Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

Supporting Informations

Terpyridine derivative as "turn-on" fluorescent chemosensor for the selective and sensitive detection of Zn²⁺ ions in solution as well as in live cells

Tripti Mandal,^a Anowar Hossain,^a Anamika Dhara,^a Abdulla Al Masum,^b Saugata Konar,^c Saikat Kumar Manna,^{*d} Saikat Kumar Seth,^e Sudipta Pathak^{*d} and Subrata Mukhopadhyay^a

^aDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata, West Bengal, India.

^bDepartment of Life science & Bio-technology, Jadavpur University, Jadavpur, Kolkata, West Bengal, India.

^cDepartment of Chemistry, Bhawanipur Education Society College, Bhowanipore, Kolkata, West Bengal, India.

^dDepartment of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal, India.

^eDepartment of Physics, Jadavpur University, Jadavpur, Kolkata, West Bengal, India.

*Corresponding Author, Tel: (03224) 252278; Fax: (03224)255873.

E-mail: sudiptachemster@gmail.com; saikat.manna.chem@gmail.com

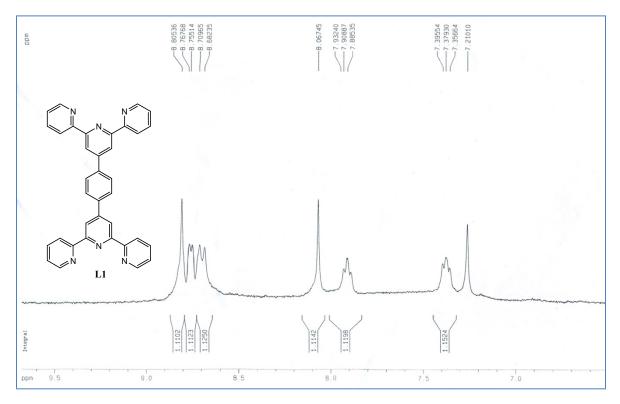


Fig. S1 ¹H NMR spectrum of sensor L1 in CDCl₃.

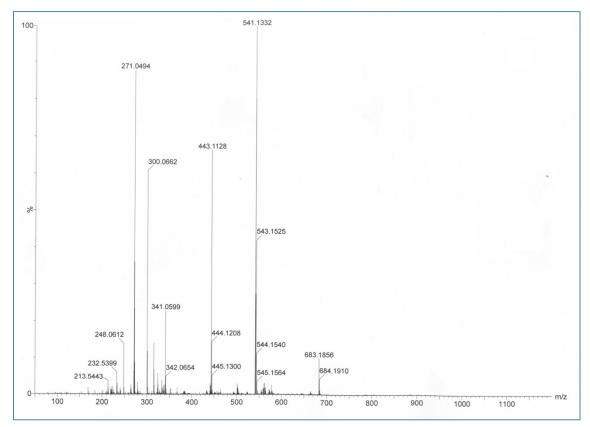


Fig. S2 Mass spectrum of sensor L1.

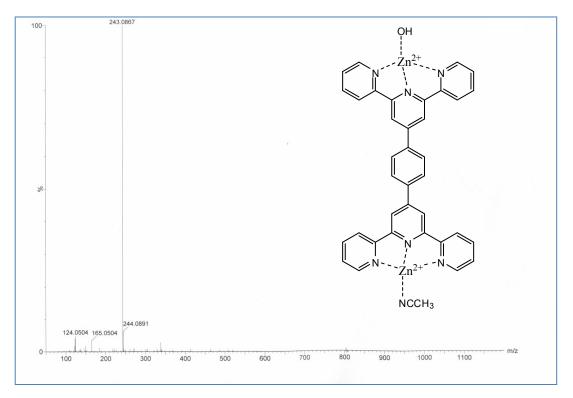


Fig. S3 Mass spectrum of sensor L1-2Zn²⁺ complex.

