Ambient-temperature near-IR phosphorescence and potential applications of rhenium-oxo corroles¹

Sergey M. Borisov,*^a Rune F. Einrem,^b Abraham B. Alemayehu,^b and Abhik Ghosh*^b

 ^aInstitute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Email: sergey.borisov@tugraz.at.
^bDepartment of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway; Email: abhik.ghosh@uit.no.

¹ Electronic supplementary information (ESI) available

Figure S1. Absorption spectrum of Re[TPC](O) in toluene.

Figure S2. Absorption spectrum of Re[TpMePC](O) in toluene.

Figure S3. Absorption spectrum of Re[TpOMePC](O) in toluene.

Figure S4. Absorption spectrum of Re[T*p*FPC](O) in toluene.

Figure S5. Excitation spectrum of Re[TPC](O) in anoxic toluene ($\lambda_{em} = 770$ nm).

Figure S6. Excitation spectrum of Re[TpMePC](O) in anoxic toluene ($\lambda_{em} = 770$ nm).

Figure S7. Excitation spectrum of Re[TpOMePC](O) in anoxic toluene ($\lambda_{em} = 770$ nm).

Figure S8. Excitation spectrum of Re[T*p*FPC](O) in anoxic toluene ($\lambda_{em} = 770$ nm).

Figure S9. Emission spectrum of Re[TPC](O) in anoxic toluene ($\lambda_{exc} = 590$ nm).

Figure S10. Emission spectrum of Re[TpMePC](O) in anoxic toluene ($\lambda_{exc} = 590$ nm).

Figure S11. Emission spectrum of Re[TpOMePC](O) in anoxic toluene ($\lambda_{exc} = 590$ nm).

Figure S12. Emission spectrum of Re[T*p*FPC](O) in anoxic toluene ($\lambda_{exc} = 590$ nm).

Figure S13. Phosphorescence decay of Rhenium-Oxo Corroles in anoxic toluene ($\lambda_{exc} = 455$ nm).

Figure S14. Phosphorescence decay of Rhenium-Oxo Corroles in anoxic toluene ($\lambda_{exc} = 455$ nm).

Figure S15. Absorption spectra of $Re[T_pCF_3PC](O)$ in air-saturated toluene solution during irradiation with a high power 590-nm LED array.

Figure S16. Absorption spectra of Re[TPC](O) in air-saturated toluene solution during irradiation with a high power 590-nm LED array.

Figure S17. Absorption spectra of Re[TpMePC](O) in air-saturated toluene solution during irradiation with a high power 590-nm LED array.

Figure S18. Absorption spectra of Re[T*p*OMePC](O) in air-saturated toluene solution during irradiation with a high power 590-nm LED array.

Figure S19. Absorption spectra of $Re[T_pFPC](O)$ in air-saturated toluene solution during irradiation with a high power 590-nm LED array.

Figure S20. Decay time plots for the oxygen sensor based on $Re[TpCF_3PC](O)$ embedded into polystyrene.

Figure S21. Stern-Volmer plots for the oxygen sensor based on $Re[TpCF_3PC](O)$ embedded into polystyrene.

Figure S22. Temperature dependence of the phosphorescence decay time in the absence of oxygen τ_0 (left) and Stern-Volmer constant K_{SV} (right). The lines represent linear fit.

Table S1. Oxygen sensing properties of the sensor based on $Re[TpCF_3PC](O)$ embedded into polystyrene.^(a)

τ_0 at	τ_0 at	τ_0 at	$d\tau_0/dT$ at	K_{SV}^{1} at 5	K_{SV}^{1} at 25	K_{SV}^{1} at 45	dK_{SV}^{1}/dT
5 °C, μs	25 °C, μs	45 °C, μs	25 °C,	°C,	°C,	°C	at 25 °C,
			%/K	hPa ⁻¹	hPa ⁻¹	hPa ⁻¹	%/K
80.4	76.6	72.5	-0.26	0.046	0.056	0.066	0.89

(a) Non-linear fit according to two site model, eq. 1. Constant fit parameters: m = 0.076; f
= 0.77 for all temperatures.

Figure S23. Schematic representation of the mechanism of upconversion based on triplettriplet annihilation.

Figure S24. Emission spectrum of Solvent green 5 in toluene ($\lambda_{exc} = 400$ nm).

Figure S25. Emission spectrum of Pt[TPTBP] in anoxic toluene ($\lambda_{exc} = 585$ nm).