Electronic Supplementary Information (ESI) for Photochem. Photobiol. Sci.

Organic nanoparticles based on Lewis-pair formation: Observation of prototropically controlled dual fluorescence

Hiroshi Yao^{a,*}, Hikaru Minami^b, Tomohito Funada^b

^a Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577
Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
^b Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo

Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan

Mechanical Grinding of the Solid-State Mixture of *p*-ABT and DPBA.

Fig. S1-a shows photos of the solid-state mixtures of *p*-ABT/DPBA before grinding (images (i) and (ii)) and after grinding (images (iii) and (iv)). The left and right side images were obtained under normal light and UV-light (365 nm) irradiation, respectively. We could find neither the material color change nor the emission color change upon grinding. Indeed, absorption and fluorescence spectra ($\lambda_{ex} = 360$ nm) of the mixture in chloroform were identical with those of pure *p*-ABT in chloroform, as is shown in Fig. S1-b.

Fig. S1. (a) Photos of the solid-state mixtures of p-ABT/DPBA before grinding (images (i) and (ii)) and after grinding (images (iii) and (iv)). The left and right side images were obtained under normal light and UV-light (365 nm) irradiation, respectively. (b) Absorption and fluorescence spectra of the ground mixture of *p*-ABT/DPBA in chloroform.

NMR Spectroscopy

Fig. S2 shows ¹H NMR chart of *o*-ABT/DPBA adduct in CDCl₃. The spectrum was recorded on a 500 MHz spectrometer. A resonance peak at 4.64 ppm can be due to the proton from dihydrothiazole moiety in the imine adduct.^{1,2}

¹H NMR (500 MHz, CDCl₃) δ (ppm) : 7.95-7.13 (m, 27H), 6.54 (d, *J* = 8.5 Hz, 1H), 6.42-6.38 (m, 1H), 5.82 (brs, 1H), 4.64 (brs, 1H).

Fig. S2. ¹H NMR spectrum of *o*-ABT/DPBA adduct in CDCl₃. The spectrum suggests the formation of imine adduct.

STEM Images of Pure *o*-ABT Nanoparticles and DPBA prepared by the Reprecipitation Protocol under the Concentrated Condition.

Their STEM images of pure *o*-ABT nanoparticles and DPBA prepared by the reprecipitation protocol under the concentrated condition are shown in Figs. S3-a and S3-b, respectively. In pure *o*-ABT, although some small nanoparticles with the diameter of 80–100 nm could be seen in the images, a large lump of particle aggregates were predominant (Fig. S3a). On the other hand, no particle formation was observed for DPBA (Fig. S3b),

Fig. S3. STEM images of (a) pure *o*-ABT nanoparticles and (b) DPBA prepared by the reprecipitation protocol under the concentrated condition. The inset in (b) shows a photo presenting the absence of Tyndall scattering for this sample.

References

- 1. J. Zhang and W. Guo, Chem. Commun., 2014, 50, 4214-4217.
- 2. P. Zhang, R. M. Kriegel and J. W. Frost, ACS Sustainable Chem. Eng., 2016, 4, 6991–6995.