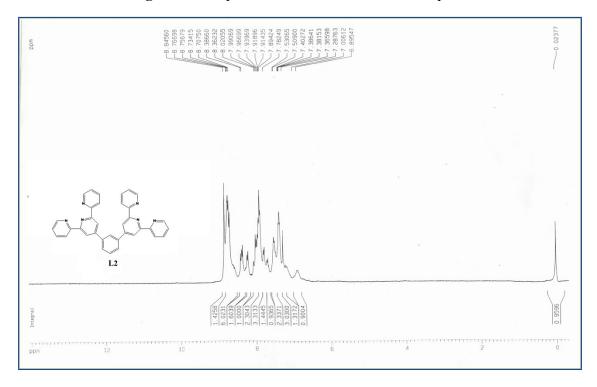


Fig. S4 ¹H NMR spectrum of sensor L2 in CDCl₃.

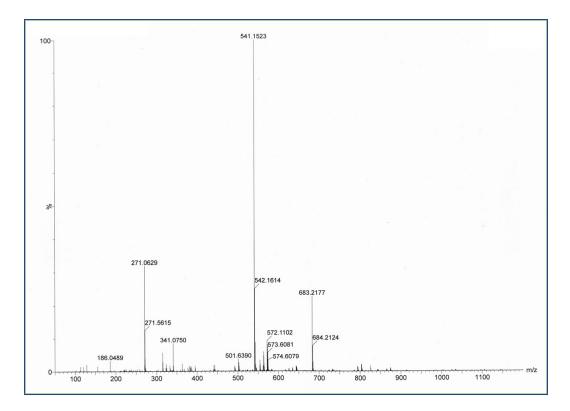
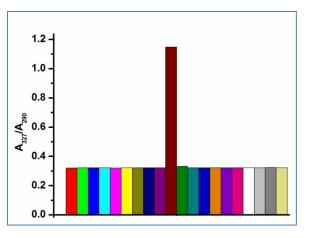



Fig. S5 Mass spectrum of sensor L2.

Fig. S6 Change in the absorption spectrum of receptor L1 $[c = 4 \times 10^{-5} \text{ M}, CH_3CN/H_2O = 1 : 1, v/v, 10 mM HEPES buffer, pH = 7.4) with respective metal cations (c = 4 × 10⁻⁴ M, left to right-L, Li⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, Sr²⁺, Ba²⁺, Mn²⁺, Zn²⁺, Al³⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Cd²⁺, Pb²⁺, Hg²⁺, Pd²⁺, and Ag⁺).$

Binding constants calculation using fluorescence titration data:

The association constant and stoichiometry for the formation of the representative complexes were evaluated using the Benesi–Hildebrand (B–H) plot (eq 1).¹

$$1/(I - I_0) = 1/K(I_{max} - I_0)[M^{n+}] + 1/(I_{max} - I_0)$$
(1)

where I₀, I_{max}, and I represent the emission intensity of free L1, the maximum emission intensity observed in the presence of added metal ion at 370 nm for Zn^{2+} ($\lambda_{ext} = 312$ nm), and the emission intensity at a certain concentration of the metal ion added, respectively.

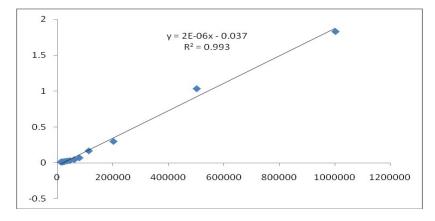


Fig. S7 Benesi-Hildebrand plot obtained from the Fluorescence titration data of L1 (4 x 10^{-5} M) with Zn^{2+} (4 x 10^{-4} M).

Determination of Detection Limit:

The detection limit of L1 for Zn^{2+} was determined from the following equation²:

Detection limit= K^* Sb1/S Where K = 2 or 3 (we take 2 in this case); (2)

Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve

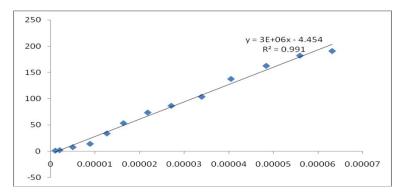
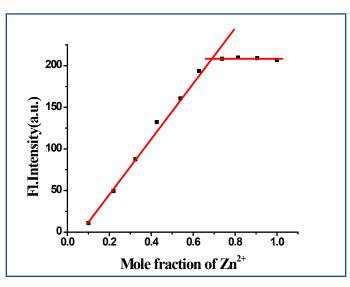



Fig. S8 Calibration curve for fluorescence titration of L1 with Zn^{2+} .

