Electronic Supplementary Information

Sustained production of H_2O_2 in alkaline water solution by using borate and phosphate modified Au/TiO₂ photocatalysts

Xianqiang Xiong, Xiao Zhang, Shengwei Liu, Jianjun Zhao and Yiming Xu*

State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University,

Hangzhou 310027, China.

Materials. Anatase TiO₂, chloroauric acid, horseradish peroxide (POD) and N,N–diethyl-pphenylenediamine (DPD) purchased from Sigma–Aldrich. Others in analytical grade were from Sinopharm Chemical Reagent Co., Ltd., including HClO₄, NaOH, Na₂B₄O₇•10H₂O, Na₂HPO₄•12H₂O, NaH₂PO₄•2H₂O, phenol, H₂O₂ polyvinyl alcohol (PVA) and CH₃OH. Milli-Q ultrapure water was used in this study. The solution pH was adjusted with a dilute solution of HClO₄ or NaOH.

Synthesis of Au/TiO₂ and Pt/TiO₂. Au-loaded TiO₂ was prepared by a deposition-precipitation method. An aqueous suspension (50 ml) containing 1.0 ml of 10 g/L of HAuCl₄ was adjusted to pH 6.0 with 1 M NaOH. To this solution, 1.0 g of TiO₂ particles, calcined at 650 °C for pre-treatment, were added and magnetically stirred at 70 °C for 1 h. The solid was filtered, washed thoroughly with distilled water, and dried overnight in an oven at 60 °C. The amount of HAuCl₄ remaining in the filtrate was measured by an inductively coupled plasma mass spectroscopy, from which the amount of Au in Au/TiO₂ was calculated to be 0.61 wt%.

Pt-loaded TiO₂ was prepared by a photochemical deposition method. An aqueous suspension (50 ml) containing 0.9 g of TiO₂, 4 mL of CH₃OH and 120 μ L of H₂PtCl₆ stock solution was stirred

in the dark for 30 min, followed by irradiation with a 300 W mercury lamp for 3 h. The solid was filtered, washed thoroughly with distilled water, and dried overnight in an oven at 80 °C. The amount of H_2PtCl_6 remaining in the filtrate was measured by an inductively coupled plasma mass spectroscopy, from which the amount of Pt in Pt/TiO₂ was calculated to be 0.52 wt%.

Characterization. X-ray diffraction (XRD) pattern was recorded on a D/max-2550/PC diffractometer (Rigaku), using a Cu Kα as the X-ray irradiation source. Adsorption-desorption isotherm of N₂ on solid was measured at 77 K on a Micromeritics ASAP2020 apparatus. Diffuse reflectance spectrum (DRS) was recorded on a Shimadzu UV-2550 with BaSO₄ as a reference. X-ray photoelectron spectroscopy (XPS) was made on a Kratos AXIS Ultra DLD spectrometer. The binding energies were calibrated with C 1s at 284.8 eV. Scanning electron microscope (SEM) measurement was performed on a SU-8010, attached with energy-dispersive X-ray spectroscopy (EDS). The HRTEM image was obtained with a JEM-2100F.

Electrochemical measurement. Au/TiO₂ film electrode was prepared by doctor blade method. A gel containing 0.8 wt% Au/TiO₂ and 2.9 wt% PVA was coated on FTO substrate, and then sintered at 500 °C for 2 h. The FTO substrate was cut into pieces. Each piece had an exposed area of 1×1 cm², and other part was sealed by an epoxy resin. These glass were used as working electrodes. Measurement was carried out on a CHI660E Electrochemical Station (Chenghua, Shanghai), using a Ag/AgCl as the reference electrode, a platinum gauze as the counter electrode. The supporting electrolyte was 0.5 M NaClO₄. The working electrode was illuminated through a quartz window with a 500 W Xe lamp from the electrode/electrolyte side.

