Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Supplementary Material for

Structure and conformation of photosynthetic pigments and related compounds. 15. Conformational analysis of chlorophyll derivatives – Implications for Hydroporphyrins *in vivo*.

Dáire Gibbons,^a Keith J. Flanagan,^a Léa Pounot,^a and Mathias O. Senge^{a,*}

^a School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.

The supplementary material is arranged in the same sequence as the relevant sections of the main manuscript.

Table of Contents:

1.	1. Description of Test Case NSD Analyses		2
	1.1. NSD analysis of free base 5,10,15,20-tetraphenylporpl	nyrin (TPP) crystal structures	2
	1.2. NSD analysis of free base 2,3,7,8,12,13,17,18-octaeth	ylporphyrin (OEP) crystal structures	2
	1.3. Free base tetraphenylporphyrins with increasing numb	per of β-substituted ethyl groups (XEtTPP)	3
	1.4. Free base chlorins with additional ethyl groups on the	β positions (XEtTPC)	4
	1.4.1. Impact of reduction on the distortion in the fre1.5. Zinc(II) complexes	e base compounds in TEtTPCs versus TEtTPPs	4 5
2.	2. Description of chlorophyll-related compounds NSD analyses		8
	2.1. Phytochlorins		8
	2.1.1. Free base phytochlorins		8
	2.1.2. Metallated phytochlorins		10
	2.1.3. Free base phytochlorin exceptions		12
	2.2. Bacteriochlorophyll-related structures		12
	2.3. Chlorins		14
	2.3.1. Free base chlorins		14
	2.3.2. $M(II) \beta$ -substituted chlorins		14
	2.3.3. Fused chlorins		17
	2.4. Tetrahydroporphyrins (bacteriochlorins and isobacteri	ochlorins)	20
	2.4.1. Free base bacteriochlorins		20
	2.4.2. M(II) complexes of bacteriochlorins		20
	2.4.3. Free base isobacteriochlorins		21
	2.4.4. M(II) isobacteriochlorin complexes		22
	2.5. Manipulation of the phytochlorin skeleton		23
	2.6 Complete NSD conformation analysis tables of the con-	mpounds studied	25

1. Description of Test Case NSD Analyses

	CCDC	Color	Solvent	Ref.	·
6a	JIVRAH		Benzaldehyde	25a	· · ·
6b	SEMNIH		1,3-dimethylbenzene	25b	$\langle \rangle$
6c	SEMNIH01		1,3-dimethylbenzene	25c	NH N=
6d	TPHPOR01		No solvent	25d	
6e	TPHPOR04		No solvent	25f	
6f	TPHPOR11		No solvent	25g	
6g	TPHPOR12		No solvent	25h	
6ĥ	TPHPOR13		No solvent	25i	\sim
6i	TPHPOR14		No solvent	25j	
6j	XAGLOG		Anthracene	25k	
6k	XAGMAT		Pyrene	251	

1.1 NSD Analysis of free base 5,10,15,20-tetraphenylporphyrin (TPP) crystal structures

The TPP compounds²⁵ with the highest D_{oop} , (TPHPOR01-TPHPOR14), contain no solvent within its unit cell (0.225–0.269 Å). The wav(x) of these TPPs range from 0.207-0.253 Å and the wav(y) range is from 0.088-0.115 Å, (absolute values are given). For the structure of JIVRAH, a benzaldehyde solvent yields a D_{oop} value of 0.015 Å and the wav(x) and wav(y) values are -0.012 and 0.009 Å, respectively. These distortions are due to a predominant intermolecular hydrogen bonding network between the aldehyde and the β -hydrogen atoms of the nearest porphyrin molecule. Additionally, there are several hydrogen π -interactions between the aldehyde and the phenyl rings of the porphyrin. This results in the benzaldehyde solvent being held above and below the porphyrin plane, staggering the porphyrin stacking and increasing its planarity. The structures of SEMNIH and SEMNIH01 show a marked decrease of almost 0.100 Å to the Doop compared to the non-solvated structures of TPP. This can be rationalized by the 1,3-dimethylbenzene solvent present in the unit cells. This solvent interacts with an α -carbon of one TPP and a phenyl ring of a different TPP molecule. Additionally, the phenyl rings interact via short hydrogen contacts in a head-to-head style packing system. This head-on interaction, as well as the solvent interactions, give rise to a slightly staggered head-on packing system. SEMNIH has distortions of 0.039 Å and -0.003 Å in the wav(x) and wav(y) modes, respectively, whereas distortions of -0.001 Å and -0.037 Å are seen in these modes. The introduction of a large aromatic solvent, as seen in XAGLOG (anthracene) and XAGMAT (pyrene), within the crystal structure yields similar D_{oop} values (0.218 Å and 0.258 Å, respectively) to the non-solvated TPPs. However, when looking at the specific distortion modes, a clear shift of preference from the wav(x) to the wav(y) mode is seen by the inclusion of a large aromatic solvent. These aromatic solvents give wav(y) distortions of 0.176 Å in XAGLOG and 0.215 Å in XAGMAT and a wav(x) distortion of 0.129 Å in and 0.143 Å, respectively.

The *oop* distortions give a good pictorial overview of how solvent effects influence the tetrapyrrole's conformation. However, a complete overview of the 3D configuration in TPPs is not obtained without discussing the in-plane (*ip*) distortion as well. The largest *ip* contribution to the TPP structure comes from the *bre* mode. This mode measures the total compression and stretching in the 24-atom tetrapyrrole ring. The TPP series contains a range of *bre* NSD values between 0.158–0.226 Å and from these values, there does not seem to be a trend associated with the presence of a solvent in the unit cell. Other smaller contributions in this free base TPP series include *m-str* and *N-str* with a range of 0.04–0.056 Å in *m-str* and -0.042 to 0.053 Å in *N-str* (absolute values are given). The smallest contribution seen is given by *rot*. There is little to no *trn*(x) and *trn*(y) distortion in these TPP compounds. Therefore, this analysis proves that the small solvents can influence the macrocycle conformation due to intermolecular interactions resulting in a more planar *oop* conformation. The D_{oop} range is narrow in the TPPs with either no solvent or a large solvent incorporated into the 3D structure. In these types of TPPs, a clear preference of *wav*(x) over *wav*(y) distortion is clearly shown. However, in the *ip* distortion, no solvent effects are visible and the NSD values appear to be generally low, which is characteristic for TPP.

1.2 NSD Analysis of free base 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) crystal structures

When the free base 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP, 7) species were being studied, only two structures were taken from the CSD.²⁶ These compounds have CCDC codes OETPOR10 (7a) and OKOQUA (7b). A third compound, VEPHUV was disregarded due to the large, bulky fullerene solvent. 7a contains no solvent in its crystal structure and it has a slightly staggered end-on packing system *via* the β -ethyl groups. The structure of compound 7b contains a tetracyanoquinodimethane solvent within its unit cell. The solvent in 7b occupies a cavity in between two porphyrins. There is evidence of π -stacking between the porphyrin molecule from each other. This plays a small role in changing the packing system as it increases the mean plane distance of each porphyrin molecule from each other. Therefore, this creates a cavity for the solvent to occupy itself. However, the solvent appears not to have any significant impact on the NSD. The two OEP structures both have very similar NSD profiles except the *wav*(x) mode of distortion, which is approximately three times larger in 7a (-0.063 Å) than 7b (-0.018 Å) and the OEPs have very similar *wav*(y) distortions (0.090 Å in 7a and -0.092 Å in 7b). Similar to the TPPs previously discussed, most of their *oop* information is given by *wav*(x) and *wav*(y). They have little contribution from the *sad*, *ruf*, and *dom* distortions in both OEP crystal structures (Fig. S2).

The OEPs *ip* distortion, however, shows a different image. The NSDs indicate that there is very little contribution from trn(x), trn(y) and rot. The main contribution for the two OEPs comes from the *bre ip* distortion mode with values of approximately 0.220 Å. The most interesting distortion for these OEPs is *m-str*. For the conjugated derivative **7b**, the *m-str* deviation from the plane is greater than the non-solvated crystal structure by a factor of over 100 with values of 0.233 Å (**7b**) compared to 0.002 Å (**7a**). This *m-str* distortion is evident that steric bulk interactions are present involving the meso-carbon of one porphyrin and the β -substituents of another, giving rise to the large *m-str* distortion that contributes to the overall 3D configuration.

	CCDC	Color	Solvent	Ref.
7a	OETPOR10		No solvent	26a
7b	OKOQUA		Tetracyanoquinodimethane	26b

Figure S2 OEP series and NSD analysis of the X-ray crystallographic structures observed in the OEP compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, and solvent in the respective unit cell.

1.3 Free base tetraphenylporphyrins with an increasing number of β -substituted ethyl groups (XEtTPP)

Displacement from plane (Å)

	CCDC	Color	R ¹	R ²	R ³	R ⁴	Solvent	Ref.
8	TATPOT01		Et	Н	Н	Н	No solvent	27b
9	TATPUZ01		Et	Н	Et	Н	DCM	27b
10	TATQAG01		Et	Et	Н	Н	MeOH	27b
11	TATQEK01		Et	Et	Et	Н	DCM	27b
12	SATQOU		Et	Et	Et	Et	EtOH	27c
12a	OAWFIE		Et	Et	Et	Et	DCM	27c

5

Figure S3 XEtTPP series and NSD analysis of the X-ray crystallographic structures observed in the XETPP compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, specific functional groups (R^1 - R^4), and solvent in the respective unit cell.

The compounds under study are shown in Fig. S3. The D_{ip} follows the reoccurring trend seen in the D_{oop} with a few exceptions. Compound **10** has a lower D_{ip} than **6h**, whose *ip* distortion is slightly lower than **9**. Porphyrin **8**, being more distorted in the D_{ip} than **9**, is not as distorted as **11**.^{27b} The next most distorted structure in this series is **12**. Moving onto **12a** involves a twofold increase in D_{ip} distortion. As discussed in the TPP section, the D_{ip} distortion area is as significant as the D_{oop} .^{27b,c}

However, in comparison to the highly substituted porphyrin like 12a, the D_{ip} modes, while still significant, appear to have less impact on the overall conformation. While 12a contains the largest *m-str* distortion, the trend, seen in the D_{oop} and the *sad* mode, is absent in this *ip* mode. Structures 9 and 10 contain almost no *m-str* distortion, while 6h, 8, 11 and 12 contain similar and significant *m-str* conformations that are roughly half the distortion observed in 12a. There is no trend observed in the *N-str* mode as the structure with the largest distortion is 9. This is closely followed by 8 and 11. The trend discussed in the *m-str* distortion than 9 and 10 in this mode and the structure with the next highest *bre* conformations, whereas 1 and 8 have a slightly higher distortion than 9 and 10 in this mode and the structure with the next highest *bre* conformation is 11. One of the highly substituted porphyrins, 12, has almost double the *bre* distortion seen in 11. The contribution to this mode is then approximately doubled to get to the *bre* conformation in 12a. For all the listed compounds, the contributions of *trn*(x) and *trn*(y) modes have very little input in the *ip* distortion. Similarly, the *rot* appears negligible with only compound 12a showing any significant contribution.

1.4 Free base chlorins with additional ethyl groups on the β positions (XEtTPC)

The NSD analysis for this group of compounds is shown in Fig. S4. Compound 13 contains the smallest D_{oop} , 14 has the second largest D_{oop} and the most interesting observation in the D_{oop} is that 14 (DEtTPC) has a larger D_{oop} than 15 (cis-TEtTPC). Chlorin 16 contains the largest D_{oop} in the free base chlorins.²⁸ The D_{oop} and *sad* distortion increase when the number of β -ethyl groups increases with the exception of 14 and 15. For the *ruf* distortion, a new trend is seen where 15 has a larger *ruf* than 16. The structure of 16 contains the second largest *ruf* conformation, which is then larger than 14. The DEtTPC 13 is the structure with the smallest *sad* and *ruf* distortion. In the *dom* distortion mode, the structures with the most *dom* distortion than 15 and 16. The *wav*(x) distortion mode follows the same trend as the D_{oop} and *sad* as 16 has the largest distortion. Compound 14 has the second largest distortion followed by 15 with the second smallest distortion and 13 has the smallest *wav*(x) distortion. The *wav*(y) mode follows a similar trend to the *dom* mode in these chlorins as 13 and 14 have the two smallest *wav*(y) conformations (14 is the smallest) and 15. As seen in the porphyrin section, the higher number of ethyl groups attached to the β -carbons of the chlorin, the more non-planar the macrocycle becomes. However, there is also a reduced bond placement trend observed in this section. This trend suggests that the further away the ethyl groups are from the reduced pyrrole, the more D_{oop} present in the structure.

Contrary to the *oop* modes of distortion in this series, the structures with the lowest number of ethyl groups on the β -positions have the highest D_{ip} . This is shown by **13** and **14** having the highest D_{ip} with **15** and **16** having the lowest D_{ip} . The second DEtTPC, **14**, contains the lowest *m-str* distortion. The structure with the second lowest conformation in this mode is **16** whereas **13** is slightly higher in terms of *m-str* distortion. However, the first cis-TEtTPC, **15**, contains the highest *m-str* distortion as it is approximately three times more distorted than **13**. The free base chlorin with the lowest *N-str* distortion is **15**. An addition of 0.020 Å to the *N-str* distortion, **14**'s *N-str* distortion is achieved. In the *bre* mode, **14** and **15** are approximately three times lower than the *bre* distortion in **16** and yet again, **13** has a higher *ip* distortion as it is

almost 0.100 Å higher in its *bre* contribution than **16**. The trn(x), trn(y), and *rot* distortion modes appear to have no significant contribution to the 3D structures of these chlorins. Overall, the decrease in steric bulk increases the *ip* distortion and there is no reduced bond placement effect on the *ip* modes.

	CCDC	Color	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Solvent	Ref.
13	GELGUZ		Et	Н	Н	Н	No solvent	28
14	GELJEM		Н	Et	Н	Η	MeOH	28
15	GELQAP		Н	Н	Et	Et	DCM/MeOH	28
16	GELHAG		Н	Et	Et	Η	DCM	28

Figure S4 XEtTPC series and NSD analysis of the X-ray crystallographic structures observed in the XETPC compounds listed in the table. Table contains their CCDC reference codes, the color corresponding to the NSD analysis, specific functional groups (R^1 - R^4), and solvent in their unit cell.

1.4.1 Impact of reduction on the distortion in the free base compounds in TEtTPCs versus TEtTPPs:

The next set of compounds that will be discussed in terms of the impact of reduction on the NSD is the cis-TETPP, **10**, cis-TETPCs, **15** (ethyl groups on the β -position of the chlorin pyrrole) and **16** (ethyl groups are adjacent to the chlorin pyrrole). The D_{oop} is larger in **16** than **10** and the D_{oop} of **10** is 0.487 Å higher than **15**. This same trend is also seen in the *sad* and *wav*(x) distortion modes. In the *ruf* distortion, **15** has the largest deviation followed by **16** and then **10**. This trend is also seen in the *dom* distortion mode. In the *wav*(y), the largest contribution in **10** is followed by **16** and then **15**. In the last mode of *oop* distortion (*pro*), **15** and **16** show similar large contributions and there is a moderate decrease in distortion in the structure of **10**. There is no clear trend between these structures, however, the chlorin that has the furthest distance between the ethyl groups and the reduced pyrrole has the largest *oop* distortion.

The structure of 16 shows the largest D_{ip} distortion closely followed by 15 with compound 10 showing a moderate decrease in D_{ip} . In the *m*str, the largest contribution is from 15 with a substantial decrease seen in both 16 and 10. Cis-TETPC, 16, has the largest *N*-str distortion being marginally larger than 10 and 15. In the trn(x) mode of distortion, 15 has the highest contribution to the *ip* distortion and 10 is the second highest with 16 being the smallest contribution. The opposite is observed for the trn(y) with 16 having the largest contribution and both 15 and 10 displaying a minor reduction in distortion. 16 has the highest *bre* distortion followed by 10 then 15. In the *rot* mode, 10 has the exact same distortion as 15. This distortion is more than three times greater than the *rot* distortion seen in 16. The cis-TETPCs have a higher overall *ip* distortion than the cis-TETPPs.

1.5 Zinc(II) complexes

	CCDC	Color	Μ	Ref.
6h	TPHPOR13		2Н	25i
Zn6a	ZZZTAY02		Zn(II)	30
Zn6b	ZZZTAY03		Zn(II)	32

Figure S5 Zn(II)TPP series and NSD analysis of the X-ray crystallographic structures observed in the Zn(II)TPP compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, and the metal(II) center.