From the graph (Fig. S8) we get slope = 3×10^6 , and Sb1 value is 14.64524 Thus using the formula we get the Detection Limit = 9.76×10^{-6} M = 9.76μ M Job's plot:

Fig. S9 Fluorescence Job's plot for L1 with Zn^{2+} in CH₃CN/H₂O solution (9:1, v/v, 10 mM HEPES buffer, pH 7.4). ([H] = [G] = 4× 10⁻⁵ M).

Theoretical study:

Table S1. HOMO-LUMO energy calculated for L1 and L1- $2Zn^{2+}$ complex using[(B3LYP/6311G(d,p)] level of theory)

Species	E(HOMO)	E(LUMO)	ΔE (Hartree	$\Delta E(eV)$	$\Delta E(\text{kcal/mol})$
L1	-0.24382	-0.07043	0.17339	4.718	108.804
L1-Zn ²⁺	-0.58153	-0.43667	0.14486	3.942	90.901

1 Hartree = 27.2116 eV, 1 Hartree = $627.5095 \text{ kcal mol}^{-1}$

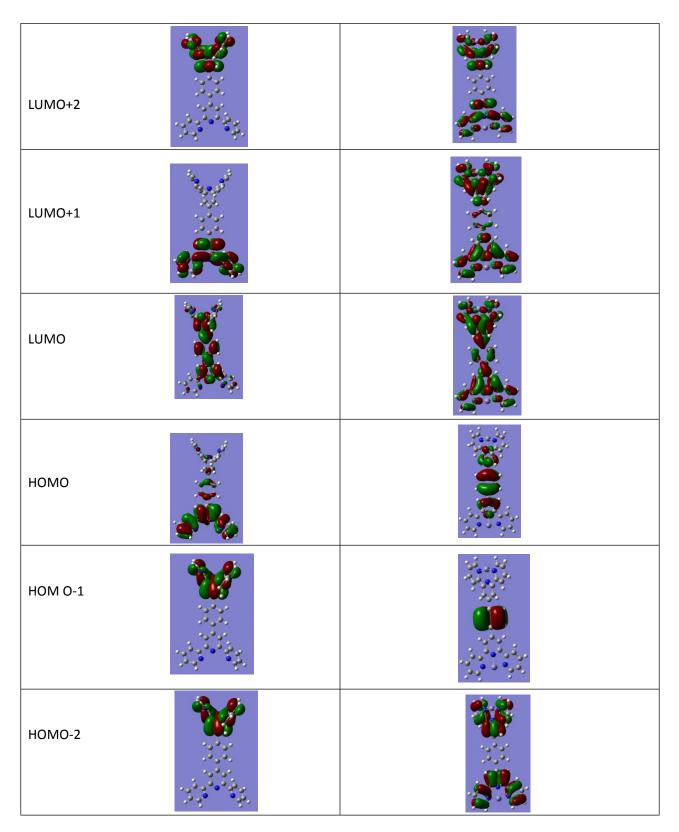


Fig. S10 Molecular orbital plots of L1 and L1– $2Zn^{2+}$.

Table S2. Selected electronic excitation energies (eV) and oscillator strengths (f) of L1 and L1- $2Zn^{2+}$. The data were calculated by TDDFT//B3LYP/6-311+G(d,p) based on the optimized ground state geometries.

Molecules	Excitation	f ^b	Composition ^c	(composition) %
	Energy ^a			
	4.1620 eV 297.89 nm	0.4316	$H \rightarrow L$	63.6
			$H-1 \rightarrow L+3$	3.49
	4.1908 eV 295.85 nm	0.1616	$H-2 \rightarrow L$	80.97
L1			$H-2 \rightarrow L+3$	6.69
	4.1991 eV 295.26 nm	1.0404	$H \rightarrow L$	28
			$H-1 \rightarrow L$	62.89
			$H-1 \rightarrow L+1$	2.92
	3.7806 eV 337.95 nm	0.9158	$H \rightarrow L$	97.38
L1-2Zn ²⁺	3.7806 eV 327.95 nm	0.2146	H -1→ L	67.74
			$H \rightarrow L+3$	11.58
	4.0723 eV 309.46 nm	0.0840	$H \rightarrow L+2$	86.22
			$H-2 \rightarrow L$	10.89

[a] Only selected excited states were considered. [b] Oscillator strength. [c] H stands for HOMO and L stands for LUMO.