Photocatalysis and H₂O₂ measurement. Au/TiO₂-photocatalyzed H₂O₂ production was carried out as follows: Au/TiO₂ (0.05 g) was added to water solution (50 mL) containing 4 vol% CH₃OH or 0.86 mM phenol as electron donor, and the temperature of the suspension was controlled by termostato at 20 °C. The suspension was firstly stirred in the dark for 30 min to reach the

adsorption-desorption equilibrium, and then irradiated by a high pressure mercury lamp ($\lambda >$ 320 nm, light intensity: 4.5 mW cm⁻²) in air-saturated condition. The H₂O₂ concentration in the filtrate was measured on an Agilent 8453 UV–visible spectrophotometer at 553 nm through the POD-catalyzed oxidation of DPD.¹ The phenol concentration was analyzed by HPLC (high performance liquid chromatography) on a Dionex P680 (Apollo C18 reverse column). The eluent was a mixture of CH₃OH and H₂O at a volume ratio of 5:5 in the presence of 0.1% acetic acid.

Derivation process of H₂O₂ concentration in the catalyst suspension solution.

$$r = r_f - r_d \tag{1}$$

In equation (1), *r* is the real reaction rate, and r_f and r_d are the formation and decomposition rates of H₂O₂, respectively. Assume that H₂O₂ formation is zero-order, and H₂O₂ decomposition is first-order. Then, equation (2) is obtained, where [H₂O₂] is H₂O₂ concentration, k_f and k_d are the rate constants for H₂O₂ formation and decomposition, respectively.

$$\frac{d[H_2O_2]}{dt} = k_f - k_d[H_2O_2]$$
(2)

Define x = t, and y = [H₂O₂]. Then, equation (2) is transferred as $y'(x) = k_f - k_d y(x)$

In standard form for a linear equation, $y'(x) + k_d y(x) = k_f$

Integrating factor, $\mu(x) = e^{\int k_d dx} = e^{k_d x}$

Use formula where C is a constant value,
$$y(x) = \frac{1}{\mu(x)} \left[\int \mu(x) k_f dx + C \right] = \frac{k_f}{k_d} + C e^{-k_d x}$$
(3)

By using Initial condition, y(0) = 0 and equation (3), it follows that $C = -\frac{k_f}{k_d}$

$$y(x) = \frac{k_f}{k_d} \left(1 - e^{-k_d x}\right)$$

Specific solution:

Finally, H₂O₂ concentration is obtained as follows

Fig. S1 (A) XRD pattern, (B) N₂ adsorption–desorption isotherms, (C) UV-vis diffuse reflectance spectra for (a) TiO₂, (b) Au/TiO₂. The Kubelka–Munk (K–M) absorbance (F_R) is calculated by using the equation, $F_R = (1 - R)^2/2R$, where R is the solid reflectance.

Samples	$E_g(eV)$	<i>d</i> s(nm)	A _{sp} (m²/g)	d _p (nm)	<i>V</i> _p (cm ³ /g)	V _m (cm ³ /g)
TiO ₂	3.20	23.5	49.5	16.39	0.3238	0.0044
Au/TiO ₂	3.20	24.3	42.7	19.38	0.3524	0.0014

Table S1. Physical Parameters of the Catalysts^a

 ${}^{a}E_{g}$, band gap energy; d_{s} , crystallite size estimated by XRD from the (101) facet; A_{sp} , Brunauer–Emmett–Teller (BET) surface area measured by N₂ adsorption; d_{p} , average pore size; V_{p} , total pore volume; V_{m} , micropore volume. All the data were obtained from Fig. S1.

Fig. S2 Scanning Electron Microscope (SEM) images of (a) TiO₂ and (b) Au/TiO₂.

Fig. S3 Element distribution of Ti, O and Au in Au/TiO₂, recorded by EDS spectra.

Fig. S4 High-resolution TEM images of the samples: (a) TiO_2 , (b) Au/TiO₂.

Fig. S5 X-ray photoelectron spectroscopy (XPS) of Au 4*f*, obtained with Au/TiO₂ sample.

Reference

1 H. Bader, V. Sturzenegger and J. Hoigne, *Water Res.*, 1988, **22**, 1109-1115.