Supporting Information

A mitochondria-targeted red-emitting probe for imaging of hydrogen

sulfide in living cells and zebrafish

Ismail Ismail,[†]^a Dan Wang,[†]^a Dawei Wang,^a Cuili Niu,^a Haojie Huang,^b Long Yi^{b,c} and Zhen Xi^{a,c}*

^aState Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

^bState Key Laboratory of Organic-Inorganic Composites and Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China. ^cCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.

⁺These authors contributed equally to this work.

*corresponding author: E-mail: zhenxi@nankai.edu.cn Tel: +86 022-23504782, Fax: +86 022-23500952.

Table of Contents

1.	Supporting Figures and Table	2-5
2.	Supporting spectra	6-11

1. Supporting Figures and Table

Figure S1. HPLC trances of the probe **1** (0.25 mM) and H₂S (5 mM) at different reaction time (inset). Conditions: ANGELA TECHNOLOGIES HPLC LC-10F; C18 column with 4.6 mm x 250 mm; wavelength: 273 nm; flow 1.0 mL / min; buffer A: 0.1% (v / v) trifluoroacetic acid in water; buffer B: MeOH; elution condition: 0-3 min, B: 5-50%; 3-13 min, B: 50-80%; 13-25 min, B: 80-95%; 25-30 min, B: 95-5%; 30-32min, B: 5%.

Figure S2. The titration of the probe 1 (5 μ M) with variable concentrations of H₂S (0-200 μ M). The emission spectra were excited with 565 nm.

Figure S3. The emission intensity at 585 nm of 1 (5 μ M) at the indicated pH values in the absence or presence of H₂S (100 μ M).

Probe	λex/λem (nm)	Fluor. enhancement	φ	LOD/µM	Rate/ k_2	Ref
1	565/585	~19	0.77	0.36	27.8 M ⁻¹ s ⁻¹	This work
N O N	567/589	~4.5	0.36	0.58	113 M ⁻¹ s ⁻¹	1
HO C C C C C C C C C C C C C C C C C C C	502/530	~65	0.64	0.057	28 M ⁻¹ s ⁻¹	1
	449/496	~200	0.81	0.9	7.6 M ⁻¹ s ⁻¹	2

Table S1. The properties of several NBD-based H₂S probes.

ND, not determined.

Figure S4. Evaluation on the cytotoxicity of the probe using xCELLigence RTCA system. Real-time monitoring of the density-dependent growth and proliferation of HEK293 cells with different probe concentration. The cell index values with time can reflect the adhesion number of cells inside the well.

Figure S5. Fluorescence imaging for the L-Cys-induced H_2S in living cells. Cells were incubated with L-Cys (100 μ M) for 30 min, then washed cells and incubated with probe **1** (5 μ M) at different time intervals (0-30 min). The average fluorescence of the time-dependent images is shown below.

Supporting references:

- 1 R. Wang, Z. Li, C. Zhang, Y. Li, G. Xu, Q. Z. Zhang, L. Y. Li, L. Yi and Z. Xi, *ChemBioChem.*, 2016, 17, 968.
- 2 I. Ismail, D. Wang, D. Wang, Z. Wang, C. Zhang, L. Yi and Z. Xi, *Dyes Pigments*, 2019, 163, 706.
- 3 K. Zhang, J. Zhang, Z. Xi, L. Y. Li, X. X. Gu, Q. Z. Zhang and L. Yi, Chem Sci., 2017, 8, 2781.
- 4 Y. L. Pak, J. Li, K. C. Ko, G. Kim, J. Y. Lee and J. Yoon, Anal Chem., 2016, 88, 5481.
- 5 J. Zhang, R. Y. Wang, Z. T. Zhu, L. Yi and Z. Xi, *Tetrahedron.*, 2015, 71, 8576.
- 6 Y. Tang and G. F. Jiang, New J Chem., 2017, 41, 6774.

2. Supporting spectra

$$\begin{array}{c} 8.01 \\ 7.09 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.66 \\ 7.66 \\ 6.59 \\ 6.59 \\ 6.53 \\ 7.66 \\ 13 \\ 6.13 \\ 6.13 \\ 7.23 \\ 9.6 \\ 7.33 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 9.6 \\ 7.33 \\ 7.33 \\ 9.6 \\ 7.33 \\ 7$$