<u>Cell imaging experiments:</u>

Minimum Inhibitory Concentration (MIC): We have treated probe L1 with both gram positive and gram negative bacteria. After 24 hrs of treatment probe L1 shows no effect on gram negative bacteria but it showed some effect on gram positive bacteria. Probe L1 showed

bacteriostatic activity on 150 μ M. The chances of survivability of bacteria decrease near about 80%.

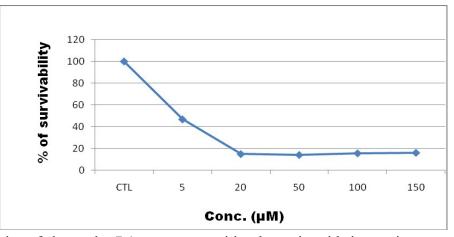
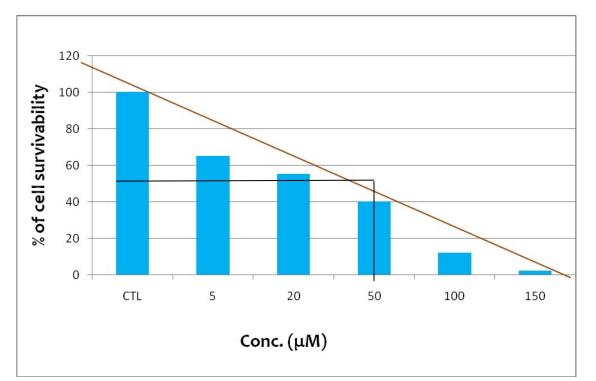



Fig. S11 Activity of the probe L1 on gram positive bacteria with increasing concentrations of compound.

Fig. S12 Cytotoxic effect of probe L1 on MDA-MB-468 cells. Cells were incubated with increasing concentrations in compound and their survivability was assessed by MTT assay.

Paper	Zn ²⁺ detectio n limit	Interfe rences (cation/ anion)	Fluorescence probe structure	Any other remark	Our work
 Selective zinc sensor based on pyrazoles and quinoline used to image cells. (Dyes and Pigments, 113, 2015, 723–729) 	30 nM	-		Starting materials are not readily available.	Starting materials are commercially available.
2. Ratiometric and absolute water-soluble fluorescent tripodal zinc sensor and its application in killing human lung cancer cells. (Analyst, 2013, 138, 4593–4598)	3.2 μM	-		Starting materials are not readily available. Multistep reaction.	Starting materials are commercially available. Comparable detection limit (9.76µM)
 3. A highly sensitive and selective ratiometric fluorescent sensor for Zn²⁺ ion based on ICT and FRET (Dyes and Pigments, 102, 2014, 301–307) 	33.6 nM	-		Starting materials are not readily available. Multistep reaction.	Starting materials are commercially available. One pot synthesis.
 4. A small molecular fluorescent sensor for highly selectivity of zinc ion. (Sensors and Actuators B, 176, 2013, 775–781) 	0.198 μΜ	-	NH2 N N N	Starting materials are not readily available. Multistep reaction.	Starting materials are commercially available.

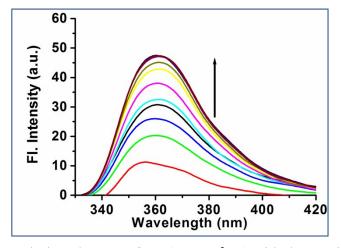
Table S3. Summary of representative fluorescent probes for Zn^{2+}