Zn(II)TPP: The Zn(II)TPPs^{30,32} (Fig. S5) have a slightly smaller deviation from the 24-atom mean plane than the free base TPPs as shown by their D_{oop} S. Zn(II)TPPs **Zn6a** and **Zn6b**, as with the free base TPP's, have little to no contributions to the D_{oop} with the only significant contributions found in the *wav*(x) and *wav*(y). There is a small decrease in the *wav*(x) distortion mode compared to the TTP samples above and similar contributions found in the *wav*(y). However, in the *ip* modes of distortion, there is a clear decrease in the distortion found in D_{ip} , *m-str*, *N-str*, *bre*, and *rot* modes compared to the TPP's. No differences are observed for the *trn*(x) and *trn*(y). While the Zn(II)'s *oop* distortion is similar yet slightly less than that of the free base, there is a more notable difference in the *ip* distortion. While the crystal packing plays a role in the difference observed in distortion between the two sets of TPPs, the contraction of the Zn metal in the core seems to be the main difference.

Zn(II)OEP: This next section comprises a discussion of the NSD results observed in the Zn(II)OEPs (Fig. S6)^{26b,31a} as well as comparing these results with the free base OEPs. The first thing to note is that the inclusion of solvent appears to drastically increase the D_{oop} values as seen with **Zn7b** with significant contributions seen in the *sad* mode for **Zn7b**. However, looking at the solvent free structures of **7a** and **Zn7a**, a slightly different trend is observed. In general, there is a moderate increase in D_{oop} values which is a result of a significant increase in the *wav*(x) distortion mode. However, this appears to be coupled with a reduction in values of the *wav*(y) due to the inclusion of a Zn(II) metal center into the core of the porphyrin. In the *ip* distortion modes, there is a decrease in values as a result of Zn(II) inclusion to the core of the affects this decrease is seen in the *bre* distortion mode. It represents the exact trend seen in the D_{ip} and the remaining *ip* distortion modes appear to have little to no effect. The only exception to this is seen in the *m-str* contribution of **7b**.

Overall, with the exception of **Zn7a**, there seems to be an inverse relationship between the D_{oop} and the D_{ip} in the free base and Zn(II)OEPs. The free base OEPs have a smaller D_{oop} than the Zn(II)OEPs but they have a larger D_{ip} than the Zn(II) compounds. Therefore, the inclusion of a Zn(II) metal into the OEP core causes the macrocycle in this molecule to become more non-planar while reducing the *ip* distortion.

Zn(II)XEtTPP: When looking at the effect Zn(II) metal insertion has on more highly substituted systems (Fig. S7) Zn(II)XEtTPPs (**Zn8–Zn12**)^{27b,31b} were compared to their free base counterparts (**8**, **9**, **11** and **12**). Taking the DEtTPP (**8** and **Zn8**), it is quite evident that a larger increase in D_{oop} is observed as a result of Zn(II) inclusion to the porphyrin core. This increase is the result of a general increase to all the *oop* distortion modes bar *pro*. The largest increases are seen in the *sad* and *ruf* distortion modes with the *dom* and *wav*(x) showing a more temperate increase in distortion. The increase in *dom* distortion is due to the presence of an axial ligand. The *wav*(y) only shows a minor increase in distortion. When looking at the *ip* distortion modes, it is clear that the inverse happens here in comparison to the *oop*. There is a clear reduction in values in the D_{ip} , *m-str*, *N-str*, *trn*(x), and *bre* distortion modes are rather quite negligible.

	CCDC	Color	Solvent	Ref.
7a	OETPOR10		No solvent	26a
Zn7a	ALOKOB		No solvent	31a
Zn7b	OKOREL		Tetracyanoquinodimethane	26b

Figure S6 Zn(II)OEP series and NSD analysis of the X-ray crystallographic structures observed in the Zn(II)OEP compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, and solvent in the respective unit cell.

	CCDC	Color	R ¹	R ²	R ³	R ⁴	Χ	Ref.
Zn8	RUTNEZ		Et	Н	Н	Н	toluene	27b
Zn9	RUTQAY		Et	Н	Et	Н	Benzene	27b
Zn11	RUTRAZ		Et	Et	Et	Н	-	27b
Zn12 ^a	JICNIS		Et	Et	Et	Et	MeOH	31b

Figure S7 Zn(II)XEtTPP series and NSD analysis of the X-ray crystallographic structures observed in the Zn(II)XEtTPP compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, specific functional groups (R^1 - R^4), and axial ligand. ^aContains MeOH solvent.

Moving to the tTEtTPP (9 and **Zn9**), the difference between the D_{oop} is rather less pronounced than in the DETPP section above. A minor decrease is observed in the D_{oop} as a result of the Zn(II) metal insertion to the porphyrin core. This is a result of a decrease in *sad* character coupled with an increase in *ruf* and *wav*(x) character of the porphyrin macrocycle. The axial ligand does not seem to play a huge role here compared to the DEtTPPs as the *dom* distortion has decreased due to the Zn(II) metal being inserted and the axial ligand being attached. In the *ip* distortion modes, there is only a moderate decrease in the D_{ip} as a result of Zn(II) metal insertion into the core of the porphyrin. This insertion results in a decrease in the *N-str* character of the porphyrin.

Looking at the HEtTPP porphyrin (11 and Zn11), as with trans-TEtTPP above, there is only a small decrease in the D_{oop} . This stems from a moderate decrease in the *sad* and *wav*(x) distortion modes coupled with an increase of *ruf* and *dom* character of these porphyrins. Similarly, there is a moderate decrease in the D_{ip} distortions due to a significant decrease in the *N*-str distortion mode.

For the OEtTPP (12 and Zn12) there is a moderate decrease in the D_{oop} due to a decrease in the *sad* and *wav*(y) distortion modes as a Zn(II) metal center is inserted into the parent porphyrin. The rest of the *oop* distortions modes have little to no difference. The same result is seen here that was seen in the comparison between 9 and Zn9 as the *dom* mode has decreased. In the D_{ip} , a moderate decrease is seen in its value as a result of the Zn(II) metal insertion. This is highlighted in the decrease seen in the *bre* distortion mode.

Overall, at low substitutions (DEtTPP) there is an increase in *oop* distortion when a Zn(II) metal center is incorporated into the core. However, the opposite occurs in the *ip* distortion at this low substitution. As more ethyl groups are substituted onto the β -carbons of the Zn(II) porphyrins, there are decreases observed in both *oop* and *ip* distortions. The presence of an axial ligand only increases the *dom* distortion mode in the tTEtTPP (**Zn9**) and has no effect on the higher substitutions indicating no clear trend associated with axial ligands in these porphyrins.

Zn(II) chlorins: Similarly to the porphyrins, the Zn(II) metal in the core of the chlorins²⁸ increases the *oop* and decreases the *ip* conformations (Fig. S8). Chlorin **13** possesses the largest D_{oop} due to its large *sad* and *ruf* contributions as well as its significant *wav*(y) character whereas **14** has a slightly smaller D_{oop} which arises from its *sad* and *ruf* distortions. The DEtTPC, **13**, has the second smallest D_{oop} yet it has a large *sad* and a meaningful *ruf* and *wav*(y) conformations. The Zn(II) chlorin, **Zn13a**, has the smallest D_{oop} which is almost 1.000 Å smaller than **14**. This large decrease is due to the axial ligand preventing a large *sad* and shifting some *oop* distortion to the *dom* mode.

The *oop* distortion is almost inversely proportional to the *ip* distortion. To start off, **Zn13** has a much lower D_{ip} than **Zn13a**, **13** and **15**. The structure of **Zn13**'s *trn*(x), *trn*(y) and *bre* distortions contribute to the structure's D_{ip} , however, **Zn13a** has the highest D_{ip} distortion due to its large *bre* and considerable *N-str* conformation whereas **14** has the second largest D_{ip} due to it's the large *N-str* and *bre* character. The axial ligand, in this case, appears to greatly increase the *ip* distortion as well as decrease the D_{oop} . It is interesting to see the axial ligand cause an inverse relationship between the *oop* and *ip* conformations. The degree to which the axial ligand influences the 3D structure is already much clearer than seen in the porphyrin structures.

Upon increasing the number of ethyl groups on the periphery of these pentacoordinate chlorin macrocycles (Zn17), the *oop* distortion increases. This is solely due to the *sad* distortion increasing. The peripheral substitution pattern in Zn17 is different from the free base chlorin (16). However, the *oop* distortion is still greater as shown by the NSD. The *ip* distortion however slightly decreases and this is most likely due to the *ip* distortion shifting from the *bre* mode to the *N-str* mode. It is clear once more that upon the increasing number of ethyl groups on the periphery of the heterocycle, an increase is seen in the D_{oop} while a decrease is seen in the D_{ip} .

	CCDC	Color	R ¹	R ²	Х	Solvent	Ref.
Zn13	GELJAI		Et	Н	-	No solvent	28
Zn13a	GELQET		Et	Н	MeOH	DCM	28
Zn17	GELPIW		Et	Et	MeOH	DCM	28

Figure S8 Zn(II)XEtTPC series and NSD analysis of the X-ray crystallographic structures observed in the Zn(II)XEtTPC compounds listed in the table. Table contains their CCDC reference codes, the color corresponding to NSD graph, specific functional groups (R^1 - R^2), axial ligands (X), and solvent in the respective unit cell.

2. Description of chlorophyll-related compounds NSD analyses

2.1 Phytochlorins

2.1.1 Free base phytochlorins

	CCDC	Color	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	Ref.
17a	МРОРНА		Me	Et	Me	CO ₂ Me	Me	CH=CH ₂	33a
17b	MPOPHA02		Me	Et	Me	CO ₂ Me	Me	CH=CH ₂	33b
17c	MPOPHA03		Me	Et	Me	CO ₂ Me	Me	CH=CH ₂	33c
18	ROFVUE		СНО	Et	Me	CO ₂ Me	Et	CH=CH ₂	33d
19 ⁱ	BIPBOR(N1-N4 ring)		Me	Et	Et	2H	Me	CH(OH)Me	33e
19 ⁱⁱ	BIPBOR(N5-N8 ring)		Me	Et	Et	2H	Me	CH(OH)Me	دد
20	SOSZOP		Me	Et	COMe	2H	Me	CH(OH)Me	33f
21 ⁱ	BIPBIL(N1-N4 ring)		Me	ⁱ Bu	Et	2H	Me	CH(OH)Me	33e
21 ⁱⁱ	BIPBIL(N5-N8 ring)		Me	ⁱ Bu	Et	2H	Me	CH(OH)Me	دد
22	BIXREF01		Me	CH2 ^t Bu	Et	2H	Me	CH(OH)Me	33g

Figure S9 Free base phytochlorins and a table indicating their CCDC reference codes, the colour corresponding to the NSD graph, and specific functional groups (R^{1} - R^{6}). *Superscript i: N1-N4 ring in the crystal structure of the unit cell. **Superscript ii: N5-N8 ring in the crystal structure of the unit cell.

To begin, the free base phytochlorins (Fig. S9),³³ the D_{oop} as well as all of the *oop* distortion modes bar *pro* of **17a-c**, are very similar due to their identical structures. The D_{ip} of 17a-c are approximately twice the displacement of the D_{oop} values of these compounds. This is indictive of highly planar free base compounds. As a result, there are several intermolecular reactions that occur as a result. The first and foremost is the π -stacking that is archetypical of this class of compound. This is primarily facilitated through the ester moieties interacting by short contacts, holding the packing structure in a head-to-head overlap configuration. The raise in D_{ip} in 18 compared to 17a-c, is attributed to the larger *m-str* and *bre* distortions. These different configurations arise from hydrogen bonds and intermolecular interactions involving the CHO group, the meso-carbon, and the two ester groups as shown by the crystal structure's packing system. The introduction of the CHO group to R^1 aids the $\pi \cdots \pi$ interactions of the macrocycle through a short contact between the R^2 ethyl moiety, allowing for a tighter offset stacking pattern to occur between molecules. In the structure of 19ⁱ and 19ⁱⁱ, the methyl group is replaced by an ethyl group at the R³ position, a hydrogen is changed for an ester at R⁴, and an alcohol replaces the vinyl moiety at R⁶. The combination of these changes results in a head-totail π -stacking pattern aided by short contacts between the oxo group at C13¹ position and the carbonyl group at R⁶. The peripheral differences that occur in 19ⁱ and 19ⁱⁱ slightly increase all of the oop conformations, which is likely due to the ester group inducing a ruf conformation on the reduced pyrrole. The lower D_{ip} of 19ⁱ and 19ⁱⁱ is mainly represented by the lesser *m-str* and large *N*-str contributions. The large N-str conformations are likely due to the hydrogen bonding within the macrocycle core. The structure of 20 replaces the ethyl group at R^3 with an ester moiety, however, this does not impact the overall packing as the head-to-tail π -stacking between the oxo group at $C13^{1}$ position and the carbonyl group at R⁶ is still present in the structure. The ester shows a small effect on the D_{ip} distortion modes with a general decrease in most D_{ip} modes in comparison to 19ⁱ and 19ⁱⁱ. This is combined with the *ruf oop* distortion mode. Similar to 19ⁱ and 19ⁱⁱ, 21ⁱ and 21ⁱⁱ correspond to two different molecules in the same structure. There are large ruf conformations, and like compounds 18 and 19^{i/ii}, are a result of the head-to-tail *π*-stacking network between the oxo group at the C13¹ position and the carbonyl group at R⁶. The *m-str*, *N-str*, and bre (ip) contributions are a result of the general peripheral substituents for this family of compounds. In the structure of 22, the preference for *oop* modes moves towards the *dom* contribution. This structure is the only one to show such a large preference for this mode. By comparing the stacking pattern, it is clear that there is the overlapped stacking seen in 17-21, which is a function of a co-facial intermolecular interaction that has now been swapped for an edge-on interaction between the molecules through the oxo group at the C13¹ position and the carbonyl group at R⁶. While the head-to-head stacking still occurs in these domed macrocycles, it is a function of close packing and the bulkier group at the R³ position. As seen previously in this series, the D_{ip} is larger than the D_{oop}. The *m-str*, *N-str* and *bre* conformations give rise to the large D_{ip}. In this group of compounds, it is apparent the *ip* contribution are much larger than the *oop* which suggest that the periphery substituents and the intermolecular interaction play more of a role in distorting the macrocycle than steric effects, which is typical for such compounds with a low number of peripheral substituents.

For the structure of 23, there are two independent molecules in the crystal structure, 23ⁱ and 23ⁱⁱ.^{34a} Between these chemically identical molecules, it is noted that 23ⁱⁱ has a larger D_{oop} than 23ⁱ which is expressed in the sad and ruf distortion modes. This significant difference between the molecules arises from the formation of atropisomers within the structure (23ⁱ up-down-up-down; 23ⁱⁱ up-up-down-down; when considering the substituents on C2, C8, C17, C18). This results in a larger difference seen in 23ⁱⁱ by unbalancing the macrocycle ring. The inverse is seen in the *ip* distortion modes with the structure of 23ⁱ having larger contributions in all fields bar the *N*-str and bre modes. In the structure of 24, the R² position has been replaced by an oxo group and the R³ position by an ester.^{34b} In this structure, there are three sets of intermolecular interactions that form the full packing pattern. The first is an edge-on interaction between the oxo group at the C13¹ position and the hydrogens of the ethyl, methyl and meso carbons between the N2 and N3 pyrrole units. This creates a planar sheet of macrocycle rings in a zig-zag pattern. This is coupled with a second type of intermolecular interaction in the form of offset π -stacking between the macrocycle rings in a head-to-head fashion. The final feature of the crystal packing is a group of head-to-head short contacts between the ester moieties that hold individual planes at a \sim 45° angle to each other in the structure. In comparison to compound 23ⁱⁱ, there is a moderate decrease in both the dom and ruf distortion modes with a large decrease in the sad mode. However, compared to 23ⁱ there is a slight increase seen in these modes, but they exhibit similar D_{oop} contributions. The *ip* distortion modes are only slightly lower than that of 23ⁱ or 23ⁱⁱ. In the structure of 25, the ethyl group at the R¹ position is replaced by a fluorinated ester.^{34c} This results in three packing groups that make up the overall packing. The first is the head-to-head overlapped π -stacking between the macrocycle rings which is aided by H...F short contacts between the R¹ groups and an O···H interaction between the R³ moieties. The second packing group is between the fluorine atoms and the R¹ ester's methyl hydrogen of R³ moiety which holds the macrocycles in a face-to edge pattern. The final packing pattern seen is between the oxo group at the C13¹ position and the ester hydrogen atoms of the R³ group that form a rotated head-to-head interaction. In this structure, the overall D_{oop} is slightly lower than that of 23^{i/ii} and 24, showing a decrease in all oop modes compared to one or the other of these structures. In the *ip* distortion modes, compound **25** shows a slight increase in the D_{ip} over **23**^{*i*/ii} and **24** with its largest contribution seen in the *bre* mode. In summary, the addition of an oxo group to the C13¹ position shows a slight decrease in *oop* and *ip* distortion modes however the most of this effect is counteracted by the addition of the fluorinated ester to the R¹ position. Similar to compounds **17-22** above, $\pi \cdots \pi$ interactions are quite prevalent due to the ostensibly planar macrocycles. However, the inclusion of short contacts of specific functional groups, also play a role in favoring certain distortion modes in the NSD profiles.

