Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

Visible Light-Promoted Alkylation of Imines Using Potassium Organotrifluoroborates

Davis P. Plasko, Christopher J. Jordan, Brittney E. Ciesa, Madison A. Merrill and James M. Hanna, Jr.*

Department of Chemistry, Physics, and Geology, Winthrop University, Sims Science Building, Rock Hill, SC 29733

SUPPLEMENTARY INFORMATION

General Information	2
General Procedure for Alkylation of Imines	2
Photoreactor Setup (Figure S1)	3
Blue LED Emission Spectrum (Figure S2)	3
Compound Data for Amines (3)	4
Light-Dark Experiment	7
References	8
Compound Spectra	9

General Information

Unless otherwise noted, all reagents were purchased from commercial sources and used as received. *N*-(Benzylidene)aniline (**2a**) was prepared according to the method of Bigelow and Eatough.¹ Solvents were degassed and dried using a PureSolv Solvent Purification System by Innovative Technology. Melting points were measured on an Electrothermal IA9100 digital melting point apparatus and are uncorrected. ¹H NMR spectra were obtained at 300 MHz or 400 MHz; ¹³C NMR spectra were obtained at 75 MHz or 100 MHz. Chemical shifts are reported in parts per million (δ) using the solvent residual proton or carbon signal (CDCl₃: δ H 7.26 ppm, δ C 77.3 ppm; d6-DMSO: δ H 2.50 ppm, δ C 39.5 ppm) as an internal reference. FTIR spectra were recorded on a ThermoScientific Nicolet iS10 or Avatar 370 spectrometer. GC/EI-MS analyses were performed on an Agilent Technologies 5975C MSD. Flash column chromatography was carried out using silica gel (grade 60, 230 – 400 mesh). Feit 16 W PAR 38 blue LED reflector floodlights were purchased from Amazon.com; the emission spectrum was measured with an Ocean Optics Red Tide USB650 spectrophotometer.

General Procedure for Visible Light-Promoted Alkylation of Imines.

An appropriate potassium organotrifluoroborate (1, 0.38 mmol), 2a (0.25 mmol), *Ir-dF(CF₃)-dtb* (7.1 mg, 0.0063 mmol, 2.5 mol %), and CH₂Cl₂ (5 mL) were added to an oven dried 25 mL Schlenk tube equipped with a Teflon stir bar and rubber septum. The solution was sparged with argon for 15 minutes, and then placed between two Feit 16 W blue LED floodlights (~9 cm away, Figure S1; emission spectrum shown in Figure S2). Unless otherwise indicated, the solution was illuminated with stirring for 46 h; the temperature was maintained at approximately 30 °C by a fan blowing across the reaction vessel. The reaction mixture was quenched with saturated aqueous NH₄Cl (20 mL), and extracted with (3 x 10 mL) of CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), evaporated, and purified by flash column chromatography (hexanes/ethyl acetate) to give the product.

Figure S1

Figure S2

Compound Data for Amines (3)

```
N-(1,2-Diphenylethyl)aniline (3a).
```

NHPh Ph

Pale yellow oil. Yield: 70%. ¹H-NMR (CDCl₃, 300 MHz): δ 7.38-7.19 (m, 8H), 7.18-7.11 (m, 2H), 7.10-7.02 (m, 2H), 6.68-6.61 (m, 1H), 6.51-6.44 (m, 2H), 4.62-4.56 (m, 1H), 4.12 (br s, 1H), 3.20-2.97 (m, 2H). ¹³C-NMR (CDCl₃, 75 MHz): δ 147.4, 143.5, 137.8, 129.3, 129.1, 128.7, 128.6, 127.1, 126.8, 126.5, 117.6, 113.7, 59.3, 45.3. EI-MS: m/z 273 (M⁺, 1), 183 (32), 182 (100), 180 (20), 104 (30), 91 (17), 77 (49). These data are in agreement with reported literature data.²

N-(1-Phenyl-3-buten-1-yl)aniline (**3b**)

Orange oil. Yield: 70%. ¹H-NMR (CDCl₃, 300 MHz): δ 7.49-7.20 (m, 5H), 7.16-7.04 (m, 2H), 6.72-6.61 (m, 1H), 6.56-6.46 (m, 2H), 5.86-5.68 (m, 1H), 5.26-5.12 (m, 2H), 4.45-4.36 (m, 1H), 4.18 (br s, 1H), 2.69-2.42 (m, 2H). ¹³C-NMR (CDCl₃, 75 MHz): δ 147.4, 143.6, 134.7, 129.1, 128.7, 127.1, 126.4, 118.4, 117.4, 113.6, 57.2, 43.4. IR (ATR): 3407 cm⁻¹ (N-H). EI-MS: m/z 223 (M⁺, 2), 183 (18), 182 (100), 104 (23), 77 (39). These data are in agreement with reported literature data.^{2,5}

