Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

Electronic Supplementary Information (ESI)

Nanocellulose/TiO₂ composites: Preparation, characterization and application in photocatalytic degradation of a potential endocrine disruptor, mefanamic acid, from aqueous media.

Manali Rathod^{a,c}, Paresh Moradeeya^b, Soumya Haldar^c, Shaik Basha^b*

^aAcademy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar 364002,

Gujarat, India.

^bHyderabad Zonal Centre, CSIR-National Environmental Engineering Research Institute, IICT

Campus, Tarnaka, Hyderabad 500 007, Telangana, India.

^cAnalytical and Environmental Science Division and Centralized Instrument Facility, CSIR-

Central Salt & Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364 002,

Gujarat, India.

*Corresponding Author: (Shaik Basha) Telefax: +91-40-27160639,

E mail: s_basha@neeri.res.in

Parameters			Catalyst		
	Nanocellulose (NC)	5% TiO ₂ NCT,	10% TiO2 NCT	25% TiO ₂ NCT	50% TiO ₂ NCT
Surface area,	258	310	348	335	320
$S_{BET}(m^2/g)$					
$V_p (Cm^3/g)$	0.152	0.167	0.237	0.183	0.179
$S_t(m^2/g)$	285	308	365	335	318
S_{micro} (m ² /g)	255	287	267	302	304
S_{meso} (m ² /g)	24	19	84	22	17
V _{micro} (ml/g)	0.141	0.162	0.141	0.164	0.175
V_{meso} (ml/g)	0.029	0.024	0.124	0.024	0.020
Average pore radius (Å)	10.18	11.18	12.47	10.41	11.37

Table S1 Surface properties of nanocellulose (NC) and NCTs

Fig. S1 Effect of pH on photocatalytic degradation of MEF by 10 % TiO₂ NCT (♦) pH 5, (□) pH 9, (▲) pH 11, (x) pH 3

Fig. S2 Photocatalytic degradation of MEF by 10 % TiO₂ NCT (\blacklozenge) First cycle, (\square) Second cycle, (\blacktriangle) Third cycle, (x) Fourth, (*) Fifth

Fig. S3 X-Ray diffraction patterns of TiO_2 , NC and NCTs

Fig. S4 FT-IR spectra of TiO_2 , NC and NCTs

Fig. 5 SEM images of NC and NCTs ((a) NC, (b) 5% NCT, (c) 10% NCT, (d) 25% NCT, (e) 50% NCT (f) Pure TiO₂(inset: EDX spectrum).

Fig. S6 Typical TEM images of 10%TiO₂ NCT

Fig. S7 AFM images: (A) NC (B) 5% NCT (C) 10 % NCT (D) 25% NCT (E) 50 % NCT (F) Pure TiO₂

Fig. S8 TGA curves of TiO_2 , NC and NCTs