-0.4	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3	0.4	0.5	0.6
								0		

Displacement from plane (Å)

	CCDC	Color	R ¹	R ²	R ³	Ref.
23i ⁱ	RIWNIU (N1-N4 ring)		Et	CH ₂	Et	34a
23i ⁱⁱ	RIWNIU (N5-N8 ring)		Et	CH_2	Et	"
24	KOVXUO		Et	C=O	CH ₂ CO ₂ Me	34b
25	PEPJUR		$C_5H_5F_3O_2$	C=O	CH ₂ CO ₂ Me	34c

Figure S10 Free base phytochlorins series and NSD analysis of the X-ray crystallographic structures observed in the free base phytochlorins compounds listed in the table. Table contains their CCDC reference codes, color in NSD graph, and specific functional groups ($R^{1}-R^{3}$) in their unit cell.

2.1.2 Metallated phytochlorins

	CCDC	Color	R ¹	R ²	R ³	Solvent	Ref.
26	MPCHLM10		Me	Me	2H	Et ₂ O	35a
27	MCLPHD10		Me	Me	CO ₂ Me	H_2O	35b
28a	AECLPA01		Me	Et	CO ₂ Me	H_2O	35c
28b	AECLPA10		Me	Et	CO ₂ Me	H_2O	35e
29	ЕСРНВН		СНО	Et	CO ₂ Me	H_2O	35d

Figure S11 Mg(II) phytochlorins series and NSD analysis of the X-ray crystallographic structures observed in these Mg(II)phytochlorins compounds listed in the table. Table contains their CCDC reference codes, color in NSD graph, specific functional groups (R^1 - R^3), and the solvents within the respective unit cells.

These low distortions in the Mg(II) phytochlorins (Fig. S11) (26-29)³⁵ are most likely due to the one intermolecular hydrogen bond between the axial water ligand and carbonyl functionality in the plane of the macrocycle. With regards to published protein structures containing chlorophyll compounds, there are several features that are key which are represented in the solid-state structures above. While all the above compounds exhibit a substantial amount of close contacts and hydrogen-bonding based of the substitution type and conformation, it is the metallophytochlorins which closely represent conformations expected in the peridinin-chlorophyll-protein structures. This is seen through the Mg axial ligand (H₂O in this case) coordinating either directly or through the solvent present to form a hydrogen-bonded network to the ester or oxo group at the C13¹ position of the macrocycle skeleton. This is reminiscent of His-66...(H₂O)...Mg coordination that is seen in Chl a as reported by Schulte et al.⁴⁰ In this series of compounds, there is very little change to the D_{ip} distortion mode with only compound 26 showing significant reductions in the rot and trn(x) modes potentially due to not having an ester present on the R³ position, similar to 27-29. This is also represented in the *oop* distortion modes with compound **26** having significantly less contribution to all modes bar the *pro* due to the induction effect the ester group has on the macrocycle skeleton. Also, in the structure of 26, the ester at position C17 on the reduced pyrrole ring is shown to point above the macrocycle plane. In this series, this is the only time this occurs and there are no short contacts including this ester group. The only short contacts are seen between the axial water ligand and the Et₂O solvent on one side of the macrocycle combined with an O...H interaction between the axial water ligand and the oxo group at the C13¹ position of the macrocycle, forming a step-like π -stacking pattern. Moving to the structure of 27, an acetyl group now occupies the R³ position and the solvent included in the structure has changed from Et₂O to water. While the addition of an acetyl group has minimal changes on the *ip* distortion modes as mentioned before, there is no evidence of this group forming short contacts or changing the overall structure in any significant manner. The most obvious changes occur with the solvent water molecules. In this case, the solvent water molecules acts like a bridge between the axial ligand and the ester at the C17 position of the macrocycle creating a tighter offset layered packing pattern. The dom character appears to be more prominent in this structure than 26 even though they both possess very similar axial hydrogen bonds. This can be credited to the water solvent that is now present in this crystal structure. The *dom* character increases by a factor of approximately twenty as the solvent in the crystal structure changes. The water solvent interacts with the water axial ligand via hydrogen bonding and appears to 'pull' the Mg(II) metal out of the plane and thus creating a *dom*-like configuration. The structures of **28a** and **28b** while being chemically identical, have two subtly different packing patterns. Both compounds 28a and 28b have a similar packing style to 27 however, the acetyl group is now occupying one side of the axial water ligand of the same macrocycle ring rather than the R³ ester of the nearest neighbor. A new short contact is present between the oxo group at C13¹ position and the CH₂ of the R³ ester. However, with this change, there is little difference in the overall packing of the structure. In the NSD, 28b has the larger D_{oop} than 28a due to the meaningful contributions in all of the oop modes except the dom and ruf modes. It also has the largest D_{ip} in this series as a result of the considerable N-str conformation. The structure of 29 contains a CHO group at the R¹ position, however, as this group is co-planar to the macrocycle ring, it is occupied by an intramolecular hydrogen-bond with the meso-hydrogen atom and does not significantly contribute to the overall packing. This does affect the *m-str* and *trn*(x) by showing a slight increase compared to compounds 28a and 28b. The structure of 29 has the largest contribution to the sad distortion mode and this can be attributed to a small change observed in the packing of this compound. The solvent water molecule is seen to form the same bridge between the acetyl group and the axial water ligand, but now also has a third contact between the ester at position C17 of the phytochlorins above in an elaborate hydrogen-bonding fashion. Overall, while the *ip* distortion mode are all similar in this class of compounds, there is a clear increase seen in the oop modes as a result of peripheral substitution type and size coupled with changes seen in the type of interaction involving the included solvent.

Х

Solvent

Ref.

	CCDC	Color	Μ	R ¹	R ²	
30	CELRIU		Zn(II)	CH=NOH	Н	(

30	CELRIU	Zn(II)	CH=NOH	Н	O=C131	CHCl ₃	36a
31	MEHGUD	Zn(II)	COCH ₃	Н	O=C17 ³	CH_2Cl_2	36b
32 ^{i*}	XOKGOV(N1-N4 ring)	Zn(II)	$C_{13}H_8N$	Н	3-pyr	Et ₂ O, THF	36c
32 ^{ii**}	XOKGOV(N5-N8 ring)	Zn(II)	$C_{13}H_8N$	Н	3-pyr	Et ₂ O, THF	دد
33 ^{i*}	MIBJEO(N1-N4 ring)	Zn(II)	C ₇ H ₆ N	Н	3-pyr	CH ₃ CN	36d
33 ^{ii**}	MIBJEO(N5-N8 ring)	Zn(II)	C ₇ H ₆ N	Н	3-pyr	CH ₃ CN	"
34	ZOKMAP	Zn(II)	oxazole	Н	N-oxazole	Toluene	36e
35	HAHBAT	Ni(II)	CH=CH ₂	Н	-	-	16
36	YOVYAJ	Ni(II)	Et	Me	-	-	37
37	UMAZAJ	Cd(II)	CH ₂ OH	Н	OH 31	-	38a
38	KILQAZ	Pt(II)	Et	Н	-	-	38b

Figure S12 Metallated phytochlorins, NSD analysis of the X-ray crystallographic structures observed in these metallophytochlorins compounds listed in the table. Table contains CCDC reference codes, color in the NSD graph, metal (M), specific functional groups (R^1-R^2), axial ligands (X), and solvent present in the respective unit cell. *Superscript i: N1-N4 ring in the crystal structure of the unit cell. *Superscript ii: N5-N8 ring in the crystal structure of the unit cell.

The Mg(II) phytochlorins are more naturally occurring than other types of metals in the core of these chlorophyll compounds.¹ The most common metal observed in the core of metallated pheophorbide derivatives according to the CSD is Zinc(II).^{29–33} The NSD profile of the Zn(II) structures in this section as well as the two Ni(II), one Cd(II), and one Pt(II) structures will be discussed herein. These metal complexes are shown in Fig. S12. The axial ligand bound to the Zn(II) metal in **30** is the oxo group of another molecule of **30**. The oxygen acts as an 'intramolecular axial ligand" in the 3D structure and also plays a large role in the large *N-str* input observed. Coupled with this is the top-and-tail hydrogen-bond network that is formed between the R¹ substituent and the ester. By substituting the R¹ group for a carbonyl (**31**), this top-and-tail network is removed and the ester at C17 position now acts as the axial ligand rather than the C13¹ oxo group.

The second independent molecule in XOKGOV (32ⁱⁱ) has a slightly lower D_{oop} than the first independent molecule (32ⁱ) because of the 0.204 Å decrease in the normal *ruf* deformation, even though the *sad* mode has increased. The D_{ip} has also slightly increased but is caused by slight deviations in *N-str* and *bre* contributions. In the structure of $32^{i/ii}$, the formation of atropisomers gives rise to the two independent molecules. In the case of 32^{i} , the ester is pointing in the same direction as the axial ligand (above the plane) while in 32^{ii} the ester is pointing in the same direction as the axial ligand (above the plane) while in 32^{ii} the ester is pointing in the same direction as the axial ligand (above the plane) while in 32^{ii} the ester is pointing in the same direction as the axial ligand (above the plane) while in 32^{ii} the ester is pointing in the same direction as the axial ligand (above the plane) while in 32^{ii} the ester is pointing in the same direction as the axial ligand (above the plane) while in 32^{ii} the ester is pointing in the same direction as the axial ligand (above the plane) while in 32^{ii} the ester is pointing in the same direction as the axial ligand (above the plane) while in 32^{ii} the ester is pointing in the same direction (below the plane). This results in the small difference seen in D_{oop} and D_{ip} distortion modes of these compounds. In the structure of $33^{i/ii}$ while the D_{ip} are quite similar there is a notable difference in the D_{oop} with a three-fold increase in contribution from 33^{i} to 33^{ii} . While being chemically identical, there are two things to note. The first is that 33^{i} axial ligand is the pyridyl unit of 33^{i} and the same for 33^{ii} . The second is that the solvent acetonitrile only interacts with the core and peripheral substituents of 33^{i} . This suggest that the decrease in D_{oop} is a result of solvent interactions in the structure packing. These raised distort

The *peri*-interactions introduced by the methyl group at the meso-position of the phytochlorin **36**, increases the *sad* contribution by 0.504 Å. The π -interactions in the packing system of **36** (YOVYAJ) increase the *ruf* by 0.297 Å. This is mainly due to the tension in the distorted macrocycle of **35** as shown by the larger *bre* contribution. The other main factor is Ni(II) contracting the core of **36** to a greater extent than

35 (3.831 Å vs 3.8655 Å, respectively). Other factors are the removal of the methyl group at the R³ meso position and the substitution of an ethyl group for an alcohol at R¹. The alcohol coordinates to the Zn(II) metal in a similar fashion as seen in the Zn(II) phytochlorins. The *oop* modes, except *wav*(y) and *pro*, are all smaller in **38**^{38b}. The *N-str* and *bre* contributions are far smaller in **38**. The more planar structure of the Cd(II) phytochlorin, **37**,^{38a} exists due to the planar head-to-tail style packing.

Overall, the main differences observed is that the Ni(II) phytochlorins have by far the largest *oop* distortion due to the large Ni(II) induced *ruf* distortion mode. The large D_{oop} also obtains significant contributions from the *sad*, *wav*(x) and *pro* modes. The D_{ip} character in the Ni(II) derivatives arises from the *bre* mode. The Zn(II) phytochlorins have a lower D_{oop} displacement but a larger *ip* distortion thanks to the bigger *N-str*. As seen in the test case, this is due to the Zn(II) metal contracting the Zn(II)-Nitrogen bond. The heavy atom phytochlorins, **37** (Cd(II)) and **38** (Pt(II)) have small *oop* and *ip* distortions. Which suggests that the heavier the atom, the smaller the distortion due to a π -aggregation and head-to-tail style "flat" packing.

2.1.3 Free base phytochlorin exceptions

Two phytochlorins, where ring E has been altered, are shown in Fig. S13. The D_{oop} of S1 (FOXTUH) is 0.084 Å lower than S2 (FOXWIY).³⁹ The differing D_{oop} values can be attributed to O_1 on the fused ring in S1. The structures are less distorted in the *oop* modes and the *ip* modes have a more significant impact on the 3D structure as shown by the high *bre* values (Fig. S13). This difference is spotted by the NSD as there are higher *sad* and *ruf* distortions in S2 than S1.³⁹ With the inclusion of these rings, there is 'rigidity' observed in the NSD. By analyzing the crystal packing system of S1, the oxygen on the oxo group is participating in intermolecular hydrogen-bonding with the ester of another molecule according to the crystal structure, therefore forcing the ester to be more non-planar than the ester group in S2.

	Color	CCDC	Ref.
S1		FOXTUH	39
S2		FOXWIY	39

Figure S13 Two free base phytochlorins with ring systems conjugated to the macrocycle, NSD analysis of the X-ray crystallographic structures of the free base phytochlorin compounds, and a table indicating their color in the NSD graph, and CCDC reference codes.

2.2 Bacteriochlorophyll-related structures

The *ip* distortion modes of the bacteriochlorophyll compounds (**39a-c**, WIKSEO, BAVSUM01, and BAVSUM)⁴⁰ have larger displacements than the main *oop* distortion mode, the *sad* distortion. The oxygen containing β -substituents in the dihydrophytochlorin section generally demonstrate large *ruf* distortions due to the hydrogen bonding networks, therefore, causing non-planarity. This *ruf* character is absent in the bacteriopheophorbide a structures. Bacteriopheophorbide a compounds are bacteriochlorins and their NSD profile suggests that the D_{oop} range is much smaller than in the free base phytochlorins. The larger D_{ip} values arise from the large *m-str*, *N-str*, and *bre ip* modes. The most common feature in the packing of these structures is the π -stacking between the macrocycle rings.

T.*	· · · · · · · · · · · · · · · · · · ·	1 1	1
39c	BAVSUM	C_6H_6	40c
39b	BAVSUM01	C_6H_6	40b
39a	WIKSEO	-	40a

Figure S14 Bacteriopheophorbide a structures and the NSD analysis of the X-ray crystallographic structures observed in these bacteriopheophorbides. Table contains the color in the NSD graph, CCDC reference codes, and the solvent within the respective unit cell.

2.3 Chlorins

2.3.1 Free base chlorins

Figure S15 Free base β -substituted chlorins and NSD analysis of the X-ray crystallographic structures observed in these free base chlorins listed in the table. Table contains their CCDC reference codes, the color corresponding to the NSD graph, solvent within the respective unit cell, and specific functional groups (R¹-R³).

2.3.2 M(II) β -substituted chlorins

To begin the discussion of the metallated β -substituted chlorins, the structures as well as the NSD data are shown in Fig. S16. The insertion of the Zn(II) metal into **40** yields **S3**, NIDFEM)^{43a} and the D_{oop} is slightly increased due to the rise in *sad* contribution compared to the free base chlorin, but the largest difference is seen in the *dom* and *wav*(y) conformations. The D_{ip}, however, has slightly decreased upon metal insertion due to the contraction of the Zn(II)-Nitrogen bond as shown in the test case. This is due to the decrease in the *bre* contribution to the *ip* distortion of the Zn(II) chlorin. Comparing the differing Zn(II) structures of **S3** and **S4** (XIPLEO),^{43b} there is a large surge in the D_{oop} that stems from the raised *oop* distortion in all modes bar the *wav*(y). This is brought about by the introduction of a meso-tolyl group and a bromine atom that is trans to the periphery of the chlorin. These introductions, however, decrease the D_{ip} as they inhibit the *N-str* and *bre* distortion of macrocycles with *peri*-interactions (**S4**). Comparing **S5** (NIDFAI)^{43a} to its free base counterpart **44** (PACROC), the presence of the Zn(II) metal in the core raises the D_{oop} and lowers the D_{ip}. There are higher *sad* and *ruf* conformations but a smaller *dom* configuration in **S5**. There is a smaller *bre* normal deformation which is the cause for the lower D_{ip}. The presence of a Fe(II) metal with a nitro group as the axial ligand (**S6-1**; QUJZUQ)^{43c} instead of a Zn(II) in the core, slightly decreases the D_{oop} but drastically reduces the *ip* distortion as the D_{ip} being the axial ligand from nitro (**S6-1**) to a chlorine (**S6-2**, LAMDUZ)^{43e} increases the D_{oop} by

0.213 Å. This is reflected by an increase in the sad and wav(x) oop distortion modes for S6-2 as a result of moving to an electron withdrawing axial ligand.

Figure S16 Metallated β -substituted chlorins series and the NSD analysis of the X-ray crystallographic structures observed in the metallated β -substituted chlorin compounds listed in the table. Table contains their CCDC reference codes, the color corresponding to the NSD graph, metal in the chlorin core, axial ligand attached to this metal, and the solvent within the respective unit cell.