<u>*N*-(1-Cyclohexyl-1-phenylmethyl)aniline (**3**c)</u>

Orange oil. Yield: 72%. ¹H-NMR (CDCl₃, 300 MHz): δ 7.31-7.16 (m, 5H), 7.10-7.01 (m, 2H), 6.64-6.56 (m, 1H), 6.52-6.45 (m, 2H), 5.86-5.68 (m, 1H), 4.15 (br s, 1H), 4.11 (d, *J* = 6.3 Hz, 1H), 4.18 (br s, 1H), 1.94-1.44 (m, 6H), 1.30-0.94 (m, 5H). ¹³C-NMR (CDCl₃, 75 MHz): δ 147.8, 142.7, 129.1, 128.3, 127.3, 126.8, 117.0, 113.2, 63.5, 45.0, 30.3, 29.5, 26.5, 26.5, 26.4. IR (ATR): 3422 cm⁻¹ (N-H). EI-MS: m/z 265 (M⁺, 3), 183 (18), 182 (100), 104 (15), 91 (13), 77 (25). These data are in agreement with reported literature data.³

<u>N-(1-Cyclobutyl-1-phenylmethyl)aniline (3e); N-(2,2-dichloro-1-phenylethyl)aniline (4)</u>

Pale yellow oil. Isolated as an inseparable mixture of compounds **3e** and **4**. The ratio of **3e**:**4** was determined by NMR integration of the signals at 2.58 (**3e**, integration 1 H) and 6.07 (**4**, integration 0.08 H) and to be 12:1; reported percent yields are calculated based on this ratio.

Compound **3e**: Yield: 48%. ¹H-NMR (CDCl₃, 400 MHz): δ 7.40-7.46 (m, 4H), 7.20 (t, *J* = 7.0 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 2H), 6.61 (t, *J* = 7.3 Hz, 1H), 6.49 (d, *J* = 7.7 Hz, 2H), 4.16 (d, *J* = 8.8 Hz, 1H), 4.01 (br s, 1H), 2.59-2.46 (m, 1H), 2.19-2.07 (m, 1H), 1.96-1.73 (m, 5H). ¹³C-NMR (CDCl₃, 100 MHz): δ 147.8, 142.6, 129.1, 128.5, 127.0, 126.6, 117.2, 113.4, 63.8, 42.6, 26.2, 25.6, 17.6. IR (ATR): 3410 cm⁻¹ (N-H). EI-MS: m/z 237 (M⁺, 6), 183 (14), 182 (100), 144 (12), 129 (17), 115 (20), 104 (12), 91 (25), 77 (30). HRMS calculated for C₁₇H₂₀N (M + H): 238.1590, found: 238.1590.

Compound 4: Yield: 4%. EI-MS: m/z 265 (M⁺, 2), 267 (M+2, 3), 193 (6), 183 (15), 182 (100), 104 (15), 91 (6), 77 (22). HRMS calculated for C₁₄H₁₄Cl₂N (M + H): 266.0498, found: 266.0499.

N-(1,3-Diphenylpropyl)aniline (3f)

NHPh Ph Ph

Illuminated for 168 h. Yellow oil. Yield: 41%. ¹H-NMR (CDCl₃, 300 MHz): δ 7.37-7.13 (m, 10H), 7.08 (t, *J* = 7.5 Hz, 2H), 6.64 (t, *J* = 7.4 Hz, 1H), 6.49 (d, *J* = 8.5 Hz, 2H), 4.35 (t, *J* = 6.8 Hz, 1H), 4.12 (br s, 1H), 2.80-2.62 (m, 2H), 2.24-2.04 (m, 2H). ¹³C-NMR (CDCl₃, 75 MHz): δ 147.2, 143.8, 141.5, 129.2, 128.7, 128.6, 128.5, 127.1, 126.6, 126.1, 117.5, 113.5, 57.9, 40.2, 32.7. IR (ATR): 3409 cm⁻¹ (N-H). EI-MS: m/z 287 (M⁺, 4), 194 (16), 183 (18), 182 (100), 115 (15), 104 (20), 93 (17), 91 (55), 77 (32). These data are in agreement with reported literature data.⁴

