Modulated Photochemical Reactivities of O-Acetylated (3',5'-Dimethoxyphenyl)heteroaryl Acyloin Derivatives Under Direct Irradiation And Photo-induced Electron Transfer Conditions

Rajesh Bisht^{†, §}, Saumya Singh^{¶,§} Kothandam Krishnamoorthy^{¶,§,*} and Jayaraj

Nithyanandhan^{†,§,*}

t	Physical and Material Chemistry Division,	CSIR-National Chemical Laboratory, CSIR	-
	Network of Institutes for Solar Energy, Dr	. Homi Bhaba Road, Pune, India-411008.	

Polymer Science Engineering Division, CSIR-National Chemical Laboratory, CSIR-Network of Institutes for Solar Energy, Dr. Homi Bhaba Road, Pune, India-411008.

§ Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India

Supporting Information

List of contents

1.	Steady-state photolysis absorption spectra	S2
2.	Cyclic Voltammograms	S2
3.	Absorption and Emission spectra of trigger and cyclized products	S3
4.	OFET characteristics of cyclized products	S5
5.	Stacked ¹ H NMR spectra of 5f, 6f and 7f	S 8
6.	Stacked ¹ H NMR spectra of 5d, 6d and 6d+7d	S9
7.	¹ H and ¹³ C spectra of compounds	S10

Figure S1. Change in UV-visible absorption spectra of furan derivative (4b) with increasing photolysis at 365 nm under 100 watt UV lamp in MeCN recorded at interval of 1 min each.

Figure S2. Cyclic Voltammogram (reduction scan) of 5d, 5e and 5f measured in CH_2Cl_2 (platinum wire as working electrode, non-aqueous Ag/Ag⁺ (0.01M) as reference electrode and platinum foil as counter electrode) with TBAClO₄ (0.1 M) as electrolyte at the scan rate of 50 mV s⁻¹.

Figure S3. Cyclic Voltammogram (oxidation scan) of 6d, 6e and 6f measured in CH_2Cl_2 (platinum wire as working electrode, non-aqueous Ag/Ag⁺ (0.01M) as reference electrode and platinum foil as counter electrode) with TBAClO₄ (0.1 M) as electrolyte at the scan rate of 50 mV s⁻¹.

Figure S4. Absorption and emission curves of phtototriggers and cyclized products

Figure S5. UV absorption and emission curves of extended phtototriggers and cyclized products

Figure S6. Output and transfer characteristics of 6d, without annealing (a) and (b), with annealing at 50°C for 10 min (c) and (d). Channel length is 5 μ m

Figure S7. Output and transfer characteristics of **6e**, without annealing (a) and (b), with annealing at 50°C for 10 min (c) and (d). Channel length is $2.5 \mu m$.

Figure S8. Output and transfer characteristics of **6f**, without annealing (a) and (b), with annealing at 50°C for 10 min (c) and (d). Channel length is $2.5 \,\mu$ m.

Figure S9. Stacked ¹H NMR spectra of 5f (bottom), 6f (middle) and 7f (top)

Figure S10. ¹H-NMR spectrum for the mixture of **6d** and **7d** obtained by the photochemical reaction of 5d in MeCN in the presence of Et_3N (1 equiv.) for 1 h and evaporated the solvent (Entry 8, Table 2 in the manuscript).

Figure S11. Stacked ¹H NMR spectra of 5d (bottom), 6d (middle) and 6d + 7d mixture (top)

Figure S12. ¹H- and ¹³C-NMR spectra of 2-phenyl-1,3-dithiane (2a)

Figure S13. ¹H and ¹³C NMR spectra of 2-(1,3-dithian-2-yl)furan (2b)

Figure S14. ¹H and ¹³C NMR spectra of 2-(thiophen-2-yl)-1,3-dithiane (2c)

Figure S15. ¹H and ¹³C NMR of 5-(1,3-dithian-2-yl)-2,2'-bithiophene (2d)

Figure S16. ¹H and ¹³C NMR of (3,5-dimethoxyphenyl)(2-phenyl-1,3-dithian-2-yl)methanol (3a)