The introduction of a Ni(II) metal into the core instead of a Fe(II) causes a rise in non-planarity compared to the Fe(II) chlorins studied (**S6-1**). In the first independent molecule of the structure with CCDC reference code DOZVIX01 (**S7a**ⁱ), a Ni(II) metal in the core increases the D_{oop} by 0.719 Å.^{43d} This is not the case however for the second independent molecule (**S7a**ⁱⁱ). There is a large difference between the 3D structure of **S7a**ⁱ and **S7a**ⁱⁱ. This is realized by the formation of atropisomers in the crystal structures. In the case of **S7a**ⁱⁱ, all β -substituents point in the same direction. However, for **S7a**ⁱ, the β -substituents are alternating in the direction they point (above or below the macrocycle plane) which gives rise to a larger *ruf* distortion (nearly 1 Å). This structure also has the largest D_{ip} in the series of structures with DOZVIX CCDC reference codes, because of its large *bre* character. The crystallization of a Ni(II) chlorin that has the carbonyl and two ethyl groups on a different pyrrole to both molecules of **S7a**, yields the structure of DOZVIX02 (**S7b**).^{42e} This structure has a large *sad* distortion as well as meaningful *ruf* and *wav*(x) contributions. This chlorin has the smallest D_{ip} due to the presence of the smallest *bre* distortion mode. Upon analyzing **S7a**, exchanging the carbonyl and the ethyl positions on the same pyrrole yields the 3D crystal structures of the two molecules in DOZVIX01 (**S7c**ⁱ and **S7c**ⁱⁱ).^{43f} The first molecule, **S7c**ⁱ, has the largest D_{oop} in this "DOZVIX" series. It is marginally larger than that of **S7a** a almost solely due to its slightly larger *ruf* configuration. It has a much smaller D_{ip} due to its largest *N-str* distortion mode. The second molecule, **S7c**ⁱⁱ, has a far smaller D_{oop} as it has small contributions from all modes, the largest stemming from the *sad* and *wav*(x). This structure has the second smallest D_{ip} even though it has the largest *m-str* and *trn*(x). the direction they point (above or below the macrocycle plane). This atropisomer formation gives rise to the difference seen between the two molecules in their NSD profiles.

In WANBIZ (S8),^{42e} the chemical differences between this structure and S7a are the presence of the hydroxylamine at the periphery instead of the oxygen as well as the switching of the ethyl groups and the sp² carbon location (Fig. S16). The D_{oop} decreased by an average of 0.747 Å upon this transformation as the *sad* and *ruf* contributions decreased. Similar to S6-1, the D_{ip} has dramatically decreased because of the small *bre* configuration. In the crystal structure of S8, the macrocycles form head-to-head dimers through a hydrogen-bond with the NOH group. These dimers are slightly rotated to one another and do not allow for sufficient overlap to form π -stacking.

Figure S17 Further metallated β -substituted chlorins series and the NSD analysis of the X-ray crystallographic structures observed in the metallated β -substituted chlorin compounds listed in the table. Table contains their CCDC reference codes, the color corresponding to the NSD graph, and the solvent within the respective unit cell.

The structure of **S9** (JUNZUN)^{43g} has one of the lowest D_{oop} values in this series. It is similar to the D_{oop} of **S8**, even though the structures are not as similar. The *sad* and *ruf* conformations have decreased and the D_{ip} is similar to **S7c** with similar contributions. In this structure, the ester on the 8 position is held co-planar to the macrocycle ring and the ester on the C7 position is held perpendicular. This allows for a reciprocated short contact interaction between these two groups holding the macrocycle in an optimum position to π -stack. In this series, it appears that not only is the type and number of peripheral substituents crucial, but also the orientation in which they point (either above, below, or co-planar), is also important for overall contribution towards *ip* and *oop* distortions.

The second group of metallochlorins is shown in Fig. S17. The introduction of more polar peripheral substituents has increased the D_{oop} of the macrocycles of **S10** (PASXEM (N1-N4 ring) and PASXEM (N5-N8 ring)),^{44a} compared to **S9** by 0.481 and 0.137 Å, respectively. The difference in the values of the D_{oop} is a result of both esters pointing in opposite directions in the N1-N4 ring whereas in the N5-N8 ring, both esters point in the same direction which is a feature that has been seen above. These rises in the D_{oop} represent the increase in the *ruf* and *dom* conformations. These polar groups also increase the D_{ip} as there is a higher *bre* configuration in **S10ⁱ** and **S10ⁱⁱ**, according to the NSD profiles.

The metallated chlorins **S11** and **S12**, while similar in chemical composition, differ in the orientation of the peripheral substituents. This results in two distinct packing patterns. The first, **S11**, favors a head-to-tail tightly packed structure, whereas **S12** forms a loose edge-on packing system. This causes the D_{oop} of **S12** (NIJBUD) to be 0.347 Å larger than that of **S11** (NIJBOX).^{44b} The D_{ip} of **S12** is lower than the D_{ip} of **S11** because of the lower *bre* distortion mode in **S12**. The Copper(II) complex **S13** (LICSEV)^{44c} has a slightly larger D_{oop} than **S12** as the ester group on the reduced pyrrole induces a larger *ruf* distortion that arises from intermolecular hydrogen bonding. The D_{ip} has also been slightly enhanced due to the higher *m-str* and *N-str* configurations.

The structures of LOGYAH (S14)^{44d} and NOCGAN (S17)⁴²ⁱ have large *sad* and *ruf* normal deformations. However, in the other two structures of XANDOI (S15) and ZAZNOF (S16),^{44e, 44f} this dramatic increase in distortion arises solely from the large *ruf* conformation. To conclude, a Ni(II) metal generally induces a large *ruf* conformation that is responsible for the large D_{oop} shown above. The D_{ip} of S14 contains little to no distortion compared to S15-S17 that all have large D_{ip} s due to the extensive *bre* conformations present.

Overall, the presence of a metal and an axial ligand in the core of the β -substituted chlorin increases the non-planarity. Depending on the metal and peripheral substituents, different *oop* distortions can be realized. A similar scenario is seen in the *ip* distortion modes as the *bre* and *N-str* conformations best represent the D_{ip}. The second macrocycle in DOZVIX01 (S7aⁱⁱ) has different contributions to the D_{oop} and D_{ip}. This 24-atom mean-plane's main conformation of the *oop* modes is *sad* whereas the main normal deformation in the *ip* modes is the *bre* mode. In S11, the *p*-methylbenzyl group, adjacent to the ester group on the meso-position of the chlorin, can orient away from this ester and thus not create such a large *peri* interaction. In S12, the rigid sp² hybridized carbon adjacent to the ester group creates a larger *peri*-interaction thus creating a larger *sad* contribution. The D_{oop} of S14 and S15-S17 have dramatically increased due to the increased number of *peri*-interactions that arise from the increased number of peripheral substituents as discussed in the chlorin section of the test case. In the test case however, the increasing number of substituents increased the *sad* distortion in almost all cases.

2.3.3 Fused chlorins

First, we look at the compound shown in Fig. S18. In this series, the archetypical description for their structures is a high π -stacking with the fused moieties on opposite sides. There are subtle differences from structure to structure which will be discussed in turn and these differences along with the alternate peripheral substituents give rise to changes in their NSD profiles. When a fused benzene ring is introduced to the chlorin as in the structure of **S18** (JUNZIB),^{43g} this yields a D_{oop} of 0.268 Å. In the structure of **S18**, a considerable head-to-tail π -stacked overlap with the fused rings as far apart as possible is shown. This *oop* distortion arises from the *sad* and *ruf* contributions. There is more *ip* character in the 3D structure of **S18** as the D_{ip} has significant *m-str*, *N-str* and *bre* conformations. The substitution of an ester onto the fused benzene in **S18** yields the structure of **S19** (QIRHEE).^{45a} The inclusion of this ester group drastically changes the packing of the structure from the π -stacked pattern to a face-to-edge pattern. This results in a decrease in the D_{oop} and D_{ip} due to a lower *sad* conformation in the *oop* modes and a lower *m-str* conformation in the *ip* modes. Moving to the structure of **S20** (OEBPNI), which is similar to **S18** with a Ni(II) center included. Fused chlorin, **S20**, contains more *ruf* character than **S18** as a result of the inclusion of the metal center and this results in a tight head-to-head packing pattern.^{45b} In the structure of **S21** (VUFTEV),^{45c} the α , β -unsaturated aldehyde increases the D_{oop} of the structure even further than **S20** due to peripheral interactions. These interactions force the structure to adopt a head-to-tail overlap coupled with a face-to-edge packing in the structure. These interactions thus cause a large *bre* conformation as there is a significant expansion in the 24-atom mean-plane.

Using the structure of S18 as the parent compound, the substitution of an amide onto this structure instead of one of the ethyl groups adjacent to the benzene, as well as placing an ethyl group on the benzene results in an insignificant decline in the D_{oop} of S22 (XIXVAB).^{45d} In the structure of **S22**, this is represented by a head-to-head overlap caused hydrogen-bonding between the amide groups. This is coupled with the face-to-edge interaction as a result of the non-classical hydrogen-bond between the fused benzene ring and the oxygen of the amide group. There is a meaningful decrease in sad distortion however and there is a rise in the wav(y) mode. The lesser D_{ip} represents a larger difference as the bre distortion decreases by 0.115 Å. The introduction of an amide slightly decreases the oop distortion and meaningfully decreases the ip distortion. Breaking the aromaticity of the fused ring to the chlorin is one reason for the large increase in the D_{oop} between S22 and S23 (XIXTUT).^{45d} The packing patterns of these two structures is quite different with **\$23** exhibiting a head-to-tail overlap combined with the face-to-edge interaction similar to S21. The inclusion of the Ni(II) metal center is one of the main driving forces between the differences seen in the NSD profiles of S22 and S23 aside from the break in aromaticity. There is a characteristically large ruf conformation that is common in the structures of Ni(II) macrocycles observed thus far. The chlorin S23 has the largest D_{ip} observed in the fused chlorins up to this point as the largest *m-str* and *bre* conformations are observed in this structure. The NSD of **S23** shows slightly larger sad, ruf, wav(y) and pro normal deformations. The D_{ip} has also decreased and the main contribution to the *ip* distortion is the *bre* mode. The ring's conformation induces a large ruf configuration to alleviate the ring strain. There is also an equally significant sad configuration due to intermolecular short contacts in the packing system. A moderate dom contribution is reflective of the core hydrogen's pointing out of the plane of the macrocycle. A cyclohexanone fused to a chlorin macrocycle with an ester and five methyl groups also substituted onto the periphery creates the structure of S24 (anhydrobonellin methyl ester, AHBONM).^{45e} In comparison to S22, the D_{oop} of S24 has increased by 0.456 Å. Even though there are fewer peripheral substituents on S24 in comparison to S22, the increase in D_{oop} is a result of the completely reduced fused ring increasing the oop distortion modes. Conversely, the D_{ip} is 0.063 Å smaller than **S22** due to the reduced number of peripheral substituents which is characterized by a smaller *m-str* conformation observed in the NSD profile.

For the structures of **S25-S27**, the overall feature is derived by the fused ring attached to the pyrrole adjacent to the reduced pyrrole ring rather than in the previous structures where it is directly attached. In **S25** (OJOXIV),^{45f} the polar iminopyranone fused to the free base chlorin generates a D_{oop} of 0.547 Å due to the moderate *sad* and large *ruf* conformations. In this structure, the fused ring is rather planar and does not

seem to excessively distort the macrocycle. It is clear that most of the macrocycle distortion comes from the β -substituted reduced pyrrole rings and its interactions with the cyclohexane solvent. Other artefacts in the crystal packing are the R¹ substituent is held co-planar to the fused ring resulting in a high degree of overlap with the macrocycle core. This forms a head-to-head overlap in the crystal packing which is complemented by head-to-head π -stacking between the unsubstituted pyrrole units. The D_{ip} of **S25** is slightly smaller than its D_{oop} (0.347 Å) and has meaningful *N-str* and *bre* configurations. A Zn(II) occupying the core of this chlorin (**S26**, OJOXUH)^{45f} makes the macrocycle more non-planar and reduces *ip* distortion. The D_{oop} (0.898 Å) of this Zn(II) chlorin consists of a large *sad*, moderate *ruf*, *dom* and *pro* contributions. The reduced D_{ip} is due to smaller *N-str* and *bre* configurations, which is representative of the Zn(II) contracting the chlorin core due to the Zn(II)-N bonds. The only structural difference between **S27** (OJOXOB)^{45f} and **S25** is that the R¹ substituent has a phenyl amine in **S27** replacing the benzyl amine in **S25**. These structural changes decrease the D_{oop} by 0.028 Å and the D_{ip} by 0.033 Å. The change in *sad* conformation in **S27** makes the macrocycle more planar whereas the smaller *N-str* contribution from the core intramolecular hydrogen bonding decreases the *ip* distortion. The main *oop* conformations observed in **S28** (PIRCIC) and **S29** (PIRCOI)^{45g} are *sad*, *ruf* and *dom*. Their sole contribution to the *ip* distortion is the *bre* mode. The structures of **S28** and **S29** are an interesting example of how subtle changes to the confus of the NSD profiles. The D_{oop} of **S29** (0.760 Å) is almost double that of **S28** (0.406 Å). This is due to the looser packing of **S28** with the ester group point above the macrocycle plane and forming a shield for any π -stacking. Whereas **S29** shows a tight π -stacked structure as a resul

	Color	CCDC	Metal (M)	Axial ligand (X)	Solvent	Ref.
S18		JUNZIB	2H	-	_	43g
S19		QIRHEE	2H	_	_	45a
S20		OEBPNI	Ni(II)	_	_	45b
S21		VUFTEV	Ni(II)	-	-	45c
S22		XIXVAB	2H	-	_	45d
S23		XIXTUT	Ni(II)	-	-	45d
S24		AHBONM	2H	-	_	45e
S25		OJOXIV	2H	-	$C_{6}H_{12}$	45f
S26		OJOXUH	Zn(II)	THF	_	45f
S27		OJOXOB	2H	_	_	45f
S28		PIRCOI	2H	_	_	45g
S29		PIRCIC	2H	_	-	45g

2.5

Figure S18 Fused chlorins series and NSD analysis of the X-ray crystallographic structures observed in the fused chlorin compounds listed in the table. Table contains the color corresponding to the NSD graph, CCDC reference codes, metal in the core (M), axial ligand attached to the metal (X), and solvent in the respective unit cell.

The second group of fused chlorins is shown in Fig. S19. The fusing of a phthalimide species to a chlorin as well as the substitution of four methyl groups, two ester groups and a vinyl group (**S30**; NEZLOV),^{46a} reduces the average *oop* distortion compared to **S28** and **S29**. The *ip* distortion has increased slightly in **S30** due to the moderate *m-str*, and large *N-str*, and *bre* distortion modes. The Ni(II) metal in the core of a quinolone oxide fused triphenylchlorin (**S31**, XUCBEE)^{46b} generates large *ruf* conformations as previously seen. Additionally, the introduction of meso substituents increases the non-planarity of the structure due to *peri* interactions. The fused chlorin that has two rings fused to the macrocycle (**S32**, YAQXET)^{46c} and has slightly increased non-planarity compared to the free base chlorin that has only one ring fused to it (**S30**). The cyclohexanone fused ring counteracts the ring strain caused by the fused aromatic ring resulting in only a slight increase in D_{oop} and D_{ip} distortion modes. The structures of **S33** (YACGOB)^{46d} have *ruf* distortions due to the tetra-fluoro-chromene annulated fused ring. The independent molecules of the structure, **S33**, are all more non-planar than a phthalimide fused ring to the chlorin macrocycle (**S30**) due to the annulated fused ring as well as the sulfane's (**S33**) intermolecular interactions increasing the *ruf* character in the structure. The structures also have meaningful *oop* distortion from the rest of the modes bar the *sad*. There is less *ip* distortion in these structures due to a small *bre* configuration. The difference between the core nitrogen atoms and the CH₃SH solvent molecule were as ring N5-N8 there are no solvent interactions observed.

	Color	CCDC	Solvent	Ref.
S30 ⁱ		NEZLOV (N1-N4 ring)	_	46a
S30 ^{ii*}		NEZLOV (N5-N8 ring)	_	46a
S31 ⁱ		XUCBEE (N1-N4 ring)	DCM, C ₅ H ₁₂	46b
S31 ⁱⁱ		XUCBEE (N5-N8 ring)	DCM, C ₅ H ₁₂	46b
S32		YAQXET	_	46c
S33 ⁱ		YACGOB (N1-N4 ring)	DCM, CH ₃ SH	46d
S33 ⁱⁱ		YACGOB (N5-N8 ring)	DCM, CH ₃ SH	46d

Figure S19 Further fused-chlorins series and the NSD analysis of the X-ray crystallographic structures observed in the fused chlorin compounds listed in the table. Table contains the color corresponding to the NSD graph, CCDC reference codes, and the solvent in the respective unit cell.

Overall, the non-planarity of these fused β -substituted chlorins depends on the metal in the core and the peripheral substituent. The fused rings make the chlorin macrocycle more planar as well as inducing specific conformations based on the ring's nature.

2.4 Tetrahydroporphyrins (Bacteriochlorins and Isobacteriochlorins)

2.4.1 Free base bacteriochlorins

Fig. S20 compiles the free base bacteriochlorin structures studied.

