Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

Supporting Information

Hydrothermal synthesis of Bi₂WO₆ with a new tungsten source and enhanced photocatalytic activity of Bi₂WO₆ hybridized with

 $C_3N_4 \\$

Peipei Yan,^a Di Li,*^a Xinguo Ma,^b Juanqin Xue,^a Yujie Zhang,^a Manbo Liu^a

^aSchool of Metallurgical Engineering, Xi'an University of Architecture and

Technology, Xi'an, 710055, China

^bSchool of Science, Hubei University of Technology, Wuhan, 430068, China

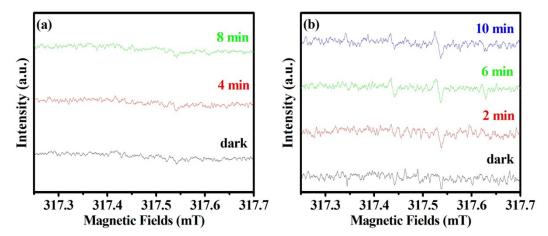


Fig. 1. EPR spectra of (a) DMPO- \bullet O₂⁻ and (b) DMPO- \bullet OH adducts of Bi₂WO₆ in darkness and under visible light irradiation.

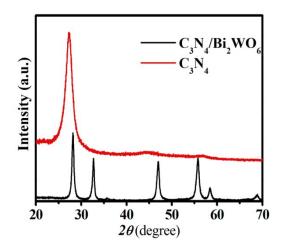


Fig. 2. XRD pattern of C_3N_4 and C_3N_4/Bi_2WO_6 (4%).

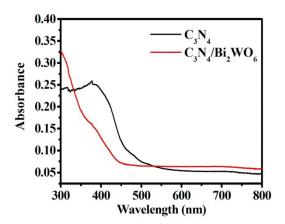
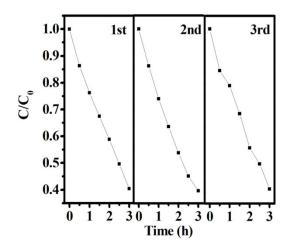



Fig. 3. The typical UV-vis DRS of C_3N_4 and C_3N_4/Bi_2WO_6 (12%).

Fig. 4 Cycling runs in the photocatalytic degradation of MB in the presence of C_3N_4/Bi_2WO_6 (4%) under visible light irradiation; C_3N_4/Bi_2WO_6 loading, 0.5 g L⁻¹; initial concentration of MB, 2×10⁻⁵ M.