Figure S17. ¹H and ¹³C NMR spectra of 3,5-dimethoxyphenyl)(2-(furan-2-yl)-1,3-dithian-2-yl)methanol (3b)

Figure S18. ¹H and ¹³C NMR spectra of 3,5-dimethoxyphenyl)(2-(thiophen-2-yl)-1,3-dithian-2-yl)methanol (**3c**)

Figure S19. ¹H and ¹³C NMR spectra of 2-([2,2'-bithiophen]-5-yl)-1,3-dithian-2-yl)(3,5-dimethoxyphenyl)methanol (**3d**)

Figure S21. ¹H and ¹³C NMR spectra of 3,5-dimethoxyphenyl)(2-(furan-2-yl)-1,3-dithian-2-yl)methyl acetate (**4b**)

Figure S22. ¹H and ¹³C NMR spectra of 3,5-dimethoxyphenyl)(2-(thiophen-2-yl)-1,3-dithian-2-yl)methyl acetate (**4c**)

Figure S23. ¹H and ¹³C NMR spectra of 2-([2,2'-bithiophen]-5-yl)-1,3-dithian-2-yl)(3,5-dimethoxyphenyl)methyl acetate (**4d**)

Figure S24. ¹H and ¹³C NMR spectra of 3,5-dimethoxyphenyl)(2-(5-(4-methoxyphenyl)thiophen-2-yl)-1,3-dithian-2-yl)methyl acetate (**4e**)

Figure S25. ¹H and ¹³C NMR spectra of 3,5-dimethoxyphenyl)(2-(5'-phenyl-[2,2'-bithiophen]-5-yl)-1,3-dithian-2-yl)methyl acetate (**4f**)

Figure S26. ¹H and ¹³C NMR spectra of 1-(3,5-dimethoxyphenyl)-2-oxo-2-phenylethyl acetate (5a)

Figure S27. ¹H and ¹³C NMR spectra of of 1-(3,5-dimethoxyphenyl)-2-(furan-2-yl)-2-oxoethyl acetate (**5b**)

Figure S28. ¹H and ¹³C NMR spectra of 1-(3,5-dimethoxyphenyl)-2-oxo-2-(thiophen-2-yl)ethyl acetate (**5c**)

Figure S29. ¹H and ¹³C NMR spectra of 2-([2,2'-bithiophen]-5-yl)-1-(3,5-dimethoxyphenyl)-2-oxoethyl acetate (**5d**)

Figure S30. ¹H and ¹³C NMR spectra of 1-(3,5-dimethoxyphenyl)-2-(5-(4-methoxyphenyl)thiophen-2-yl)-2-oxoethyl acetate (**5e**)

Figure S31. ¹H and ¹³C NMR spectra of 1-(3,5-dimethoxyphenyl)-2-oxo-2-(5'-phenyl-[2,2'-bithiophen]-5-yl)ethyl acetate (**5f**)

Figure S33. ¹H and ¹³C NMR spectra of 2-(furan-2-yl)-5,7-dimethoxybenzofuran (6b)

Figure S34. ¹H and ¹³C NMR spectra of 5,7-dimethoxy-2-(thiophen-2-yl)benzofuran (6c)

Figure S35. ¹H and ¹³C NMR spectra of 2-([2,2'-bithiophen]-5-yl)-5,7-dimethoxybenzofuran (6d)

Figure S36. ¹H and ¹³C NMR spectra of 5,7-dimethoxy-2-(5-(4-methoxyphenyl)thiophen-2-yl)benzofuran (**6e**)

Figure S37. ¹H and ¹³C NMR spectra of 2-(3,5-dimethoxyphenyl)-1-(5-(4-methoxyphenyl)thiophen-2-yl)ethan-1-one (7e)

Figure S38. ¹H and ¹³C NMR spectra of 5,7-dimethoxy-2-(5'-phenyl-[2,2'-bithiophen]-5yl)benzofuran (**6f**)

Figure S39. ¹H and ¹³C NMR spectra of 2-(3,5-dimethoxyphenyl)-1-(5'-phenyl-[2,2'-bithiophen]-5-yl)ethan-1-one (7f)