56	BENRIX	_	48a
57	ECASUZ	_	48b
58	ECAFUM	_	48b
59	CONHIW	Hexane, DCM	48c
60	RIPMAE	_	48d
61	SUVBES	$C_{6}H_{12}$	48e
62	UYITIH	_	48f
63 ⁱ	BAGKIG	_	48g
63 ⁱⁱ	BAGKIG	_	48g

Figure S20 Free base bacteriochlorins series and the NSD analysis of the X-ray crystallographic structures observed in the free base bacteriochlorin compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, and solvent in the respective unit cell.

2.4.2 M(II) complexes of bacteriochlorins

The structures of the M(II) complexes of bacteriochlorins investigated in this section are shown in Fig. S21. The Cu(II) metal in the core of the bacteriochlorin **S34** (BENRET with four crystallographically independent molecules)^{48a} greatly increases the D_{oop} compared to the most closely related free base structure (**55**) with the exception of **S34**^{iv}. The first independent molecule of **S34**ⁱ has a substantial *ruf* conformation as well as significant *dom* and *pro* configurations. The rest of the molecules in BENRET, bar the exception already mentioned (**S34**^{iv}), have considerable *sad*, *dom* and *pro* conformations. To prove this, the average diagonal distance between the core nitrogen's of **S34**^{is} molecules and **58** were measured (Cu(II) vs free base bacteriochlorins, 4.01 Å vs 4.205 Å, respectively). All the average-cross diagonal nitrogen bond lengths were measured using the CCDC program, Mercury.²² There is primarily *ruf* character in the 3D structure. There is also a significant *pro* conformation as well as a meaningful *sad* configuration. The displacement of the D_{oop} is 0.722 Å bigger than the D_{ip} . The main *ip* distortion mode is the *N-str* mode as a consequence of the short Cu(II)-Nitrogen bond narrowing the size of the macrocycle core. All of the independent molecules bar **S34**^{iv} have D_{oop} values of approximately 0.900 Å. The D_{oop} of **S34**^{iv} is 0.278 Å and like some, the majority of the free base bacteriochlorins, only have *wav*(x) and *wav*(y) contributions to the D_{oop} . The D_{ip} of this molecule is larger than the rest of the molecules in BENRET. There are significant *N-str* and *bre* configurations and there is considerable *oop* distortion due to intermolecular interactions as seen before. The presence of a Ni(II) metal in the center of the bacteriochlorin (**S35**, DEGTAK)⁴⁹ largely increases the D_{oop} by

approximately 1.000 Å. This is mainly due to the Ni(II) metal in the bacteriochlorins inducing a large *ruf* character to this overall structure. There is also a significant *bre* conformation which increases the D_{ip} compared to **S34**.

Figure S21 Metal bacteriochlorins series and the NSD analysis of the X-ray crystallographic structures observed in the metal bacteriochlorin compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, and solvent in the respective unit cell.

2.4.3 Free base isobacteriochlorins

The structure of the isobacteriochlorins investigated and a graphical representation of the NSD data are given in Fig. S22.

	Color	CCDC	Solvent	Ref.
64		SUCMIM	_	50a
65		BEYXEI	_	50b
66		BEJKEG	_	50c
67		KOSKEI	CHCl ₃	50d
68		LEVXAL	_	50e

Figure S22 Free base isobacteriochlorins series and the NSD analysis of the X-ray crystallographic structures observed in the free base isobacteriochlorin compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, and solvent in the respective unit cell.

2.4.4 M(II) isobacteriochlorin complexes

The structure of the isobacteriochlorins investigated and a graphical representation of the NSD data are given in Fig. S23.

Figure S23 Metal(II) isobacteriochlorins series and the NSD analysis of the X-ray crystallographic structures observed in the metal(II) isobacteriochlorin compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, and solvent in the respective unit cell.

These metallated isobacteriochlorins (IBCs) have D_{oop} content in the range of 0.234–1.986 Å and a D_{ip} range of 0.086–0.444 Å. The Cu(II) and Ni(II) IBCs can be directly compared with a free base IBC via the contrast of 64, \$36 (DOMKOF)^{51a} and \$37 (PETHEB).^{43d} These structures have identical peripheral substituents and only differ by the presence or absence of a metal in the core. In the crystal structure, this is represented by a shift from the π -stacking seen in the structure of 64 towards the face-to-edge packing seen in S36 and S37. The residence of a Cu(II) metal in the center of the bacteriochlorin (S36) slightly increases the D_{oop}, whereas a Ni(II) metal (S37) drastically increases the D_{oop} compared to the free base derivative (64), as seen previously in the section throughout. S36 exists in a 3D structure that possesses moderate sad, ruf and wav(y) oop conformations, whereas S37 contains mainly ruf character with a relatively small amount of sad character. The D_{ip} of 64 is more than twice the value than that of S36 and S37, with the latter being slightly more distorted. Both S36 and S37 contain solely a bre conformation and conversely, 64 contains a large m-str and bre contribution to the ip. Contrasting the NSD of these two compounds (S36 and S37), the contributions from the *ruf* decreases yet the *sad* increases. The D_{in} declines by 0.030 Å as represented by the smaller bre conformation. The structural reason for the decline in oop distortion is due to the esters lying in the plane of the macrocycle and reducing the possible non-planarity. Previously in the bacteriopheophorbide-related compounds above, the ester generally causes the macrocycle to be non-planar. Looking into the structural differences between \$37 and \$38 (VARFUP),^{51b} the substitution of four ester groups and two oxo groups onto the periphery occurs and this slightly lessens the D_{oop} and the D_{ip}. In the crystal structure of **S38**, it is clear that the ester groups on the reduced pyrrole side of the macrocycle point above the macrocycle while the ester groups on the opposite side of the macrocycle point below the plane. This allows for a significant overlapped structure to form in the crystal packing and this indicates that the ester in S38 causes the isobacteriochlorin macrocycle to be planar. Switching one of the oxo groups in S38 for a sulfur affords the structure of **S39** (SOXWUZ)^{51c} and significantly reduces the D_{oop} by 0.964 Å and the D_{ip} by 0.109 Å. In the crystal packing, this is represented as a tightly packed π -stacking head-to-tail pattern with the sulfur moiety now interacting with the CHCl₃ solvent. There are no significant contributions to the D_{oop} of S39 apart from a moderate ruf configuration and there is no meaningful contribution to the ip distortion. The rise in D_{oop} is a result of the large sad and ruf contributions as well as the moderate wav(x) conformation. The increasing ip distortion is mainly because of the rise in bre contribution to the ip distortion. This contribution as well as meaningful sad, wav(x) and wav(y) conformations are the main oop contributions. When the last oxo moiety is replaced in S39 by a sulfur, the structure of S40 (SOXWOT)^{51c} is generated. The introduction of this second sulfur atom significantly increases the D_{oop} by 0.939 Å whereas the D_{ip} rises slightly by 0.055 Å. This second sulfur atom, while itself being only a moderate adjustment of the macrocycle, is seen to act as a pseudo axial ligand to the Ni(II) metal center of S40. Thus, directly affecting the distortion of the macrocycle as represented by an increase in the ruf distortion mode. The fused cyclohexanone ring in S41 (KODHAM),^{51d} forces the adjacent pyrrole to be severely distorted in a ruf conformation. This ring, as well as the two ethyl, four methyl and ester groups, make up the structure of **S41**. The D_{oop} of **S41** is 0.813 Å larger than that of **S40** and the D_{ip} is 0.303 Å larger than the D_{ip} of **S40**. The D_{ip} of **S41** obtains its distortion mainly from the *bre* configuration. Overall, this series demonstrates how the introduction of a metal(II) center into the core of an isobacteriochlorin can affect the overall conformation based off the type of metal used and how it interacts with the environment of the peripheral substituents.

2.5 Manipulation of the phytochlorin skeleton

From a more biological point of view, there are many known natural drastic changes observed in the conformation of the phytochlorin skeleton. However, only the most common and well known structurally related compounds were studied and their NSD profiles discussed. These include the structures with the CCDC reference codes listed in the table below (Fig. S24).

Figure S24 Phytochlorin related biological compound series and the NSD analysis of the X-ray crystallographic structures observed in the phytochlorin related biological compounds listed in the table. Table contains their CCDC reference codes, color corresponding to the NSD analysis, and solvent in the respective unit cell.

In the phytochlorin methyl ester structure of KOVXUO (24),^{34b} the D_{oop} arises from the significant *ruf* and *dom* modes of distortion. This D_{oop} is due to the ester induced *ruf* distortion and the meaningful *dom* configuration. These *ruf* and *dom* contributions are artefacts of the intermolecular interactions seen in the packing modes of this structure. On one side of the macrocycle plane, the ester groups interact with the core pulling the N···H amines out of the macrocycle plane, but the other side is shielded from the ester groups due to a π -stacking system. This π -system is instigated by an edge-on interaction between the oxo moiety and the meso hydrogen atoms creating a sheet like system of hydrogen-bonding. The ester interacting with the core of the tetrapyrrole is responsible the for large N-str ip distortion. This mode, as well as the large *m-str* and *bre* distortions, are the reason for the higher *ip* displacement than *oop* displacement. The *m-str* distortion is predominant because of the oxo moiety and meso hydrogen short contacts in the packing system. The phytoporphyrin methyl ester structure of RIWNOA $(69)^{34a}$ has the third highest D_{oop} in this series due to it having the largest *ruf* contribution. This, however, is not only due to the presence of the ester but due to the pyrrole trans to the ester. This "trans pyrrole" has a methyl and ester group at the β -positions and exhibit a *ruf* type conformation. This 3D conformation, the ester induced ruf conformation, and the ester's non-classical intermolecular hydrogen bonding with the carbonyl oxygen, all give rise to the *oop* distortion. In the crystal packing, this is revealed through a high π -stacking with a head-to-tail overlap. This structure has the second lowest ip distortion, however it is still larger than any oop distortion's displacement (The D_{ip} is almost twice the displacement of its own D_{oop}). The closest phorbine relate structure in the CCDC, WIPDIJ (70),^{52a} has the lowest *oop* distortion and highest ip distortion in this series. This can be explained by the head-to-tail packing observed and the main contacts are non-classical intermolecular hydrogen bonds between the peripheral alkyl groups. This also explains the small ruf contribution to the non-planarity as well as wav(x) contributing the most oop character to the 3D structure. This crystal structure has the largest ip distortion in this series due to the large contributions from all the modes bar the *N-str* mode. The chlorin e₆ trimethyl ester structure. ZUBBIH (71),^{52b} obtains its *oop* character from all distortion modes, bar wav(y) and dom. It has significant sad and ruf distortions due to the presence of peri-interactions from the esters and the esters giving rise to ruf configurations. These esters are also the reason for the largest m-str configuration observed in the NSD profile in Fig. S28. In the crystal packing, this is represented by a loose head-to-head π -stacked structure with the ester groups interacting with the inner core system on one side of the macrocycle plane. The closest rhodochlorin derivative in the CCDC, KUHPIM (72),^{52c} has the largest D_{oop} and the smallest D_{ip} in this series. This is the only crystal structure that has a larger *oop* displacement than *ip* displacement. The

large D_{oop} arises from significant contributions from all distortion modes, the sad mode contributing the largest amount of *oop* character. This arises due to the ester interacting with the peripheral ethyl groups.

Overall in this series, there is larger *ip* distortion than *oop* distortion in these crystal structures, as seen in the bacteriopheophorbide related structures. The D_{ip} is in the range of 0.3045–0.6685 Å and the D_{oop} ranges from 0.1202–0.3661 Å. These free base tetrapyrroles have larger *ip* distortion due to favorable intermolecular interactions.

2.6 Complete NSD conformation analysis tables of the compounds studied

Table S1: NSD. Full details of NSD conformation analysis of the compounds studied [Å].

