Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Supporting Information

Title: *In vitro* Cytotoxicity of a Library of BODIPY-anthracene and -pyrene Dyads for Application in Photodynamic Therapy

Authors: Susan Callaghan, Mikhail A. Filatov, Huguette Savoie, Ross W. Boyle,* and Mathias O. Senge*

Contents

1. Protocol for Singlet Oxygen Quantum Yield Measurements	3
2. Protocol for Phototoxicity Studies	4
3. Protocol for Fluorescent Quantum Yields	4
4. NMR and UV/Vis Spectra	5
4.1 Characterization Spectra for BAD-23	5
4.2 Characterization Spectra for BAD-15	6
4.3 Characterization Spectra for BAD-24	8
4.4 Characterization Spectra for BAD-16	9
4.5 Characterization Spectra for BAD-25	11
4.6 Characterization Spectra for BAD-17	12
4.7 Characterization Spectra for BAD-26	14
4.8 Characterization Spectra for BAD-18	15
4.9 Characterization Spectra for BPyrD-27	17
4.10 Characterization Spectra for BPyrD-19	18
4.11 Characterization Spectra for 28	20
4.12 Characterization Spectra for 20	21
5. References	23

1. Protocol for Singlet Oxygen Quantum Yield Measurements

The procedure for the singlet oxygen quantum yield measurements was adapted from literature.^[1] A solutions of 1,3-diphenylisobenzofuran (DPBF), with an optical density of 1.0 in air-saturated ethanol were formulated. The corresponding **BAD** was added to the cuvette, and its absorbance was adjusted to approximately 0.01 at the wavelength of irradiation. The solution in the cuvette was irradiated with a 532 nm laser light at a power density of 10 mW.cm⁻². The absorption spectra of the solutions were measured every 10 s. The slope of plots of absorbance of DPBF at 414 nm *vs.* irradiation time for each photosensitizer was calculated. Singlet oxygen quantum yields were calculated according to the following equation:

$$\Phi_{\Delta} = \Phi_{\Delta}^{ref} \times \frac{k}{k_{ref}} \times \frac{I_{abs}^{ref}}{I_{abs}}$$

where Φ_{Δ} is the singlet oxygen quantum yield, the superscript *ref* stands for **BAD-6** (0.67 in ethanol),^[2] *k* is the slope of the curves of DPBF absorption (414 nm) change *vs.* irradiation time, *I* represents the absorption correction factor which is given by $I = 1-10^{-\text{OD}}$ (OD is the optical density at 532 nm).

Figure S1: Change of DPBF absorption at 414 nm upon irradiation in air-saturated ethanol.

Figure S2: Fluorescence emission spectrum of DPBF at an excitation wavelength of 410 nm

2. Protocol for Phototoxicity Studies

For the photocytotoxicity studies the BADs were formulated in DMSO (Hybri-Max;Sigma-Aldrich D-2650) and diluted in appropriate medium (Dulbecco's Modified Eagle's Medium with 4.5 gL⁻¹ glucose + 2 mM L-glutamine; no FCS) to give a range of concentrations (1–50 μ M). The concentration of DMSO never exceeded 5.2%. The cells (MDA-MB-468) were adjusted to a concentration of 1×10^{6} cells mL⁻¹, and 800 µl was added to 200 µl of BAD stock solution to achieve the desired concentrations. The cells were then incubated in the dark for an hour at 37 $^{\circ}$ C and 5 $^{\circ}$ CO₂, after which they were washed with a three times excess of media and centrifuged to eliminate any unbound BAD. The final pellets of cells were re-suspended in 1 mL medium and 100 μ L (8 × 104 cells) was transferred into two 96 wells plates in quadruplicate for each concentration. One plate was subsequently irradiated with light (400-700 nm; 20 J cm⁻²) from an Oriel quartz tungsten halogen lamp (model 66188 powered by an Oriel 1100W radiometric power supply (model 69935). The second plate was kept in the dark and served as a "no light" control. After irradiation, 5 µl of Fetal Bovine Serum was added to each well and the plates were returned to the incubator overnight. After 18 to 24 h, an MTT cell viability assay^[3] was performed and the results were expressed as percentage of cell viability vs. compound concentration; an LD_{50} (lethal dose where 50 % of the cells are killed) was determined from the resulting curves. Each experiment was repeated in triplicate.

3. Protocol for Fluorescent Quantum Yields

A solutions of fluorescein in 0.1 M NaOH with an absorption between 0.03-0.07 was formulated. The fluorescence quantum yield of fluorescein is reported as 0.95.^[4] The maximum absorbance and area under the curves emission was noted. **BAD** solutions of concentration 1×10^{-5} M were formulated and the maximum optical density and area under the curves emission was noted. The quantum yields were calculated according to the following equation:

$$\Phi_{f} = \Phi_{f}^{ref} \times \frac{OD}{OD_{ref}} \times \frac{I_{abs}^{ref}}{I_{abs}} \times \frac{n^{2}}{n_{ref}^{2}}$$

where Φ_f is the fluorescence quantum yield, the superscript *ref* stands for fluorescein, OD is the optical density, *I* is the integrated intensity, *n* is the refractive index.

4. NMR and UV/Vis Spectra

4.1 Characterization Spectra for BAD-23

4.2 Characterization Spectra for BAD-15

110 100 90 80 Chemical Shift (ppm) -10

4.3 Characterization Spectra for BAD-24

4.4 Characterization Spectra for BAD-16

4.5 Characterization Spectra for BAD-25

4.6 Characterization Spectra for BAD-17

4.7 Characterization Spectra for BAD-26

110 100 90 80 Chemical Shift (ppm) -10

4.9 Characterization Spectra for BPyrD-27

4.11 Characterization Spectra for 28

110 100 90 80 Chemical Shift (ppm)

5. References

[1] Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc, E. U. Akkaya, *Angew. Chem. Int. Ed.* 2011, **50**, 11937–11941.

[2] M. A. Filatov, S. Karuthedath, P. M. Polestshuk, H. Savoie, K. J. Flanagan, C. Sy, E. Sitte, M. Telitchko, F. Laquai, R. W. Boyle, M. O. Senge, *J. Am. Chem. Soc.*, 2017, **139**, 6282–6285.

[3] T. Mossman, J. Immunol. Meth., 1983, **65**, 55–63.

[4] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd Ed., Kluwer Academic/Plenum Publishers, New York, London, Moscow, Dordrecht, 1999.