SUPPORTING INFORMATION

Photoinduced electron transfer in a molecular dyad by nanosecond pumppump-probe spectroscopy

M.-H. Ha-Thi, *a V.-T. Pham, abc T. Pino, V. Maslova, A. Quaranta, C. Lefumeux, W. Leibld and A. Aukauloo*de

Figure S1. (a) Transient absorption decays at selected wavelengths of H_2P -Ru_{cat} (6.5 μ M) in CH₃CN/acetone (50:50) at short time scale after single-pulse excitation at 515 nm. (b) Decay Associated Difference Spectra: a_1 is the spectrum associated with 2.6 μ s decay (black line), c are the spectral changes due to the non-decaying contribution (red line).

Figure S2. Transient absorption spectra of H_2P-Ru_{cat} (6.5 μ M) and MV^{2+} (10 mM) in CH₃CN/acetone (50:50) in various delay times after double-pulse excitation at 515 nm.

Figure S3. (a) Transient absorption decays at selected wavelengths of H_2P -Ru_{cat} (6.5 μ M) and MV²⁺ (10 mM) in CH₃CN/acetone (50:50) at short time scale after double-pulse excitation at 515 nm. (b) Decay Associated Difference Spectra: a_1 is the spectrum associated with 1.1 μ s decay (black line), c are the spectral changes due to the non-decaying contribution (red line).

Figure S4. DADS spectra associated with 1.1 μs decay time after single-pulse and double-pulse excitations.

Figure S5. Transient absorption decays at 500 nm of H_2P -Ru_{cat} (6.5 μ M) and MV²⁺ (10 mM) in CH₃CN/acetone (50:50) at long time scale after single-pulse and double-pulse excitation at 515

nm. Inset: Kinetic trace of the sample at 500 nm plotted as 1/[Ru^{III}] vs. time after double-pulse excitation.