5.Anovel3-Hydroxychromonefluorescencesensorforfluorescencesensorforintracellularzn2+anditsapplicationintherecognitionofprostatecancer cells.(Sensors and Actuators B,245, 2017, 129–136)	_	-		Starting materials are not readily available. Multistep reaction.	Starting materials are commercially available. Detection limit: 9.76µM
 6. Spectrofluorimetric determination of Zn²⁺ ions in aqueous medium using 5-(4-flourophenyl)-quinolin- 8-ol. (Journal of the Association of Arab Universities for Basic and Applied Sciences , 2017, 24, 66–73) 	3 ppb.	Fe ³⁺ and Cu ²⁺		Starting materials are not readily available. Multistep reaction. Interferences are present.	Starting materials are commercially available. No interference.
7. Pyrimidine-based fluorescent zinc sensor: Photophysicalcharacteristi cs, quantum chemical interpretation and applicationin real samples (Sensors and Actuators B, 201 2014, 204–212)	0.69 μM			Starting materials are not readily available. 23 fold fluorescence enhancement	Starting materials are very common. 51 fold fluorescence enhancement.
 8. An Easy and Accessible Water-soluble Sensor for the Distinctive Fluorescence Detection of Zn²⁺ and Al³⁺ ions (RSC Adv., 2015, 5, 76939–76942) 	0.643 μM	Al ³⁺ (0.611 μM)	И НО	Interference present.	No interference.
9. Selective fluorometric detection of F and Zn(II) ions by a N, O coordinating sensor and naked eye detection of Cu(II) ions in mixed-	-	F ⁻ & Cu ²⁺	HO	Interference present.	No interference.

aqueous solution. (RSC Adv., 2015, 5, 44764–44777)				
 10. An efficient, Schiffbase derivative for selective fluorescence sensing of Zn²⁺ ions: quantum chemical calculation appended by real sample application and cell imaging study. (Org. Biomol. Chem., 2014, 12, 6447–6456) 	0.141 μM	-	Starting materials are not readily available. 45 fold fluorescence enhancement	Starting materials are very common. 51 fold fluorescence enhancement.
 11. A Ratiomeric Fluorescent Sensor for Zn²⁺ Based on N,N'- Di(quinolin-8- yl)oxalamide. (J Fluoresc, 2017, 27, 723–728) 	2.4 μΜ	-	Effective at pH 8.66. No biological application.	pH 7.4. Our sensor can detect intracellular Zn ²⁺ in living cells.

Quantum yield calculation:

Here, the quantum yield ϕ was measured by using the following equation:


$$\phi_{x} = \phi_{s} (F_{x} / F_{s}) (A_{s} / A_{x}) (n_{x}^{2} / n_{s}^{2})$$

Where, X & S indicate the unknown and standard solution respectively, $\phi =$ quantum yield, F = area under the emission curve, A = absorbance at the excitation wave length, n = index of refraction of the solvent. Here ϕ measurements were performed using anthracene in ethanol as standard [$\phi = 0.28$] for standard (s) anthracene in ethanol the following values were determined: n_s = 1.36 (for ethanol); n_x=1.34 (for acetonitrile); $\phi_s = 0.28$.

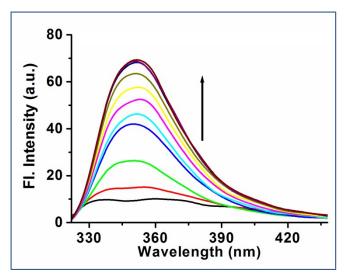

Using the above equation, we calculated quantum yield of L1 and L1-2Zn²⁺. Quantum yield data are given in table S4.

Table S4. Quantum yield data

Molecules	Quantum Yield		
	(φ)		
L1	0.0005		
L1-2Zn ²⁺	0.0254		

Fig. S13 Fluorescence emission changes of L2 (4×10^{-5} M) with the continuous addition of Zn²⁺ ($c = 4 \times 10^{-4}$ M) in CH₃CN/H₂O solution (9:1, v/v, 10 mM HEPES buffer, pH 7.4). $\lambda_{ex} = 300$ nm.

Fig. S14 Fluorescence emission changes of **L3** (4 × 10⁻⁵ M) with the continuous addition of Zn²⁺ (c = 4 × 10⁻⁴ M) in CH₃CN/H₂O solution (9:1, v/v, 10 mM HEPES buffer, pH 7.4). λ_{ex} = 290 nm.