CycloPeptidic Photosensitizer Prodrugs as Proteolytically Triggered Drug Delivery Systems of Pheophorbide a With Defined Structures for Selective PhotoDiagnosis and PhotoDynamic Therapy: Part II - Co-loading of Pheophorbide a and Black Hole Quencher – Electronic Supplementary Information

Jordan Bouilloux,^a Oleksandr Yuschenko,^b Bogdan Dereka,^b Gianluca Boso,^c Andréj Babič^a, Hugo Zbinden,^c Eric Vauthey^b and Norbert Lange^a

- ^{a.} School of Pharmaceutical Sciences, Laboratory of Pharmaceutical Technology, University of Geneva, University of Lausanne, Rue Michel-Servet 1, Genève 4, CH-1211, Switzerland.
- b. School of Chemistry and Biochemistry, Department of Physical Chemistry, Ultrafast Photochemistry, University of Geneva, Quai Ernest-Ansermet 30, Genève 4, CH-1211, Switzerland.

^{c.} Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, Genève 4, CH-1211, Switzerland.

Scheme S1 - Generic synthesis pathway for the Pha-peptide-DBCO conjugates. The text on the bottom depicts the different conjugates obtained depending on the nature of the amino acids of the linker. *Reagents and conditions*: (a) NHS, EDC, DMAP, argon (ar.), dark, room temperature (r. t.), overnight (o/n); (b) DIPEA, GSGRSAG (TFA salt) or GAGRRAAG (TFA salt), ar., dark, r. t., o/n; (c) DBCO-NH₂, HATU, DIPEA, ar., dark, r. t., o/n.

Scheme S2 - Generic synthesis pathway for the BHQ3-peptide-DBCO conjugates. The text on the bottom depicts the different conjugates obtained depending on the nature of the amino acids of the linker. *Reagents and conditions*: (a) DIPEA, GSGRSAG (TFA salt) or GAGRRAAG (TFA salt), ar., dark, r. t., o/n; (b) DBCO-NH₂, HATU, DIPEA, ar., dark, r. t., o/n.

Table S1 – Fluorescence emission values (λ_{ex} = 410 ± 9 nm and λ_{em} = 670 ± 9 nm) and detection of ${}^{1}O_{2}$ (λ_{ex} = 405 nm and λ_{em} = 1270 nm) of the synthesized conjugates; N.D. means that no counts were detected under these conditions. ^a Conjugates at 3 μ M of Pha equivalents; ^b conjugates at 30 μ M of Pha equivalents.

Conjugate	F (a.u.) ^a	¹ O ₂ detected (counts per second) ^b
uPA-cPPP _{1/5}	15328 ± 240	185.5 ± 0.6
uPA-cPPP _{4/5}	201 ± 18	22.0 ± 0.7
uPA-cPPQ _{2+2/5}	26 ± 4	N.D.
CathB-cPPQ _{2+2/5}	18 ± 6	N.D.

Figure S1 - Absorption spectra of Pha-uPA-DBCO (green line), BHQ3-uPA-DBCO (purple line) and uPA-cPPQ_{2+2/5} (blue line) at 3 µM of Pha (or BHQ3) equivalents. The black line depicts the sum of the absorbance of both Pha-uPA-DBCO and BHQ3-uPA-DBCO for comparison.

Figure S2 – Normalized fluorescence decays of the considered compounds in water at 3 μ M of Pha equivalents; λ_{ex} = 395 nm and λ_{em} = 670 nm.

Figure S3 – (A) TA spectra recorded with CathB-cPPQ_{2+2/5} in water at various time delays and (B) selected time delays after 385 nm excitation, (C) decay-associated difference absorption spectra obtained from a global analysis using the sum of two exponential functions.

Figure S4 – Singlet oxygen luminescence decay of uPA-cPPQ_{2+2/5} at 30 μ M of Pha equivalents (blue curve), and after addition of a 2 M solution of NaN₃ (grey curve). Excitation occurred at 405 nm (40 kHz, 5 mW) over 10 minutes.

Figure S5 – Digestion by trypsin (42 μ L of trypsin-EDTA solution 10x) of uPA-cPPQ_{2+2/5} at 30 μ M of Pha equivalents followed by UPLC (isocratic gradient over 3 minutes, 47.5% solvent B with H₂O + 0.1% FA as solvent A and ACN + 0.1% FA as solvent B, fluorescence detection with λ_{ex} = 410 nm and λ_{em} = 670 nm, gain of 10) at 0 (black curve), 5 (blue curve), 15 (red curve), 30 (green curve), 60 (purple curve) and 120 minutes (pink curve).

Figure S6 – Digestion by uPA (1000 U) of uPA-cPPQ_{2+2/5} at 30 μ M of Pha equivalents followed by UPLC (isocratic gradient over 3 minutes, 47.5% solvent B with H₂O + 0.1% FA as solvent A and ACN + 0.1% FA as solvent B, fluorescence detection with λ_{ex} = 410 nm and λ_{em} = 670 nm, gain of 10) at 0 (black curve), 5 (blue curve), 15 (red curve), 30 (green curve), 60 (purple curve) and 120 minutes (pink curve).