<u>N-(2,2-Dimethyl-1-phenylpropyl)aniline (3g)</u>

Yellow oil. Yield: 60%. ¹H-NMR (CDCl₃, 300 MHz): δ 7.35-7.17 (m, 5H), 7.06 (t, *J* = 7.4 Hz, 2H), 6.61 (t, J = 7.4 Hz, 1H), 6.51 (d, J = 7.7 Hz, 2H), 4.28 (br s, 1H), 4.06 (s, 1H), 1.01 (s, 9H). ¹³C-NMR (CDCl₃, 75 MHz): δ 147.5, 141.0, 129.1, 128.6, 127.8, 126.9, 117.3, 113.6, 67.6, 35.0, 27.2. IR (ATR): 3438 cm⁻¹ (N-H). EI-MS: m/z 239 (M⁺, 3), 183 (22), 182 (100), 181 (36), 180 (47), 104 (24), 77 (55). These data are in agreement with reported literature data.⁵

N-(2-Phenoxy-1-phenylethyl)aniline (3h)

NHPh Ph O Ph

Yellow oil. Yield: 61%. ¹H-NMR (CDCl₃, 300 MHz): δ 7.45-7.22 (m, 10H), 7.05 (t, *J* = 8.0 Hz, 2H), 6.67 (t, *J* = 7.3 Hz, 2H), 6.52 (d, *J* = 7.7 Hz, 2H), 4.83-4.49 (m, 4H), 3.74 (dd, *J* = 10.0, 4.0 Hz, 1H), 3.59 (t, *J* = 9.2 Hz, 1H). ¹³C-NMR (CDCl₃, 100 MHz): δ 147.4, 140.6, 137.9, 129.1, 128.8, 128.6, 127.9, 127.8, 127.6, 127.0, 118.0, 114.3, 74.4, 73.1, 58.5. IR (ATR): 3391 cm⁻¹ (N-H). EI-MS: m/z 303 (M⁺, 5), 183 (37), 182 (100), 180 (13), 104 (34), 91 (45), 77 (50). HRMS calculated for C₂₁H₂₂NO (M + H): 304.1696, found: 304.1697.

Light-Dark Experiment.

Potassium benzyltrifluoroborate (**1a**, 54.5 mg, 0.38 mmol), benzalaniline (**2a**, 45.4 mg, 0.25 mmol), *Ir-dF(CF₃)-dtb* (7.1 mg, 0.0063 mmol, 2.5 mol %), and CH₂Cl₂ (5 mL) were added to an oven dried 25 mL Schlenk tube equipped with a Teflon stir bar and rubber septum. Decane (145 μ L) was added as an internal standard. The solution was sparged with argon for 15 minutes, then placed between two 16 W blue LEDs (~9 cm away, Figure S1). The solution was illuminated with stirring for a period of time (usually 10 min), and sampled for GC/MS analysis at the end of the illumination period. The solution was stirred in the dark (kept in a sealed cardboard box, usually 30 min), and sampled for GC/MS analysis at the end of the reaction was measured by the ratio of GC area of product **3a** to GC area of decane (IS). Results are tabulated below.

	GC Area Ratio	Illumination
Time (min)	(3a /IS)	(off/on)
0	0.00	on
10	0.22	
10	0.22	off
40	0.21	
40	0.21	on
50	0.44	
50	0.44	off
80	0.47	
80	0.47	on
90	0.62	
90	0.62	off
1050	0.60	
1050	0.60	on
1060	0.88	
1060	0.88	off
1090	0.84	
1090	0.84	on
1100	1.00	
1100	1.00	off
1130	1.04	
1130	1.04	on
1140	1.01	
1140	1.01	off
1170	1.04	
1170	1.04	on
1180	1.02	

References

- 1. Bigelow, L. A.; Eatough, H. Org. Synth. 1928, 8, 22-23.
- 2. Zhang, Y.; Yan, T.; Cheng, W.; Zuo, J.; Zhao, W. Tetrahedron Lett. 2009, 50, 2925-2928.
- 3. Shen, Z. L.; Cheong, H. L.; Loh, T. P. Chem. Eur. J. 2008, 14, 1875-1880.
- 4. Chen, N.; Dai, X. J.; Wang, H.; Li, C. J. Angew. Chem. Int. Ed. 2017, 56, 6260-6263.
- 5. Dilauro, G.; Dell'Aera, M.; Vitale, P.; Capriati, V;, Perna, F. M. Angew. Chem. Int. Ed. 2017, 56, 10200-10203.

COMPOUND SPECTRA

