## Visible-light activating of TiO<sub>2</sub> by dye-sensitization for degradation of pharmaceutical compounds.

Jennyfer Diaz-Angulo<sup>a</sup>, Islen Gomez-Bonilla<sup>a</sup>, Christian Jimenez-Tohapanta<sup>a</sup>, Miguel Mueses<sup>b</sup>, Maria Pinzon<sup>a</sup> and Fiderman Machuca-Martinez<sup>a</sup>\*

<sup>a</sup>Escuela de Ingeniería Química, Universidad del Valle, Cali, Colombia.

- <sup>b</sup>Photocatalysis and Solar Photoreactors Engineering, Modeling & Application of AOTs, Department of Chemical Engineering, Universidad de Cartagena, Cartagena, Colombia.
- \*Correspondence: fiderman.machuca@correounivalle.edu.co, Tel: 316 4487 088, Postal code: 25360. Carrera 13 No. 100-00 Cali, Colombia.

S.1. Spectrum of the Repti Glo 5.0 lamps; S.2 Reactive system; S.3. Molecular structure of the dyes and areas of predominance according to pH; S.4. Raman Spectroscopy; S.5. FT-IR spectra; S.6. UV-Vis spectra.



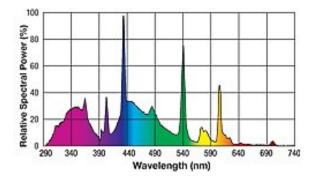



Fig. S. 1. Spectrum of the Repti Glo 5.0 lamp.



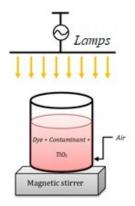
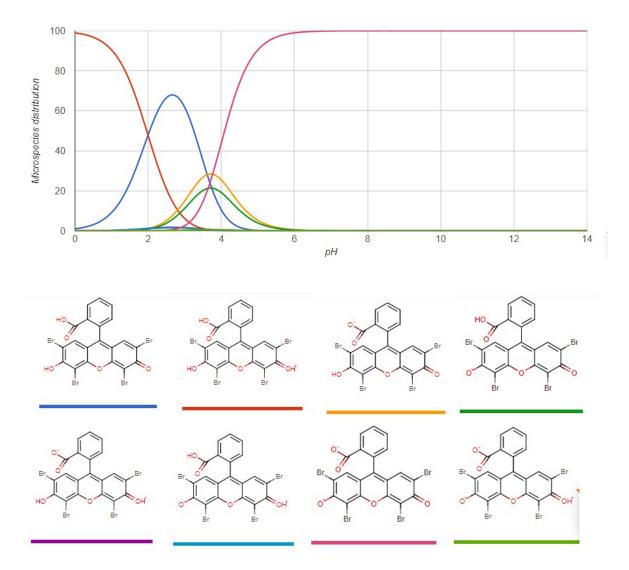




Fig. S. 2. Reactive system, photoreactor for dye sensitized process.



S.3. Molecular structure of the dyes and areas of predominance according to pH

Fig. S. 3 Predominance zones of Eosin y according to pH taken from Chemicalize.com.

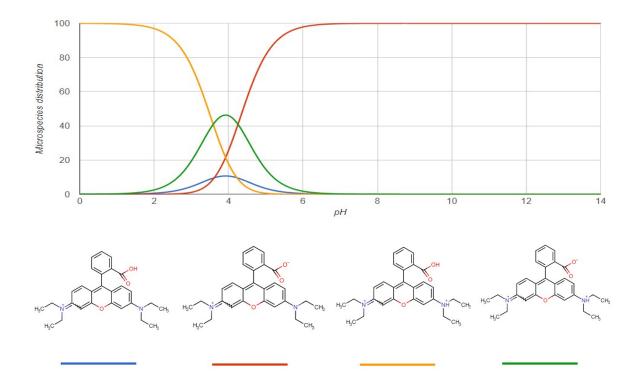



Fig. S. 4. Predominance zones of Rhodamine B according to pH taken from Chemicalize.com.

## S.4. Raman Spectroscopy

Raman spectroscopy was used for elucidating the vibration band of sensitized catalysts. Figure S.3 shows the Raman scattering spectra of the  $TiO_2$ ,  $TiO_2$ -Ey and  $TiO_2$ -RhB. Based on these results the intensities of  $TiO_2$ -dye composites lie in the order  $TiO_2$ -RhB <  $TiO_2$ -Ey <  $TiO_2$ . The peaks 198, 398, 515 and 640 cm<sup>-1</sup> corresponding to anatase phase are almost invisible for sensitized catalysts. There is no displacement of the bands with respect to the titanium dioxide Degussa P-25, which would indicate that there are no changes in the crystalline structure of the catalyst, as expected (Low, Lai, & Abd Hamid, 2017; Toumazatou et al., 2017).

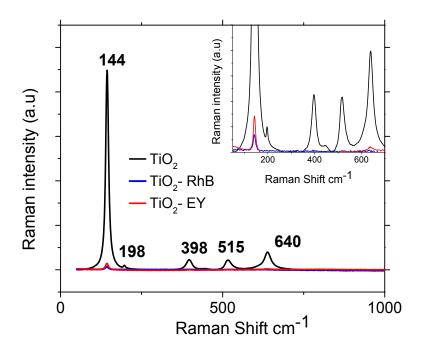



Fig. S.5. Raman scattering spectra of the TiO<sub>2</sub>, TiO<sub>2</sub>-Ey and TiO<sub>2</sub>-RhB.

## S.5. FT-IR spectra

In Figure S.4. The FT-IR spectra of TiO2 and TiO2-Ey are show, it can see that peaks corresponding to the colorant are not identified. However, there is a growth in the band from 3600 to 3000 cm-1 and in the band at 1500 cm-1, which is associated with an increase in the OH groups.

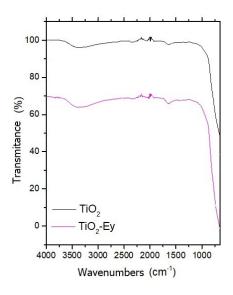



Fig. S.6. FT-IR spectra of TiO<sub>2</sub> and TiO<sub>2</sub>-ey.

S.6. UV-Vis spectra

Figure S.5 shows the UV-Vis absorption spectra for  $TiO_2$ ,  $TiO_2$ -Ey and  $TiO_2$ -RhB suspensions at catalyst and dye concentrations of 200 mgL<sup>-1</sup> and 16 mgL<sup>-1</sup>, respectively. It can see that the absorption of the suspensions with dyes is much higher and the peaks corresponding to the dyes are evident. It is notorious the displacement of the absorption towards the region of visible light.

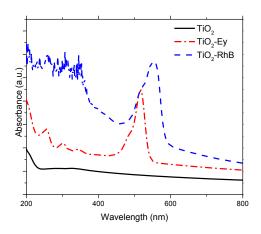



Fig. S.7. UV-Vis spectra of TiO<sub>2</sub>, TiO<sub>2</sub>-Ey and TiO<sub>2</sub>-RhB suspensions.