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Fig. S1 UV-vis absorption spectral changes of DHIC (10 μM) in the presence of different 
concentrations of Zn2+ (from 0 to 14 equiv).
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Fig. S2 Job plot for the binding of DHIC with Zn2+. Fluorescence intensity at 484 nm was 
plotted as a function of the molar ratio of [Zn2+] / ([DHIC] + [Zn2+]). The total 
concentrations of Zn2+ with DHIC were 40 μM.
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Fig. S3 Positive-ion electrospray ionization mass spectrum of DHIC (100 μM) upon addition 

of Zn(NO3)2 (1 equiv).
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Fig. S4 Benesi-Hildebrand plot (fluorescence intensity at 484 nm) of DHIC (10 μM) based 
on fluorescence titration, assuming 1:1 ratio for association between DHIC and Zn2+.
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Fig. S5 Limit of detection based on change in the ratio (fluorescence intensity at 484 nm) of 
DHIC (10 μM) with Zn2+.
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Fig. S6 Competitive experiment of DHIC (10 μM) toward Zn2+ (21 equiv) in the presence of 

other metal ions (21 equiv) with an excitation of 420 nm.
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Fig. S7 Fluorescence intensities (at 484 nm) of DHIC (10 μM) and of DHIC-Zn2+ complex, 

respectively, at different pH values (2-12).
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Fig. S8 Fluorescence intensity changes of DHIC (10 μM) after the sequential addition of Zn2+ 

and EDTA.
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Fig. S9 Fluorescence intensity (at 484 nm) of DHIC as a function of Zn2+ concentration 

([DHIC] = 10 μM and [Zn2+] = 0.0–27.0 μM).
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Fig. S10 UV-vis absorption spectral changes of DHIC-Zn2+ (10 μM) in the presence of 

different concentrations of S2- (from 0 to 27 equiv).
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Fig. S11 Job plot for the binding of DHIC-Zn2+ with S2-. Difference of fluorescence intensity 
at 484 nm was plotted as a function of the molar ratio of [S2-] / ([DHIC-Zn2+] + [S2-]). The 
total concentrations of S2- with DHIC-Zn2+ complex were 200 μM.



13

Fig. S12 Positive-ion electrospray ionization mass spectrum of DHIC-Zn2+ (100 μM) upon 
addition of Na2S (1 equiv).
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Fig. S13 Benesi-Hildebrand plot (fluorescence intensity at 484 nm) of DHIC-Zn2+ (10 μM) 
based on fluorescence titration, assuming 1:1 ratio for association between DHIC-Zn2+ and 
S2-.
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Fig. S14 Limit of detection based on change in the ratio (fluorescence intensity at 484 nm) of 
DHIC-Zn2+ (10 μM) with S2-.
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Fig. S15 Fluorescence intensities (at 484 nm) of DHIC -Zn2+ (10 μM) and DHIC-Zn2+ + S2- , 
respectively, at different pH values (2-12).
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Fig. S16 Cytotoxicity of DHIC. DHIC (10 and 20 μM; 1% v/v DMSO) was treated to HeLa 
cells. Cell viability (%) was determined by the MTT assay [MTT = 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide] in comparison to that of cells treated with DMSO only 
(1% v/v). Error bars represent the standard error from three independent experiments.
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Fig. S17 UV-vis absorption spectral changes of DHIC (20 μM) in the presence of different 

concentrations of Fe2+ (from 0 to 1.4 equiv). Inset: Absorbance at 500 nm versus the number 

of equiv of Fe2+ added.
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Fig. S18 Job plot for the binding of DHIC with Fe3+. UV-vis absorption at 500 nm was 
plotted as a function of the molar ratio of [Fe3+] / ([DHIC] + [Fe3+]). The total concentrations 
of Fe3+ with DHIC were 20 μM.
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Fig. S19 Job plot for the binding of DHIC with Fe2+. UV-vis absorption at 500 nm was 
plotted as a function of the molar ratio of [Fe2+] / ([DHIC] + [Fe2+]). The total concentrations 
of Fe2+ with DHIC were 20 μM.
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Fig. S20 (a) Positive-ion electrospray ionization mass spectrum of DHIC (100 μM) upon 

addition of Fe(NO3)3 (1 equiv). (b) Positive-ion electrospray ionization mass spectrum of 

DHIC (100 μM) upon addition of Fe(ClO4)2 (1 equiv).
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Fig. S21 Absorption spectra of DHIC (20 μM) with Fe2+ under the degassed and aerobic 
conditions, and DHIC with Fe3+ under aerobic conditions.
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Fig. S22 Formation rates (at 500 nm) of Fe3+-2·DHIC complex obtained from the reactions of 
DHIC (20 μM) with Fe3+/2+ (1.4 equiv).
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Fig. S23 Li’s equation plot plot of Fe3+-2·DHIC (20 μM) based on UV-vis titration, assuming 
2:1 ratio for association between DHIC and Fe3+.
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Fig. S24 Li’s equation plot of Fe2+-2·DHIC (20 μM) based on UV-vis titration, assuming 2:1 
ratio for association between DHIC and Fe2+.
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Fig. S25 Limit of detection based on change in the ratio of DHIC (20 μM) with Fe3+.
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Fig. S26 Limit of detection based on change in the ratio of DHIC (20 μM) with Fe2+.
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Fig. S27 UV-vis competitive experiment of DHIC (20 μM) toward Fe2+ in the presence of 

other metal ions. 
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Fig. S28 UV-vis absorption intensity (at 500 nm) of DHIC (20 μM) and Fe3+-2·DHIC, 
respectively, at different pH values (2-12).
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Fig. S29 UV-vis absorption intensity (at 500 nm) of DHIC (20 μM) and Fe2+-2·DHIC, 
respectively, at different pH values (2-12).
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Fig. S30 UV-vis absorption intensity (at 500 nm) of DHIC as a function of Fe3+ concentration 
([DHIC] = 20 μM and [Fe3+] = 0.0-9.0 μM).


