Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

> Photo-induced anticancer activity and singlet oxygen production of prodigiosenes

Savoie, Figliola, Marchal, Crabbe, Hallett-Tapley, Boyle, Thompson

Photo-induced anticancer activity and singlet oxygen production of prodigiosenes

Huguette Savoie,^a Carlotta Figliola,^b Estelle Marchal,^b Bry W. Crabbe,^c Geniece L. Hallett-Tapley,^{*c} Ross W. Boyle,^{*a} Alison Thompson^{*b}

^aDepartment of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK; ^bDepartment of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS, B3H 4R2, Canada; ^cDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS, B2G 2W5, Canada.

ghallett@stfx.ca; r.w.boyle@hull.ac.uk; alison.thompson@dal.ca

Supporting Information

Description of singlet oxygen quantum yield calcuations (Φ_{Δ}):

 ${}^{1}O_{2}$ quantum yields were calculated based on literature precedents. 1 9,10-Dimethylantracene was added as a ${}^{1}O_{2}$ trap. The photooxidation of DMA to the corresponding endoperoxide was monitored as a function of time (over 10 min for rose bengal and over 120 min for photosensitizers **5**, **6** and **7**) and the corresponding kinetic plots are presented in Figure S3. The quantum yields of ${}^{1}O_{2}$ were calculated using Rose Bengal (RB) as a reference actinometer (Φ_{Δ} , RB = 0.54 in CH₃CN). ${}^{2}\Phi_{\Delta}$ for each photosensitizer (**5**, **6** and **7**, Φ_{Δ} , PS) was estimated using eq. S1 below.

$$\Phi_{\Delta}^{\rm PS} = \Phi_{\Delta}^{\rm RB} \frac{F^{\rm PS} m^{\rm PS}}{F^{\rm RB} m^{\rm RB}}$$

Here, $\Phi_{\Delta, RB}$ is the known quantum yield of ${}^{1}O_{2}$ from RB in CH₃CN, m is the slope of linear portion of ΔA of DMA @ 398 nm vs. 480 nm LED irradiation (plots and m values presented in Figure S3). F is a correction factor where F=1-10^{-A} (A is the absorption of the photosensitizer at the irradiation wavelength of 480 nm).

Figure S1. UV-visible spectra of 70 µM DMA collected in CH₃CN over 120 min of 480 nm LED light exposure.

Figure S2. UV-visible spectra of 10 μ M 7 and 70 μ M DMA collected in CH₃CN over 120 min of 480 nm LED light exposure.

Figure S3. UV-visible spectra of 1.6 µM Rose Bengal and 70 µM DMA collected in CH₃CN over 120 min of 480 nm LED light exposure.

Figure S4. Plot of ΔA of DMA at 398 nm *vs.* irradiation time in the presence of (a) Rose Bengal, (b) 6 and (c) 7.

Figure S5. Image of 480 nm blue LED experimental design used as the irradiation source for the photophysical studies.

References

- 1. W. Li, L. Li, H. Xiao, R. Qi, Y. Huang, Z. Xie, X. Jing and H. Zhang, *RSC Adv.*, 2013, 3, 13417-13421.
- 2. A. M. Durantini, L. E. Greene, R. Lincoln, S. R. Martínez and G. Cosa, J. Am. Chem. Soc., 2016, 138, 1215-1225.