					Out-of-pla	ane distortion	s					In-i	olane distorti	ons						
#	Compound	М	CSD #	Ref	Doop	оор	B _{2u}	B_{1u}	A_{2u}	$E_{g(x)}$	$E_{g(y)}$	A_{1u}	D _{ip}	ip	B_{2g}	B_{1g}	$E_{u(x)}$	$E_{u(y)}$	A_{1g}	A_{2g}
Test case	s – free base compounds																			
5,10,15,2 6a	5,10,15,20-Tetraphenylporphyrin bis(benzaldehyde) clathrate	2H	JIVRAH	25a	0.0146	0.0076	0	0	0	-0.0115	0.009	0	0.2006	0.0158	0.0396	-0.0167	0	0	0.1959	-0.0026
6b	5,10,15,20-Tetraphenylporphyrin bis(m-xylene) clathrate	2H	SEMNIH	25b	0.0389	0.009	0	0	0	0.0389	-0.0026	0	0.1765	0.0118	-0.056	0.0496	0	0	0.1577	0.0261
60	5.10.15.20-Tetranhenylpornhyrin bis(m-xylene) clathrate	214	SEMNIH01	250	0.0373	0.0033	0.0001	0.0003	-0.0001	-0.0009	-0.0372	0.0001	0.2109	0.013	-0.0542	0.004	-0.0001	0.0007	0 2038	0.0012
6d	5.10.15.20-Tetraphenylporphyrin bis(m-xytene) eiadinate	2H	TPHPOR01	25d	0.258	0.0355	0.0001	0.0005	-0.0001	-0.2314	0.1142	0.0001	0.196	0.0185	0.015	0.0482	-0.0001	0.0007	0.1883	0.0201
6e	5,10,15,20-Tetraphenylporphyrin	2H	TPHPOR04	25f	0.2668	0.0371	-0.0001	-0.0002	-0.0001	0.2406	-0.1151	0.0002	0.208	0.0215	0.0323	0.0519	-0.0002	0	0.198	0.0183
6f	5,10,15,20-Tetraphenylporphyrin	2H	TPHPOR11	25g	0.2663	0.0399	-0.0004	-0.0004	0	0.2507	-0.0898	0.0002	0.2357	0.0251	0.0393	0.0521	-0.0003	-0.0006	0.2255	0.0215
6g	5,10,15,20-Tetraphenylporphyrine	2H	TPHPOR12	25h	0.2248	0.0379	0.0003	-0.0002	-0.0001	0.2071	-0.0876	0.0003	0.1803	0.0186	0.021	0.0487	-0.0007	0.0006	0.1721	0.0083
6h	5,10,15,20-Tetraphenylporphyrin	2H	TPHPOR13	25i	0.2691	0.0399	-0.0001	0.0003	-0.0003	-0.2525	0.093	-0.0006	0.2266	0.0238	0.0385	0.053	0.0001	-0.0004	0.2156	0.0238
6i	5,10,15,20-Tetraphenylporphyrin	2H	TPHPOR14	251	0.262	0.0361	0.0003	0.0004	-0.0005	-0.238	-0.1095	0.0002	0.2027	0.0223	-0.0143	0.0338	0.0002	0.0006	0.1979	-0.0239
0j 6k	5 10 15 20 Tetraphenylpornyrin antifacere clatifate	2H 2H	XAGMAT	23K 251	0.218	0.0259	-0.0003	-0.0004	0.0002	0.1285	0.2149	0 0004	0.2020	0.0201	0.0362	-0.0423	0.0003	-0.0002	0.1948	-0.0047
2.3.7.8.1	2.13.17.18-Octaethylporphyrin	2		201	0.2002	0.0200	0.0000	0.0005	0.0005	0.1102	0.2115	0.0001	0.1909	0.0119	0.0110	0.0000	0.0005	0.0001	0.1955	0.0017
7a	2,3,7,8,12,13,17,18-Octaethylporphyrin	2H	OETPOR10	26a	0.1095	0.0113	0	0	0	-0.063	0.0895	0	0.2279	0.0183	0.0016	-0.058	0	0	0.2204	0.0001
7b	2,3,7,8,12,13,17,18-Octaethylporphyrin 7,7,8,8-	2H	OKOQUA	26b	0.0933	0.0055	0.0001	0.0009	0.0004	-0.0176	-0.0917	-0.0001	0.3262	0.0109	0.2327	-0.0099	0.0002	0	0.2283	-0.0064
XEtTPP :	tetracyanoquinodimetnane clathrate																			
8	2,3-Diethyl-5,10,15,20-tetraphenylporphyrin	2H	TATPOT01	27b	0.6164	0.0088	-0.5955	-0.0552	0.0443	0.0307	-0.1374	0.0223	0.3458	0.0283	0.056	0.2424	-0.0475	0.0018	0.2354	-0.0056
9	2,3,12,13-Tetraethyl-5,10,15,20-tetraphenylporphyrin	2H	TATPUZ01	27b	1.8137	0.0376	-1.8118	-0.0398	0.0614	-0.0075	-0.0396	0.0075	0.268	0.0377	-0.0015	0.2658	-0.0041	0.0138	0.0309	-0.0028
10	2.3.7.8-Tetraethyl-5.10.15.20-tetranhenylnorphyrin methanol	2H	TATOAG01	27b	2.3542	0 054	2,2852	-0.2476	0.0358	-0.2502	0.4398	-0.0334	0.1369	0.0611	-0.0072	0.0752	-0.0424	0.0216	-0.0973	-0.0361
••	solvate			270	2.3512	0.004	2.2002	0.2170	0.0000	0.2002	0.1090	0.0007	0.1507	0.0011	0.0072	0.0702	0.0121	0.0210	0.0775	0.0001
11	2,3,7,8,12,13-Hexaethyl-5,10,15,20-tetraphenylporphyrin dichloromethane solvate	2H	TATQEK01	27b	2.8466	0.0498	2.8231	0.1686	0.0008	0.1449	0.289	-0.0259	0.3753	0.0727	-0.0422	0.2340	-0.0068	0.0167	-0.2898	-0.0041
12	2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-tetraphenylporphyrin ethanol solvate	2H	SATQOU	27c	3.46	0.069	-3.4555	-0.099	0.0337	0.0997	0.1026	0.0096	0.5151	0.1049	0.0565	-0.0896	0.0365	-0.0391	-0.5012	-0.0026
12a	2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-tetraphenylporphyrin bis(dichloromethane) clathrate	2H	QAWFIE	27c	3.9489	0.177	-3.6587	-1.4811	0.1127	0	0	-0.0301	1.0546	0.1751	-0.0942	-0.1978	0	-0.0005	-0.954	0.3924
XEtTPC	series																			
13	7,8-Diethyl-5,10,15,20-tetraphenylchlorin	2H	GELGUZ	28	1.1536	0.0251	-1.103	-0.2781	0.0443	0.0856	-0.1647	0.0177	0.2932	0.0344	-0.0458	-0.1062	-0.0574	-0.0573	0.2568	-0.0086
14	12,13-Diethyl-5,10,15,20-tetraphenylchlorin 2.3.7.8-Tetraethyl-5.10.15.20-	2H 2H	GELJEM	28	1.9501	0.0245	1.8972	-0.3766	0.0091	0.2393	-0.0182	0.0636	0.277	0.0421	0.0019	0.2638	-0.0623	-0.0102	0.056	-0.0039
15	tetraphenylchlorin)•CH ₂ Cl ₂ •CH ₃ OH	211	OLLQAI	20	1.0000	0.0501	-1./ 541	-0.505	0.1105	0.2107	-0.2775	0.1207	0.1991	0.0457	0.1427	-0.0752	-0.0024	-0.0209	0.0744	-0.0501
16	7,8,12,13-Tetraethyl-5,10,15,20-tetraphenylchlorin	2H	GELHAG	28	2.7391	0.04	-2.6645	-0.4588	-0.11	-0.2868	-0.3127	-0.0103	0.1949	0.0663	-0.0335	0.0924	-0.0208	0.0611	-0.1551	0.0096
5 10 15 2	s – metal complexes 0=Tetranhenvlnornhvrins and 237812131718=octaethvlnornhvri	ns																		
Zn6a	(5,10,15,20-Tetraphenylporphyrinato)zinc(II)	Zn(II)	ZZZTAY02	30	0.2368	0.0310	0	0	0	-0.1939	0.1359	0	0.1480	0.0093	0.0136	0.0226	0	0	0.1451	0.0126
Zn6b	(5,10,15,20-Tetraphenylporphyrinato)zinc(II)	Zn(II)	ZZZTAY03	32	0.1593	0.0115	0	0	0	-0.1583	0.0179	0	0.1522	0.0081	-0.0028	0.0105	0	0	0.1518	0.0008
Zn7a Zn7b	(2,3,7,8,12,13,17,18-Octaethylporphyrinato)zinc(II) (2,3,7,8,12,13,17,18-Octaethylporphyrinato)zinc(II)	Zn(II) Zn(II)	ALOKOB OKOREL	31a 26b	0.1658	0.0061	0.0001	-0.0763	0.0002	-0.1576	-0.0517	0.0001	0.1444	0.0095	0.0019	-0.0083	-0.0053	-0.0001	0.1441 0.1456	-0.0003
21170	hemikis(7,7,8,8-tetracyanoquinodimethane)	2.11(11)	OROREL	200	0.5744	0.0070	-0.5105	-0.0705	-0.1007	0.1275	0.0762	0.0150	0.1405	0.0005	-0.0054	0.0027	-0.0055	-0.0140	0.1450	0.0055
XEtTPPs	and XEtTPCs																			
Zn8	3-Picoline(2,3-diethyl-5,10,15,20- tetraphenylporphyrinato)zinc(II)	Zn(II)	RUTNEZ	27b	1.0543	0.0228	0.8957	0.4732	0.1616	-0.1868	0.1558	-0.0098	0.2151	0.0179	-0.0284	0.1698	-0.0274	0.0092	0.1244	0.0173
Zn9	Pyridine(2,3,12,13-tetraethyl-5,10,15,20-	Zn(II)	RUTQAY	27b	1.7038	0.0383	1.5998	-0.5617	0.0215	0.1616	0.0217	-0.0318	0.2086	0.0273	0.0303	0.1925	-0.0156	-0.0302	0.0601	-0.0276
	tetraphenylporphyrinato)zinc(II) hydrate																			
Zn11	(2,3,7,8,12,13-Hexaethyl-5,10,15,20- tatranhanylporphyrinato)ring(II)	Zn(II)	RUTRAZ	27b	2.761	0.0422	-2.7218	-0.3307	0.2131	0.0014	-0.2446	0.0114	0.2534	0.0583	0.0405	0.0175	0.0067	-0.0084	-0.2490	0.0113
Zn12	Methanol(2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-	Zn(II)	JICNIS	31b	3.252	0.0676	-3.2477	0.1176	0.0373	-0.1042	-0.0383	-0.0019	0.3933	0.0864	0.0373	-0.0122	-0.0474	0.0136	-0.3882	0.0019
	tetraphenylporphinato)zinc(II) methanol solvate																			
Zn13	(7,8-Diethyl-5,10,15,20-tetraphenylchlorinato)zinc(II)•CH ₂ Cl ₂ (7.8 Diethyl 5,10,15,20 tetraphenylchlorinato)zinc(II)•MaOU	Zn(II)	GELJAI	28	2.1513	0.0348	-2.1053	0.4205	0.0173	-0.0625	-0.1107	-0.0513	0.1056	0.0406	-0.021	-0.0141	-0.0776	-0.0444	-0.0495	-0.0094
Ziii3a	(7,8-Diemyi-5,10,15,20-tetraphenyicmormato)zinc(11)-MeOH	Zh(II)	GELQET	28	0.299	0.0155	0.2431	-0.0708	-0.14/3	0.0149	-0.0447	0.018	0.2939	0.0217	0.0144	-0.0309	-0.0309	-0.0015	0.2770	0.0058
		7 (11)	OF NUL	20	1 (577)	0.0226	1 (550	0	0.0710		0	0	0.0501	0.0001	0		0.0001	0	0.1107	0
Zn1/	tetranhenvlchlorinato)zinc(II)•CH ₂ Cl ₂ •CH ₂ OH	Zn(11)	GELPIW	28	1.65/3	0.0336	-1.0558	0	-0.0719	0	0	0	0.2731	0.0221	0	0.2454	-0.0001	0	0.1196	0
"Chlorop	hyll derivatives" = Phytochlorins																			
Free base	phytochlorins	211	MODULA	22.	0.2541	0.02(2	0.1010	0.000 1	0.00/2	0.001.4	0.0242	0.1161	0.4(11	0.0521	0.0704	0.2017	0.0017	0.0257	0 2012	0.0092
17a 17b	wietnyi pneopnorbide a	2H 2H	MPOPHA MPOPHA02	33a 33b	0.2541 0.2461	0.0263	-0.1818 0.1851	-0.0094 0.0199	-0.0962 0.0884	-0.0914 0.0899	0.0242	0.1151	0.4611 0.5441	0.0521 0.0695	-0.2568	-0.2844	-0.0817	-0.1031	0.2013	-0.0983
17c	"	2H	MPOPHA03	33c	0.2386	0.0291	0.1733	-0.0122	0.0969	0.0844	-0.0283	-0.0972	0.448	0.0533	0.2511	-0.2927	-0.0923	0.0256	0.1741	-0.112
18	Ethyl pheophorbide b	2H	ROFVUE	33d	0.2006	0.0172	-0.1197	-0.0429	-0.0002	-0.1237	-0.0533	-0.0769	0.4949	0.0568	-0.3167	-0.2602	-0.0999	-0.0284	0.2364	0.1014
19	(mol. 2 N5-N8) (mol. 2 N5-N8)	2H 2H	BIPBOR	33e 	0.4316 0.3332	0.0304	-0.2086 0 1991	-0.1963 -0.0883	-0.1118 0.0984	0.1746	-0.1823	-0.1674 -0.1622	0.4534	0.0676	0.1006	-0.3493	-0.0108 -0.0706	0.0584	0.2415	-0.1078
20	Methyl [12-acetyl-8-ethyl]-bacteriopheophorbide d	2H	SOSZOP	33f	0.3694	0.0373	-0.1197	-0.1657	0.0422	-0.0788	-0.2841	-0.0776	0.3898	0.0536	0.1136	-0.2931	-0.0602	-0.0067	0.2003	-0.0966
21	Methyl [4-isobutyl-5-ethyl]-bacteriopheophorbide d (mol. 1 N1- N4)	2H	BIPBIL	33e	0.4346	0.0409	-0.1027	-0.3503	-0.0765	0.1281	-0.0639	-0.1711	0.4584	0.0517	0.1981	-0.3276	-0.0583	0.032	0.2156	-0.1122
"	" (mol. 2 N5-N8)	2H	BIPBIL	**	0.4215	0.05	0.2139	-0.1532	0.1003	0.233	-0.0703	-0.1979	0.3786	0.0533	0.1091	-0.2807	-0.0697	-0.0275	0.2019	-0.079
22	Methyl [8-neopentyl,12-ethyl]-bacteriopheophorbide d	2H	BIXREF01	33g	0.467	0.0099	0.0654	0.0092	0.4372	-0.0245	-0.1473	-0.0166	0.4976	0.0538	0.2462	-0.3142	-0.0997	0.0371	0.2604	-0.0956
23	1/-Decarboxyethyl-13'-deoxo-17-propylphytochlorin (mol.1	2H	RIWNIU	34a	0.4096	0.0215	0.2748	0.2378	0.0862	-0.1071	-0.1072	0.0732	0.4968	0.054	0.1944	-0.3217	-0.0955	0.0206	0.2889	-0.1117
"	" (mol. 2 N1-N4)	2H	**	**	0.1865	0.0235	0.014	0.0108	0.0635	-0.0419	-0.1246	0.1146	0.5308	0.0525	0.3141	-0.2903	-0.1007	0.0183	0.2743	-0.1145
24	Methyl phytochlorin	2H	KOVXUO	34b	0.1937	0.02	0.0489	-0.1291	-0.1302	-0.014	-0.0089	-0.0353	0.4816	0.0541	0.2639	-0.2931	-0.0557	0.0388	0.2388	-0.1216
25	Methyl 3-deethyl-3-(4,4,4-trifluoro-1-hydroxy-3-oxo-but-1-en-	2H	PEPJUR	34c	0.1716	0.0112	-0.0841	0.0795	0.0347	-0.0339	-0.1169	-0.005	0.5372	0.0591	0.2698	-0.2905	-0.1045	0.0391	0.3313	-0.096
Matallon	- j-jpj comoran enor																			

