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The method of determination of association constant (K). Based on the literatures [1,2], the 

association constant (K) of sensor 1 (L) with Al3+, Ga3+ and In3+ (M) can be expressed by the 

following equations, where (L) and (M) are assumed to form a complex with a complexation 

ratio of m:n.

,
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α is defined as the ratio between the free ligand concentration [L] and the initial concentration 

of ligand [L]T.
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Table S1. Examples for the detection of In3+ by organic chemosensors.
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(a)
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Fig. S1 (a) 1H NMR and (b) 13C NMR spectra of 1.
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Fig. S2 Time-dependent fluorescence intensity changes of 1 (20 µM) in the presence of Al3+ 

in MeOH with excitation at 368 nm.
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Fig. S3 Job plot of 1 and Al3+. The total concentration of 1 and Al3+ was 20 µM.
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Fig. S4 Positive-ion electrospray ionization mass spectrum of 1 (100 µM) upon addition of 

1.0 equiv of Al(NO3)3.
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Fig. S5 Li’s equation of 1 (20 μM) for Al3+, assuming 2:1 stoichiometry for association of 1 

with Al3+.
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Fig. S6 Detection limit of 1 (20 µM) for Al3+ through change of fluorescence intensity.
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Fig. S7 Competitive selectivity of 1 (20 µM) toward Al3+ (22 equiv) in the presence of other 

metal ions (22 equiv).
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Fig. S8 Color changes of 1, Ga3+-2·1 and In3+-2·1.
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Fig. S9 UV-vis spectral changes of 1 (20 μM) in the presence of different concentrations of 

Ga3+ ion.
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Fig. S10 Job plot of 1 and Ga3+. The total concentration of 1 and Ga3+ was 20 µM.
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Fig. S11 Positive-ion electrospray ionization mass spectrum of 1 (100 µM) upon addition of 

1.0 equiv of Ga(NO3)3.
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Fig. S12 Li’s equation of 1 (20 μM) for Ga3+, assuming 2:1 stoichiometry for association of 1 

with Ga3+.
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Fig. S13 Competitive selectivity of 1 (20 µM) toward Ga3+ (9 equiv) in the presence of other 

metal ions (9 equiv).
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Fig. S14 Job plot of 1 and In3+. The total concentration of 1 and In3+ was 20 µM.
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Fig. S15 Li’s equation of 1 (20 μM) for In3+, assuming 2:1 stoichiometry for association of 1 

with In3+.
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Fig. S16 Detection limit of 1 (20 µM) for In3+ through change of fluorescence intensity.
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Fig. S17 Competitive selectivity of 1 (20 µM) toward In3+ (9 equiv) in the presence of other 

metal ions (9 equiv).
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Excited state 4 Wavelength (nm) Percent (%) Main character Oscillator strength
H-2 → L 342.30 60 π → π* 1.0340
H → L+1 37

Fig. S18 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-

vis spectrum of 1. (b) The major electronic transition energies and molecular orbital 

contributions of 1 (H = HOMO and L = LUMO). 
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(b)

Excited state 11 Wavelength (nm) Percent (%) Main character Oscillator strength
H → L+2 393.28 13 ICT 0.8534
H → L+3 66 ICT

Fig. S19 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-

vis spectrum of Al3+-2∙1 complex. (b) The major electronic transition energies and molecular 

orbital contributions of Al3+-2∙1 complex (H = HOMO and L = LUMO).
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(b)

Excited state 12 Wavelength (nm) Percent (%) Main character Oscillator strength
H-1 → L+3 384.10 76 ICT 1.2591
H → L+2 16 ICT

Fig. S20 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-

vis spectrum of Ga3+-2∙1 complex. (b) The major electronic transition energies and molecular 

orbital contributions of Ga3+-2∙1 complex (H = HOMO and L = LUMO).
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(b)

Excited state 12 Wavelength (nm) Percent (%) Main character Oscillator strength
H-1 → L+2 387.68 43 ICT 1.5361
H → L+3 47 ICT

Fig. S21 (a) The theoretical excitation energies (TD-DFT method) and the experimental UV-

vis spectrum of In3+-2∙1 complex. (b) The major electronic transition energies and molecular 

orbital contributions of In3+-2∙1 complex (H = HOMO and L = LUMO). 



26

(a)

(b)



27
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Fig. S22 Molecular orbital diagrams of 1 with (a) Al3+-2∙1, (b) Ga3+-2∙1 and (c) In3+-2∙1 

complexes. 


