.

[4]. a) K. Yuan, J. -F. Joulé, V. Dorcet and H. Doucet, ACS Catal., 2016, 6, 8121; b) X. Zhou and G. Dong, Angew. Chem. Int. Ed., 2016, 55, 15091.

[5]. a) H. Lavrard and F. Popowycz, *Eur.J. Org. Chem.*, 2017. 2017. 600; b) P. Mondal, L. Thander and S. K. Chattopadhyay. *Tetrahedron Letters.*, 2012. 53. 1328.
[6]. P. Wipf and J. P. Maciejewski, *Org. Lett.*, 2008, 10, 4383.

[7]. a) P. G. Chirila, L. Skibinski, K. Miller, A. Hamilton and C. J. Whiteoak, Adv. Synth. Catal., 2018, **360**, 2324; b) T. Arvind B, S. Narayan and S. Devanand, Organic Chemistry: An Indian Journal, 2010, **6**, 52.

[8]. a) H. Egami, R. Shimizu, S. Kawamura and M. Sodeoka, Angew. Chem. Int. Ed., 2013, 52, 4000; b) S. Kawamura and M. Sodeoka, Angew. Chem. Int. Ed., 2016, 55, 8740.

VIII. NMR Spectra

1.NMR Spectra of New Substrates

¹H-NMR Spectra of 1c

¹H-NMR Spectra of 1e

¹H-NMR Spectra of 1f

¹H-NMR Spectra of 1g

¹H-NMR Spectra of 1h

¹H-NMR Spectra of 1i

¹H-NMR Spectra of 1I

¹H-NMR Spectra of 1m

$7.354 \\ 7.356 \\ 7.357 \\ 7.317 \\ 7.313 \\ 7.313 \\ 7.314 \\ 7.314 \\ 7.312 \\ 7.314 \\ 7.312 \\ 7.320 \\ 7.32$

¹H-NMR Spectra of 1n

¹³C-NMR Spectra of 1n

¹H-NMR Spectra of 5d

¹H-NMR Spectra of 5e

¹H-NMR Spectra of 5f

2. NMR Spectra of Products

¹H-NMR Spectra of 2a

¹⁹F-NMR Spectra of 2a

¹H-NMR Spectra of 2b

¹³C-NMR Spectra of 2b

¹H-NMR Spectra of 2c

 $\begin{array}{c} 6.980\\ 6.967\\ 7.031\\ 6.980\\ 6.980\\ 6.967\\ 7.031\\ 1.031\\ 1.052\\ 5.067\\ 4.195\\ 4.195\\ 4.195\\ 4.195\\ 4.134\\ 4.113\\ 4.113\\ 4.133\\ 5.106\\ 3.3.251\\ 1.053\\ 3.3.251\\ 1.053\\ 3.3.251\\ 1.053\\ 3.3.251\\ 1.053\\ 3.3.251\\ 1.053\\ 3.3.251\\ 1.053\\ 1.1256\\ 1.$

¹⁹F-NMR Spectra of 2c

¹H-NMR Spectra of 2d

7.065 7.015 6.972 6.972 6.972 6.972 6.972 6.972 6.959 7.013 6.929 4.1094

¹³C-NMR Spectra of 2d

fl (ppm)

¹H-NMR Spectra of 2e

¹⁹F-NMR Spectra of 2e

--58.705 --58.725 --58.745

¹H-NMR Spectra of 2f

 $\begin{array}{c} 7.543\\ 7.529\\ 7.447\\ 7.434\\ 7.430\\ 7.433\\ 7.433\\ 7.433\\ 7.539\\ 7.538\\ 7.538\\ 7.538\\ 7.538\\ 7.538\\ 7.538\\ 7.538\\ 7.538\\ 7.538\\ 7.538\\ 7.238\\ 7.$

¹³C-NMR Spectra of 2f

fl (ppm)

¹H-NMR Spectra of 2g

¹⁹F-NMR Spectra of 2g

¹H-NMR Spectra of 2h

¹³C-NMR Spectra of 2h

¹⁹F-NMR Spectra of 2i

¹H-NMR Spectra of 2j

¹³C-NMR Spectra of 2j

¹H-NMR Spectra of 2k

 $\begin{array}{c} 7.300\\ 7.278\\ 7.025\\ 7.012\\ 7.012\\ 7.012\\ 4.199\\ 4.199\\ 4.199\\ 4.199\\ 4.199\\ 4.199\\ 4.199\\ 4.111\\ 4.212\\ 4.111\\ 4.222\\ 5.333\\ 3.3333\\ 3.3333\\ 3.333\\ 3.3333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\$

¹⁹F-NMR Spectra of 2k

¹H-NMR Spectra of 2I

¹³C-NMR Spectra of 2I

¹⁹F-NMR Spectra of 2l'

¹³C-NMR Spectra of 2m

¹H-NMR Spectra of 2n

¹³C-NMR Spectra of 2n

¹⁹F-NMR Spectra of 2n

¹H-NMR Spectra of 4a

¹³C-NMR Spectra of 4a

fl (ppm)

¹H-NMR Spectra of 4b

 $\begin{array}{c} 7.563\\ 7.550\\ 7.550\\ 7.550\\ 7.550\\ 7.550\\ 7.550\\ 7.550\\ 7.550\\ 7.523\\ 7.$

¹⁹F-NMR Spectra of 4b

¹³C-NMR Spectra of 4c

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H-NMR Spectra of 4d

¹⁹F-NMR Spectra of 4d

¹H-NMR Spectra of 4e

¹³C-NMR Spectra of 4e

¹⁹F-NMR Spectra of 6a

¹H-NMR Spectra of 6b

¹³C-NMR Spectra of 6b

¹H-NMR Spectra of 6c

¹³C-NMR Spectra of 6c

¹⁹F-NMR Spectra of 6c

--60.342 --60.361 --60.381

¹H-NMR Spectra of 6d

¹³C-NMR Spectra of 6d

¹H-NMR Spectra of 6e

¹⁹F-NMR Spectra of 6e

¹³C-NMR Spectra of 6f

¹⁹F-NMR Spectra of 6f

¹H-NMR Spectra of 6g

¹³C-NMR Spectra of 6g

¹⁹F-NMR Spectra of 6g

¹H-NMR Spectra of 6h

¹³C-NMR Spectra of 6h

¹⁹F-NMR Spectra of 6h

¹H-NMR Spectra of 6i

¹³C-NMR Spectra of 6i

¹⁹F-NMR Spectra of 6i