Metallophytochlori Chlorophyllides

26	(H ₂ O)(Methyl pyrochlorophyllide a)magnesium(II)•Et ₂ O	Mg(II)	MPCHLM10	35a	0.173	0.0277	-0.0827	0.0297	0.0613	0.0754	0.0195	0.1113	0.3636	0.0571	0.1132	-0.2195	-0.0371	-0.0391	0.2523	-0.0684
27 28a	(H_2O) (Methyl chlorophyllide a)• H_2O (H_2O) (Ethyl chlorophyllide a)• H_2O	Mg(II) Mg(II)	MCLPHD10 AECLPA01	35b 35c	0.2576 0.3265	0.0107 0.0231	0.1879 0.1755	-0.0031 0.1318	0.1292	-0.0487	-0.1079	0.0179 0.0719	0.3571 0.3566	0.0462 0.0473	0.0405 0.0695	-0.2261	-0.0829 -0.067	0.0447 0.0246	0.2289 0.237	-0.1163
28b	(H ₂ O)(Ethyl chlorophyllide a)•H ₂ O	Mg(II)	AECLPA10	35e	0.331	0.0248	0.1838	0.1252	-0.11	-0.1115	-0.1739	0.0729	0.3745	0.0497	0.0878	-0.2467	-0.0717	0.0203	0.2372	-0.0992
29 Other mate	(H ₂ O)(Ethyl chlorophyllide b)•H ₂ O	Mg(II)	ECPHBH	35d	0.3268	0.0217	0.2312	0.0485	-0.0859	-0.1387	-0.1483	0.0494	0.3729	0.052	0.1083	-0.2367	-0.0881	0.0376	0.2281	-0.1008
30	[(Methyl 3-deethyl,3-carboximino- phytochlorinato)zinc(II)] _n •nCHCl ₃ (cateana-□ [□] -13 ¹ -OZn	Zn(II)	CELRIU	36a	0.6362	0.0395	-0.5434	0.2619	0.0974	-0.0383	0.1141	0.1297	0.4165	0.0458	-0.0277	-0.3536	0.1015	0.0227	0.1681	0.0929
31	polymer) [Methyl 3 ¹ -oxophytochlorinato)zinc(II)] _n •nCH ₂ Cl ₂ (catena- \Box^2 - T_2^3 oxo Zn polymer)	Zn(II)	MEHGUD	36b	0.4673	0.0096	-0.4322	0.1054	-0.1108	-0.0523	0.0742	-0.0028	0.351	0.0502	0.0514	-0.2407	-0.0846	0.0174	0.2184	-0.0868
32	[Methyl 3-deethyl-3-((4-(pyridin-3- v))bhenvl)ethynvl)bhvtochlorinato]zinc(II) [catena-(u-zinc-	Zn(II)	XOKGOV	36c	0.3207	0.0281	0.0070	0.2587	0.0611	0.1599	0.0282	0.0757	0.4334	0.0451	0.0866	-0.3260	0.0586	-0.0024	0.2412	-0.1115
"	pyridin polymer] (mol. 1 N1-N5) " (mol. 2, N6-N10)	Zn(II)	"	**	0.2786	0.045	0.1542	0.0551	-0.0132	0.165	0.0509	0.1444	0.3941	0.0431	0.0374	-0.3028	0.1041	0.0369	0.2084	-0.0811
33	[(Methyl 3 ¹ ,3 ² -didehydro-3 ² -(4- pyridyl)phytochlorinato)zinc(III)] _n •0.5nC ₂ H ₃ N (catena-µ ² - pyridyl-NZn polymer)(mol. 1, N1-N4)	Zn(II)	MIBJEO	36d	0.1755	0.0337	-0.0898	0.0868	-0.0508	-0.0246	-0.0538	-0.0956	0.4243	0.0511	0.005	0.3222	0.0154	0.0537	0.2527	0.096
34	"(mol. 2, N5-N8) (Methyl 3-detehyl-3-(1,3-oxazol-5-yl)-phytochlorinato)zinc(II) (setane u Zn oxazolul M nolymor)	Zn(II) Zn(II)	ZOKMAP	36e	0.5712 0.3746	0.0404 0.0215	0.3788 -0.3348	-0.306 -0.0432	-0.1816 -0.0853	-0.0056 -0.0703	-0.1208 -0.0519	0.2037 0.1072	0.3427 0.4459	0.0528 0.0489	-0.0274 0.0496	0.2488	0.0071 0.0801	0.0514 -0.0227	0.1962 0.2885	0.1168 -0.0946
35	(Methyl pyropheophorbidato a)nickel(II)	Ni(II)	HAHBAT	16	1.3693	0.0443	-0.0965	1.3349	0.1668	-0.1605	-0.0604	0.1624	0.3422	0.0455	-0.016	-0.1132	-0.0817	-0.0701	-0.2914	-0.0867
36	(Methyl 20-methyl-phytochlorinato)nickel(II)	Ni(II)	YOVYAJ	37	1.7901	0.0481	0.6005	1.632	0.134	-0.3224	-0.0935	0.2228	0.4558	0.0547	0.0176	-0.1197	-0.0885	-0.1278	-0.3914	-0.1257
37	(Menyl 3-deenyl-3-nydroxymetnyl- phytochlorinato)cadmium(II) [catena-((□ ² -bacteriochlorophyll)- cadmium) polymer]	Cd(II)	UMAZAJ	38a	0.2908	0.0294	-0.1604	0.1501	-0.178	-0.0564	-0.0032	0.0378	0.3925	0.0777	0.0879	-0.1191	-0.1215	0.055	-0.3194	-0.1108
38	(Methyl phytochlorinato)platinum(II)	Pt(II)	KILQAZ	38b	0.1283	0.0174	0.0257	-0.0831	-0.0847	0.0129	0.0089	-0.0384	0.192	0.0458	0.048	-0.1124	-0.0566	0.0055	0.091	-0.1022
S1	Benzimidazolo(2,1-n)purpurin-18 131-imino-132-imide methyl	2H	FOXTUH	39	0.2985	0.0222	-0.1789	0.2057	-0.0064	-0.0152	0.0352	0.1151	0.4504	0.0349	-0.2186	-0.1607	0.0235	0.0895	0.3466	-0.0229
S2	ester Methyl 3 ¹ ,3 ² -didehydro-13 ¹ -deoxo-quinoxaline(2,3- n)nbytochlorin	2H	FOXWIY	39	0.3826	0.0285	0.2192	0.2666	-0.0143	-0.0975	-0.0908	0.0966	0.5015	0.0515	0.2943	-0.2972	-0.0691	0.0327	0.2405	-0.1135
Bacterioch	lorophyll (a or b) derivatives																			
39a 30b	Methyl bacteriopheophorbide a Methyl bacteriopheophorbide as 0.5C H	2H	WIKSEO	40a 40b	0.2226	0.0251	-0.1174	0.0133	-0.1051	-0.121	0.0856	0.0509	0.6275	0.0557	0.3041	-0.4118	-0.0836	-0.0425	0.3376	-0.0944
390 39c	Methyl bacteriopheophorbide a• C ₆ H ₆	2H	BAVSUM	400 40c	0.2879	0.0439	-0.1771	0.0797	-0.0842	-0.1419	0.0632	0.1179	0.7003	0.0796	0.2592	-0.4177	-0.1047	-0.3452	0.3197	-0.1281
β-Substitut	ed Chlorins																			
40	7-Hydro-8,8-dimethylporphyrin	2H	PACRES	42a	0.1888	0.0201	-0.0636	-0.0431	0.0405	0.1381	-0.0122	-0.0942	0.2989	0.0308	-0.0231	-0.1028	-0.0079	0.0707	0.2706	0.0015
41	3-Bromo-7-hydro-8,8-dimethylporphyrin	2H	PACRIW	42b	0.314	0.0148	-0.2142	0.0227	-0.1911	0.0783	0.0828	-0.0523	0.276	0.032	0.0019	-0.0475	0.0146	0.0888	0.2565	0.0057
42	2-AcetyI-5-bromo-/-hydro-8,8-dimethylporphyrin 5 10-Dibromo-7 7-dimethyl-15-phenyl-8-bydroporphyrin	2H 2H	MUMGAD	42b 42c	0.3225	0.0144	0.1609	0.27	-0.0103	-0.03/4	-0.0557	0.0246	0.2952 0.4682	0.0342	-0.0545	-0.027	0.0261	0.0844	0.2749	-0.0058
44	7,7-Dimethyl-8-oxoporphyrin	2H	PACROC	42a	0.298	0.0068	-0.1641	-0.1624	-0.1707	0.0762	0.0123	-0.0194	0.2704	0.0295	0.0434	-0.0283	0.0128	0.0659	0.2555	0.0245
45	3,7,8,12,13,17,18-Heptaethyl-3-hydroxy-2-oxochlorin	2H	WANDEX	42d	0.1654	0.0187	0.0944	0.0756	-0.0715	0.052	-0.0438	-0.0549	0.2894	0.0292	-0.0251	-0.0768	-0.0491	-0.0309	0.2704	0.0275
46 47	20-Chloro-5,5,7,8,12,13,17,18-octaethyl-2-oxochlorin 3,3,7,8,12,13,17,18-Octaethyl-2-oxochlorin unknown solvate (mol. 1 N1-N4)	2H 2H	WANDAT WANBOF	42d 42e	0.2168	0.0119	0.1296 0.0707	0.0954	-0.0011 0.0080	-0.1492 -0.1297	-0.0676 0.0971	0.0104	0.5087 0.2973	0.0347 0.0296	-0.3514 -0.0791	-0.022	-0.1066 -0.0533	-0.061 -0.0104	0.3449 0.2777	-0.0279 0.0185
" 19	" (mol. 2 N5-N8)	2H	" WANCAS	42e	0.2724	0.0123	0.1407	-0.1614	-0.0132	0.0237	-0.1636	0.0294	0.4093	0.0311	-0.0453	-0.2828	-0.0627	0.0166	0.2824	-0.0387
48 49	•CHCl ₁	2H 2H	WANCEW	42e 42f	0.3422 0.4135	0.0091	-0.2236	-0.1866	-0.1624	-0.0688	0.2172	0.0234	0.3519	0.0287	-0.1553	-0.0626	-0.0581 -0.088	-0.035	0.304	-0.0256
50	<i>cis</i> -2,3-Dihydroxy-2',3',7,8,12,13,17,18-octaethylporphyrin ethyl acetate solvate	2H	KOCZUX	42g	0.8136	0.0531	0.0324	0.7457	-0.1017	-0.1269	0.1866	-0.2087	0.234	0.0298	-0.0927	-0.0032	-0.0266	-0.0255	0.2117	-0.0023
51	2,3-Bis(dicyanomethyl)-12,13-dibromo-5,10,15,20-	2H 2H	NOCGER	42h 42i	0.7863 0.3656	0.0256	0.6967	-0.2512	0.0894	0.1697 0.0213	-0.2456	0.1209 0.0584	0.2995 0.4137	0.0372 0.0259	0.1972	-0.0855 0.2553	-0.004/ 0.0001	-0.0656 0.0007	0.1965 0.325	0.0236
E7	tetraphenylchlorin chloroform methanol solvate	211	OAKUU	42:	0.4811	0.0415	0 2207	0.2692	0.1640	0.0506	0.2465	0.1425	0 2095	0.0210	0.0008	0.1101	0.0468	0.0124	0.2802	0.0006
55	dichloromethane solvate	211	TINDIE	42)	1.0416	0.0415	1.02207	0.1021	-0.1049	-0.0300	0.2405	-0.1425	0.5085	0.0319	0.0008	0.1017	-0.0408	0.0027	0.2805	-0.0090
34 Matalloahl	ethanol solvate hydrate	20	TIPDIP	42K	1.9410	0.0201	1.9229	0.1931	-0.0393	0.0707	0.1078	-0.0149	0.199	0.0439	-0.0004	0.1817	-0.0048	-0.0087	0.0479	-0.0023
S3	(2,2-Dimethylchlorinato)zinc(II)•C ₆ H ₆	Zn(II)	NIDFEM	43a	0.2957	0.0265	0.0816	-0.0455	-0.2136	0.0588	-0.1591	-0.0656	0.263	0.0292	-0.0293	-0.1655	-0.0485	0.0731	0.1822	-0.0015
S4	(12-Bromo-3,3-dimethyl-15-(4- methylphenyl)chlorinato)zinc(II)•CHCl ₃	Zn(II)	XIPLEO	43b	0.6479	0.0511	0.5297	0.1002	0.3152	0.0791	0.0752	0.1337	0.213	0.0279	0.0562	-0.0891	0.0055	0.0456	0.179	-0.0103
55	catena[(μ_2 -2,2-Dimethyl-3-oxochlorinato)]zinc(II)•C ₆ H ₆ / catena[(μ_2 -ZnO] polymer	Zn(II)	NIDFAI	43a	0.3438	0.0206	-0.226	-0.2061	0.0351	0.115	-0.0688	0.0739	0.2344	0.0233	0.0094	0.065	-0.0632	-0.0244	0.2114	0.0366
S6-1	Nitrosyl(2,2,7,8,12,13,17,18-octaethyl-3- oxochlorinato)iron(II)-CHCl ₃	Fe(II)	QUJZUQ	43c	0.3041	0.0079	0.2311	-0.1924	0.0227	-0.0105	-0.0168	-0.0338	0.0814	0.018	0.0158	0.023	-0.0593	-0.003	0.0439	0.0202
30-2	iron(III)•CHCl ₃	re(III)	LAMDUZ	450	0.3769	0.0087	-0.3032	0.0005	-0.0105	0.1082	0.0008	0	0.1207	0.0233	0.0191	0.0815	-0.0318	0.0034	0.0088	0.0108
S7a'	(3,3,7,8,12,13,17,18-Octaethyl-3H-porphin-2-onato)-nickel(ii) (mol. 1: NI-N4)	Ni(II)	DOZVIX01	43d 	1.023	0.0109	-0.0003	1.0217	-0.0002	0.0002	0.0506	-0.0345	0.2343	0.031	0.0001	0.0267	-0.0211	-0.0002	-0.2318	0.0001
S7a. S7b	(3,3,7,8,12,13,17,18-octaethyl-2-oxochlorinato)nickel(II)	Ni(II) Ni(II)	DOZVIX02	42e	0.4396	0.0091	-0.0409	0.1244	-0.0075	0.0983	-0.0275	0.004	0.1336	0.027	-0.0098	0.0227	-0.0584	-0.0249	-0.1139	0.0175
S7c ⁱ	(3,3,7,8,12,13,17,18-Octaethyl-2(3H)-chlorinato)nickel(II) (mol. 1:N1-N4)	Ni(II)	DOZVIX	43f	1.0338	0.0147	-0.0001	1.0318	0.0005	-0.0002	0.0411	-0.0508	0.144	0.0471	-0.0001	0.1196	-0.0297	0.0004	-0.0746	-0.0001
S7e" S8	" mol. 2: N4-N7 (3,3,7,8,12,13,17,18-octaethyl-2-(hydroxyimino)chlorinato)-	Ni(II) Ni(II)	WANBIZ	" 42e	0.4709 0.2675	0.0085 0.0135	0.4467 -0.0247	-0.1105 -0.2184	0.0374	-0.0779 0.1259	0.043 0.082	-0.0256 0.014	0.1171 0.0708	0.0302 0.0211	-0.0376 0.0254	0.0458 0.0146	-0.0742 -0.0565	-0.0069 -0.0095	-0.0635 -0.0289	0.025 -0.0053
S 9	nickel(II) n-hexane n-pentane solvate 7,13,17-Triethyl-2,8,12,18-tetramethyl-2- retherworker where the 12-methyl-2-	Ni(II)	JUNZUN	43g	0.2799	0.0055	-0.2345	0.1472	0.0331	-0.0055	0.003	-0.0227	0.1375	0.0298	-0.0183	0.0347	-0.0617	0.0693	-0.0934	0.0042
S10 ⁱ	nickel(II) methanol solvate rac-(2,7,12,18-Tetramethyl-2,13,17-tris(2-methoxycarbonyl-	Ni(II)	PASXEM	44a	0.7608	0.0545	-0.0802	-0.6997	0.1727	-0.1622	0.0829	0.1407	0.1999	0.0334	0.0089	0.0467	0.0619	0.0073	-0.1825	0.0219

