Supporting information

Investigation of the factors affecting the

photothermal potential of small iron oxide

nanoparticles over the 730-840 nm spectral region

K. Bilici, ^a A. Muti, ^b F. Demir Duman, ^c A. Sennaroglu, ^{a,b,d} and H. Yagci

Acar^{a,c,d}

^aKoc University, Graduate School of Materials Science and Engineering,

Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey; E-mail: <u>fyagci@ku.edu.tr</u>; Fax: +902123381559; Tel: +902123381742.

^bKoc University, Departments of Physics and Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey.

^cKoc University, Department of Chemistry, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey.

^dKoc University, KUYTAM, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey.

Fig. S1 Laser on/off experiments of colloidal PAA/SPION solution (laser turned on at * and laser turned off at ♣). Irradiation wavelength, power, spot size: (a) 728 nm, 260 mW, 1.68 mm and (b) 808 nm, 260 mW, 1.68 mm.

Fig. S2 Temperature increase (Δ T) recorded for colloidal PAA/SPION irradiated (a) 5 min and (b) 10 min at different wavelengths (728-838 nm, power 260 mW, spot size 1.68 mm)

Fig. S3 Temperature increase of water at 728-833 nm region after 20 min irradiation with 260 mW laser power (spot size 1.68 mm).