	ethyl)-3-oxo-porphinato)nickel(II) (mol. 1:N1-N4).																			
S10"	" mol. 2: N5-N8.	Ni(II)	"	 	0.4171	0.0409	0.0277	0.1784	-0.1903	0.2124	-0.1071	-0.2204	0.1592	0.0428	-0.0398	-0.0115	0.0045	0.0148	-0.1503	0.0286
511	(20-Etnoxycarbonyi-2, /, 8, 12, 13, 17, 18-neptametnyi-5- methylidene-2-(p-tolylmethyl)-2-chlorinato)copper(II)	Cu(II)	NIJBOX	44b	0.4102	0.0278	-0.2317	0.3028	0.0045	-0.0887	0.0347	-0.11/4	0.1849	0.0216	-0.088	0.055	-0.0887	-0.0500	0.1105	0.012
812	(20-Ethoxycarbonyl-3,7,8,12,13,17,18-heptamethyl-2- methylidene-3-(p-tolylmethyl)-3-hydrochlorinato)copper(II)	Cu(II)	NIJBUD	44b	0.757	0.0352	0.6119	0.33	-0.0858	-0.0577	0.2078	-0.189	0.1078	0.0249	-0.0387	0.0057	-0.0422	-0.054	0.0713	-0.0178
\$13	(20-Ethoxycarbonyl-2-(2-methoxycarbonylmethyl)- 2 3 7 8 12 13 17 18-octamethyl-trans-chlorinato)conner(II)	Cu(II)	LICSEV	44c	0.7776	0.0538	-0.0461	-0.7288	0.1	0.0783	-0.149	0.1819	0.1419	0.0212	-0.0675	0.0358	-0.0839	-0.0624	0.0581	-0.0019
S14	(<i>trans-2</i> ,3,7,8,12,13,17,18-Octaethyl-5,10- diformyloctachlorinato)copper(II)	Cu(II)	LOGYAH	44d	1.5201	0.0406	-0.6415	-1.2606	-0.0017	-0.0051	-0.5174	0.2058	0.0973	0.031	0.0306	0.0586	0.0282	0.0291	-0.0587	0.0018
815	(2,2'-(5,10,15,20-tetraphenyl-2,3-chlorinato-2,3-diyl)bis(3-oxo- 3-phenylpropanenitrile))nickel(II)	Ni(II)	XANDOI	44e	1.5781	0.0333	0.1019	1.559	0.0121	-0.0683	0.1249	-0.1702	0.3245	0.029	-0.0106	0.0562	-0.0287	-0.0557	-0.3131	-0.0087
S16	(2,3-Dimethyl-5,10,15,20-tetraphenyl-2,3-dihydroxy-2,3- chlorinato)nickel(II)	Ni(II)	ZAZNOF	44f	2.0996	0.0578	-0.1487	-2.0549	0.0414	-0.124	-0.325	0.2026	0.5012	0.0553	0.0318	0.0043	0.0866	0.0631	-0.4884	0.0111
S 17	(2,3-bis(Dicyanomethyl)-7,8,12,13,17,18-hexabromo- 5,10,15,20-tetraphenylchlorinato)nickel(II)•CHCl ₃	Ni(II)	NOCGAN	42i	3.1927	0.0482	2.3319	-2.1384	-0.0149	0.1744	-0.3609	0.1482	0.8793	0.0997	-0.0236	-0.0335	0.1418	-0.1662	-0.8505	0.0216
Fused chlo S18	prins 2 3 7 8 12 13 16 16-Octaethylbenzochlorin	211	IUNZIB	43 g	0.2678	0.014	-0.2177	-0.1132	0.0301	-0.0351	-0.0906	-0.0337	0.4907	0.0361	-0.3612	-0.1298	-0.0778	-0.01	0 2903	-0.0556
S19	Ethyl benzochlorin-27-acetate	2H	QIRHEE	45g 45a	0.2339	0.0073	0.1786	-0.1112	-0.0123	0.099	-0.0165	0.015	0.4171	0.039	-0.2577	0.0808	-0.0301	-0.0898	0.2995	0.0494
S20	2,2,7,8,12,13,17,18-Octaethyl-benzo(3,4,5)porphyrinato- nickel(II)	Ni(II)	OEBPNI	45b	1.5918	0.0236	1.0997	1.1167	0.1451	-0.0037	-0.2375	0.0025	0.3068	0.0279	-0.0734	0.0185	-0.0019	-0.0187	-0.2929	-0.0474
S21	(20-(2-Formylvinyl)-2,3,7,8,12,13,17,17- octaethylbenzochlorinato)nickel(U)	Ni(II)	VUFTEV	45c	2.1843	0.0176	0.0483	-2.1514	0.1397	0.3335	-0.0906	0.0349	0.5312	0.0611	0.0409	0.0176	0.0146	-0.025	-0.5263	0.0491
822 823	7-Amido-2,3,7,12,13,17,18,10 ³ -octaethylbenzochlorin (7-Cvano-2,3,7,8,12,13,17,18,03-octaethylbenzochlorin	2H Ni(II)	XIXVAB	45d	0.2517	0.0164	-0.1455	0.1417	0.0198	0.0652	0.1247	-0.0438	0.3995	0.0377	-0.3263	-0.1099	-0.0789	-0.0298	0.1747	-0.0588 -0.0671
524	oxobenzochlorinato)nickel(II)	211	AUDONNA	45.	0.700	0.0404	0.4204	0.4220	0.2605	0.0077	0.2120	0.116	0.22(7	0.0264	0.1014	0.0007	0.0501	0.0545	0.2459	0.0207
824 825	5-(Benzylimino)-10-mesityl-22,22-dimethyl-4-oxa-8,24,25,26-	2H 2H	OJOXIV	45e 45f	0.708	0.0404 0.0217	-0.4204 -0.2392	-0.4339 0.4774	0.2605	-0.0977	0.2138 0.0118	-0.0656	0.3367	0.0364 0.0381	0.1914 0.0562	-0.0997	0.0501 0.0875	-0.0545	0.2458 0.2272	-0.0178
	tetra-azahexacyclo[19.2.1.16,9.111,14.116,19.02,7]heptacosa- 1,6,9(27),10,12,14(26),15,17,19,21(24)-decaen-3-one cyclohexane solvate																			
826	(10-Mesityl-22,22-dimethyl-5-(phenylimino)-4-oxa-8,24,25,26- tetraazahexacyclo[19.2.1.16,9.111,14.116,19.02,7]heptacosa- 1,6,9(27),10,12,14(26),15,17,19,21(24)-decaen-3-one)-	Zn(II)	OJOXUH	45f	0.8982	0.0402	0.7512	0.4524	0.1471	0.0468	-0.0314	0.1144	0.2942	0.0293	-0.0056	-0.2139	0.0158	0.0771	0.1826	-0.0348
827	(tetranydroturan)zinc(11) 10-Mesityl-22,22-dimethyl-5-(phenylimino)-4-oxa-8,24,25,26- tetra-azahexacyclo[19.2.1.16,9.111,14.116,19.02,7]heptacosa- 16.9(77)10.12.14(26)15.17.19.21(24)-decaen-3-one	2Н	OJOXOB	45f	0.5192	0.0189	0.1458	-0.4751	-0.0543	0.0062	0.129	-0.0551	0.3135	0.0363	-0.0193	-0.1861	0.0068	0.0925	0.2326	-0.0236
S28	<i>trans</i> -(13,17-bis(Methoxycarbonylethyl)-2,7,12,18-tetramethyl-	2H	PIRCOI	45g	0.4062	0.0192	0.3201	0.1443	-0.1267	-0.118	-0.0399	0.1008	0.2796	0.0279	0.0605	-0.0037	-0.0637	-0.0151	0.265	-0.0029
S29	<i>cis</i> -(13,17-bis(Methoxycarbonylethyl)-2,7,12,18-tetramethyl-8- vinyl 2, 2, (4, 5) bis(Methoxycarbonylethyl)-2,7,12,18-tetramethyl-8-	2H	PIRCIC	45g	0.7604	0.022	0.1296	-0.73	-0.1009	-0.0122	-0.0958	0.095	0.2487	0.0291	0.0256	0.0618	-0.0516	-0.0116	0.2333	-0.0121
830 ¹	Ymyr=, 5-(4, 5-0)s(hieln(x)/carbonyl)0eit2))chiofin 2 ¹ ,2 ² (N,N-Dicarbonyl-N-phenyl)-8,12-bis(2- (methoxycarbonyl)ethyl)-2,7,13,17-tetramethyl-18-vinyl- 2,1 ² ,2 ² -tetrahydrobenzo(bhormhyrin (mol. 1: N1-N4))	2Н	NEZLOV	46a	0.4621	0.0104	-0.4491	-0.0022	-0.0083	-0.0094	-0.0984	0.044	0.3007	0.0326	-0.0272	-0.0254	-0.0199	-0.0636	0.2909	0.0013
830" 831'	(14,19,24-Triphenyl-9,12,28,29,30- pentaazaheptacyclo[23,2,1,1 ^{10,13} ,1 ^{15,18} ,1 ²⁰ ,	2H Ni(II)	" XUCBEE	" 46b	0.3404 1.5765	0.0159 0.0153	0.2786 0.1202	-0.1355 -1.5508	0.0542 -0.1771	-0.0284 -0.0453	0.0719 -0.1804	-0.1049 0.0112	0.3611 0.3828	0.0349 0.0308	-0.02 -0.0327	-0.0555 0.0026	0.004 0.015	-0.0524 0.0208	0.3521 -0.379	0.0143 -0.0341
	²³ .0 ^{2,11} .0 ^{3,8}]hentriaconta- 1(27),2(11),3(8),4,6,9,14,16,18,20(29),21,23,25-tridecaen-31- one 9-oxide)-nickel(ii) dichloromethane n-pentane solvate (mol. 1: N1-N4)																			
S31"	" mol. 2: N5-N8	Ni(II)	**	**	2.0643	0.017	-0.6701	-1.9294	-0.2183	-0.1064	-0.175	-0.0077	0.5383	0.048	-0.0447	0.0089	0.0343	0.0762	-0.5293	-0.0223
832	3,9,13-Tris(2-(Methoxycarbonyl)ethyl)-4,8,14,21-tetramethyl- 26,28,29,30-tetra-azaheptacyclo(14.8.3,1 ^{2,5} ,1 ^{7,10} ,1 ^{12,15} ,0 ^{20,27} ,0 ^{21,25})triaconta-1,3,5,7(29),8,10,12,14,16,18,20(27),25-dodecaen- 24-one	2H	YAQXET	46c	0.5937	0.0248	-0.2987	0.3863	0.1885	0.0669	0.2369	-0.1339	0.4592	0.0441	0.104	-0.2585	-0.0711	-0.0173	0.3569	0.0233
833 ⁱ	$ \begin{array}{l} 4,5,6,7-\text{Tetrafluoro-10-(methylsulfanyl)-14,19,24- \\ tris(pentafluorophenyl)-9-oxa-12,28,29,30- \\ tetrazaheptacyclo[23,2,1,1^{10,10},11^{15,16},12^{10,22},0^{11,10},0,1^{10},1$	2Н	YACGOB	46d	0.6643	0.0359	0.0801	-0.4845	-0.1144	-0.1083	-0.4015	0.1187	0.2133	0.0266	-0.029	-0.0844	0.0061	0.0321	0.1876	-0.0356
833 ¹¹ Bacterioch	N1-N4) "mol.2: N5-N8. Jorins	2H	**		1.167	0.0322	-0.0962	-1.027	-0.2243	-0.3177	-0.3594	0.1329	0.147	0.0339	-0.0194	-0.0638	0.0425	0.0677	0.1011	-0.0233
Free base	bacteriochlorins		DEMOD	40	0.157	0.0104	0	0.0001	0.0001	0.1462	0.05(0	0.0001	0.40/5	0.0505	0.0702	0.1057	0.0001	0.0001	0.0450	0.0270
56 57	2,2,12,12-12-1ethaneurybacteriochlorin 3,13-Dimesityl-8,8,18,18-tetramethylbacteriochlorin 2,12-Diethoxycarbonyl-5,15-diethyl-8,8,18,18-	2H 2H 2H	BENRIX ECASUZ	48a 48a 48b	0.796 0.0644	0.0124 0.178 0.019	0 0.0001	-0.0001 0.684 -0.0006	-0.0001 -0.024 -0.0003	0.098	-0.394 -0.0203	-0.0001 0 0	1.103 0.575	0.693 0.0394	-0.0703 0.719 -0.3552	-0.248 -0.2016	-0.084 0.0005	0.547	-0.15 0.4046	-0.0308 -0.556 -0.0138
58	tetramethylbacteriochlorin 2,12-Diethoxycarbonyl-8,8,18,18-tetramethyl-5,15-bis(4-	2H	ECAFUM	48b	0.276	0.044	0.0002	-0.0001	-0.0002	0.2031	-0.1869	0.0004	0.5655	0.0383	-0.223	-0.2764	-0.0001	0.0004	0.4397	-0.0187
59	methylphenyl)bacteriochlorin 3,13-Dimethylene-2,2',7,8,12,12',17,18-octaethylporphyrin	2H	CONHIW	48c	0.143	0.0155	0	0.0001	0.0001	0.0046	0.143	0.0001	0.4056	0.0341	-0.0821	0.1573	0.0001	-0.0002	0.3645	-0.0102
60	hexane dichloromethane solvate 3,8,13,18-Tetrakis(Methoxycarbonylethyl)-2,8,12,18-	2H	RIPMAE	48d	0.2838	0.0129	0	0	0	0.1384	0.2478	0	0.3694	0.0408	0.0031	0.1762	0	0	0.32	-0.0546
61	tetramethyl-7,17-dioxobacteriochlorin Methyl 4-((12-(2,4-diphenylbut-1-en-3-yn-1-yl)-10-methoxy-	2H	SUVBES	48e	0.6208	0.0347	0.3952	-0.4592	-0.0254	-0.0303	0.0031	-0.1295	0.4212	0.0418	0.1622	-0.1575	0.034	-0.0024	0.3524	-0.0311
62	7,7,17,17,17-tetramethylbacteriochlorin-2-yl)ethynyl)benzoate cyclohexane solvate 3,13-Bis(ethoxycarbonyl)-2,12-diethyl-[2,3- dihydro[1,4]dioxepino[5,6.7-ef]]-8,8,18,18-	2H	UYITIH	48f	0.2918	0.0242	-0.2021	0.0502	-0.0755	-0.1176	-0.1068	0.1042	0.4297	0.0394	0.1237	-0.1627	0.0133	-0.0036	0.3776	0.0106
63 ⁱ	tetramethylbacteriochlorin 5,10,15,20-Tetrakis(pentafluorophenyl)bis(2-benzyl-1,2-	2H	BAGKIG	48g	0.1251	0.021	0.0002	-0.0003	-0.0003	0.1072	-0.0645	-0.0004	0.2991	0.0261	0.0366	-0.0936	-0.0001	-0.0002	0.2815	-0.0112
63 ⁱⁱ	oxazolidine-4,5-diyl)[b,1]porphyrin (mol. 1: N1-N4) " mol. 2: N5-N8	2H	**		0.0829	0.0068	0.0003	0	-0.0001	-0.0128	0.0819	0.0002	0.2852	0.0297	-0.0838	-0.0635	-0.0004	0	0.264	-0.0247
Metallated S34 ⁱ	bacteriochlorins (8,8,18,18-Tetramethyl-2,12-bis(p-tolyl)bacteriochlorin)-	Cu(II)	BENRET	48a	0.8966	0.0472	0.0967	0.8104	0.2321	-0.1134	-0.1192	0.2384	0.1745	0.0262	-0.0224	-0.1594	-0.0468	-0.0299	0.0372	-0.0073
S24II	copper(II) (mol. 1: N1-N4)	()	"		0.9795	0.0426	0.6822	0.4554	0.0904	0.1104	0.0924	0.2695	0.157	0.0222	0.0141	0 1201	0.0079	0.0102	0.0621	0.024
534" 834"	"mol. 3: N9-N12		**	**	0.919	0.0420	0.364	-0.752	-0.1084	-0.1865	-0.0824	-0.2743	0.1598	0.0233	0.0391	-0.1391	0.0077	0.0521	0.0614	0.0061
S34 ^{iv}	" mol. 4: N12-N16		**	**	0.2784	0.0463	-0.0001	0	-0.0001	0.2702	-0.0671	0	0.2177	0.0369	-0.0303	-0.1808	0.0004	0.0002	0.1103	-0.0401

S35	ccc-Bacteriochlorinato-nickel(II) benzene solvate	Ni(II)	DEGTAK	49	1.9686	0.0701	-0.2706	-1.9064	0.018	-0.0662	-0.0204	0.4036	0.3831	0.0542	-0.0211	0.0293	0.0133	0.028	-0.3792	-0.0269
Isobacteriochlorins																				
Free ba	se isobacteriochlorins			50	0.00.40	0.0100	0.0007	0.1075	0.0400	0.0074	0.0404	0.0007	0.4605	0.0474	0.0440	0.0001	0.000	0.0446	0.0000	0.0005
64	2,/-Dioxo-3,3,8,8,12,13,1/,18-octaethylporphyrin	2H	SUCMIM	50a	0.2042	0.0123	-0.0237	-0.18/5	0.0498	-0.00/4	0.0484	-0.0337	0.4605	0.04/4	0.3449	0.0024	-0.009	-0.0446	0.3003	0.0295
65	2,2,8,8,12,13,17,18-Octamethyl-isobacteriochlorin	2H	BEYXEI	506	0.219	0.014	-0.0144	-0.19	-0.0299	0.0147	0.0834	-0.0598	0.3841	0.0429	0.1153	0.0005	-0.0689	-0.058/	0.3551	-0.0002
60	Dimethyl-octaethyl-isobacteriochiorin	2H	REIKEG	500	0.9902	0.061	-0.21/9	0.9089	0.063	0.2219	0.2298	0.0312	0.2235	0.0357	0.1043	0.0434	-0.0179	-0.0079	0.1919	-0.0039
07	(+-)-(2KS, /KS)-Dimetriyi 2,5,7,8-tetranydi 0-17-(5-metrioxy-5-	20	KUSKEI	500	0.2287	0.016	-0.0415	-0.1905	0.0332	-0.0275	-0.0408	0.0821	0.4479	0.038	0.5104	-0.0455	0.0032	-0.0040	0.3093	-0.0342
	tatramathyl 2.8 diara 21H 22H parphip 2.7 diagatata																			
	chloroform solvate																			
68	13 17-bis(2-Methoxycarbonylethyl)=12 18-	2H	LEVXAL	50e	1 205	0.0441	-0.1025	-1 1122	0.1735	-0 2244	-0 3393	0 0944	0.4712	0.0382	0 3459	0 1439	0.02	-0.0057	0 2845	-0.0189
00	bis(methoxycarbonylmethyl)-2.2.8.8.20-	2	LEVILLE	500	1.205	0.0111	0.1025		0.1755	0.2211	0.0070	0.0711	0.1712	0.0502	0.5 155	0.1109	0.02	0.0007	0.2015	0.010)
	pentamethylisobacteriochlorin																			
Metallo-isobacteriochlorins																				
S36	(Dioxoisobacteriochlorinato)copper(II) dichloroethane solvate	Cu(II)	DOMKOF	51a	0.2548	0.0124	0.1201	0.153	-0.0779	-0.0452	0.1295	-0.0473	0.1632	0.0326	0.0196	-0.0143	-0.0605	-0.0583	0.13	-0.0458
S37	(3,3,8,8,12,13,17,18-Octaethyl-3H,8H-porphine-2,7-dionato)-	Ni(II)	PETHEB	43a	1.3099	0.0165	0.1516	-1.2983	0.0532	-0.0416	0.0507	-0.0136	0.2249	0.0326	-0.0029	0.0242	0.065	-0.0317	-0.2064	-0.0465
	nickel(II)																			
S38	(1,3,6,7-Tetramethyl-4,5-bis(2-(methoxycarbonyl)ethyl)-1,7-	Ni(II)	VARFUP	51b	1.1981	0.0211	-0.7694	-0.8988	-0.0311	0.1144	-0.1171	0.0882	0.1953	0.032	0.0127	-0.0179	-0.0347	-0.0817	-0.167	-0.0435
	bis(methoxycarbonylmethyl)-2,8-dioxoporphinato)nickel(II)																			
630	unknown solvate			- 1	0 0007	0.01/0	0.0051	0 1750	0.0442	0.0073	0.0751	0.0700	0.0050	0.0207	0.0126	0.0125	0.0464	0.0402	0.02(1	0.0222
839	(Dimethyl 3,5'-(/,12-bis(2-methoxy-2-oxoethyl)-3,/,12,1/-	Ni(11)	SOXWUZ	510	0.2337	0.0162	-0.0961	-0.1/52	0.0643	0.0073	0.0651	-0.0792	0.0858	0.0306	0.0136	-0.013/	-0.0464	-0.0493	-0.0361	-0.0333
	tetramethyl-8-oxo-13-thioxo-/,8,12,13-isobacteriochlorin-2,18-																			
\$40	(dimethyl 2 2' (2 17 bis(2 methory 2 oxoethyl) 2 7 12 17	NG(II)	SOYWOT	510	1 1722	0.0262	0.5524	1.0206	0.0015	0 1270	0.0634	0.0082	0.1411	0.0208	0.0111	0.000	0.0485	0.0210	0.1258	0.0224
540	tetramethyl-3 18-dithioxo-17 18-dihydro-2H 3H-norphine-8 12-	(III)	50/101	510	1.1755	0.0202	0.5524	-1.0200	0.0015	-0.1279	-0.0054	-0.0702	0.1411	0.0270	-0.0111	0.007	0.0405	-0.0517	-0.1250	-0.0224
	divl)dipropanoato)-nickel hydrate																			
S41	(Anhydromesorhodoisobacteriochlorinato methyl ester)nickel(II)	Ni(II)	KODHAM	51d	1.9863	0.072	-0.2794	-1.9146	0.0316	0.2968	0.3237	-0.0878	0.4435	0.0599	0.0049	0.0471	-0.0553	-0.081	-0.4298	0.009
Manipulation of phytochlorin skeleton																				
24	Methyl phytochlorin	2H	KOVXUO	34b	0.1937	0.02	0.0489	-0.1291	-0.1302	-0.014	-0.0089	-0.0353	0.4816	0.0541	0.2639	-0.2931	-0.0557	0.0388	0.2388	-0.1216
69	Methyl phytoporphyrin	2H	RIWNOA	34a	0.2111	0.0088	0.045	-0.1917	0.049	-0.0045	-0.0532	0.0229	0.4086	0.0453	0.0381	-0.3551	-0.0756	-0.0235	0.1486	-0.105
70	3,7,8,12,13,17,18-Heptaethyl-2 ¹ ,2 ² -	2H	WIPDIJ	52a	0.1202	0.0165	0.0002	-0.0483	0.0022	-0.11	0.0047	0.0006	0.6685	0.2811	0.454	-0.0115	0.2716	0.1653	0.3435	-0.1469
	dihydrocyclopenta[at]porphyrin (disordered)																			
71	31,32-Didehydrorhodochlorin-15-acetic acid trimethyl ester	2H	ZUBBIH	52b	0.3303	0.0335	-0.1907	0.1583	-0.0421	-0.155	0.0145	0.1471	0.4949	0.0383	-0.3777	0.051	0.0406	0.0734	0.3038	0.0189
72	3 ¹ ,3 ² -Didehydrorhodochlorin dimethyl ester•CH ₂ Cl ₂	2H	KUHPIM	52c	0.3661	0.022	0.3065	0.0683	0.1304	-0.06	-0.084	0.0884	0.3045	0.0332	-0.0168	0.0094	0.0095	0.0917	0.2893	0.0126