Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Photocyclization of diarylethenes: the effect of imidazole on the oxidative photodegradation process.

A. V. Zakharov,^a A. G. Lvov,^a I. A. Rostovtseva,^b A. V. Metelitsa,^b A. V. Chernyshev,^b M. M. Krayushkin,^a A. V. Yadykov,^a V. Z. Shirinian*^a

^aN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation, e-mail: <u>shir@ioc.ac.ru</u> ^bInstitute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Avenue, Rostov on Don 344090, Russian Federation

Table of Contents

I. Solvent effects (NMR spectra of reaction mixtures)	
I.1. Diarylethene 1a	2
I.2. Diarylethene 1b	7
II. NMR monitoring of photoreactions of diarylethene 1a	12
III. Photosensitizer effect (NMR spectra of reaction mixtures)	13
IV. Amine effect (NMR spectra of reaction mixtures)	19
V. Effect of imidazole on the photoreaction of diarylethene 1b	
VI. Photostability of photochromic compounds	
VII. Copies of NMR spectra	32
VIII. Copies of HRMS spectra	

I. Solvent effects (NMR spectra of reaction mixtures)

I.1. Diarylethene 1a

Solvent: MeCN

Solvent: DMF

Solvent: toluene

Solvent: CH₃NO₂

Solvent: CH₂Cl₂

Solvent: EtOH

Solvent: EtOAc

Solvent: CHCl₃

Solvent: N-methyl-2-pyrrolidone

I.2. Diarylethene 1b

Solvent: MeCN

Solvent: toluene

Solvent: MeNO₂

Solvent: CH₂Cl₂

Solvent: EtOH

Solvent: CHCl₃

Solvent: N-methyl-2-pyrrolidone

II. NMR monitoring of photoreactions of diarylethene 1a

Before irradiation An A:+ 60 min UV B: + 90 min UV C: + 120 min UV 1 d ul D: + 150 min UV M 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 ppm 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

Acetone- d_6 , C = 0.063 M.

Solvent: $CDCl_3$, C = 0.063 M.

A: Before irradiation	2h	
B: + 20 min UV		
C: + 50 min UV	J	
D: + 80 min UV	ul	
E: + 110 min UV	l	
F: + 140 min UV	l	l. I.
G: + 175 min UV	" 	
9.0 8.5 8.0 7.5 7.0 6.5 (5.0 5.5 5.0 4.5 4	.0 3.5 3.0 2.5 2.0 1.

III. Photosensitizer effect (NMR spectra of reaction mixtures)

No	Consitizons	Time	Yields	
INO.	Sensitizers	(h)	2a	3a
1	Coumarin 30	17	80	20
2	Perylenetetracarboxylic dianhydride	17	83	17
3	Erythrosin B	17	82	18
4	Coumarin 1	17	81	19
5	6-Ethoxy-3-methyl-1 <i>H</i> -phenalen-1-one	17	80	20
6	Naphthalene ^b	17	69	30
7	Phenanthrene	15	78	22
8	Pyrene	26	81	19
9	4-Dimethylamino-4'-nitrostilbene	17	94	6
10	5,10,15,20-Tetrakis(4-bromophenyl)porphyrin	11	84	16
11	Benzophenone	36	85	15

Table S1. The effect of UV sensitizers on the yields of photoproducts^a

^a 0.1 eq. of sensitizer with 1 eq. of diarylethene in 2 ml acetone; ^b Scaling down does not affect the yield of the by-product.

Sensitizer: coumarin 30

Sensitizer: perylenetetracarboxylic dianhydride

Sensitizer: erythrosine B

Sensitizer: 6-ethoxy-3-methyl-1*H*-phenalen-1-one

Sensitizer: naphthalene (0.1 eq.)

Sensitizer: naphthalene (1 eq.)

Sensitizer: 4-dimethylamino-4'-nitrostilbene

Sensitizer: 5,10,15,20-tetrakis(4-bromophenyl)porphyrin

IV. Amine effect (NMR spectra of reaction mixtures)

Amines	Starting values	Values after photoreaction
Et ₃ N	0.93 (t, $J = 7.2$ Hz, 3H, CH ₃)	$1.20 (t, J = 7.2 Hz, 3H, CH_3)$
	$2.43 (q, J = 7.2 Hz, 2H, CH_2)$	$3.04 (q, J = 7.2 Hz, 2H, CH_2)$
DABCO	2.73 (s, 12H, CH ₂)	3.24 (m, 6H, CH ₂)
		3.66 (m, 6H, CH ₂)
1-Methylimidazole	3.66 (s, 3H, CH ₃)	3.76 (s, 3H, CH ₃)
	6.93 (s, 1H, H ^{arom})	7.30 (s, 1H, H ^{arom})
	7.14 (s, 1H, H ^{arom})	7.43 (s, 1H, H ^{arom})
	7.66 (s, 1H, H ^{arom})	8.39 (s, 1H, H ^{arom})

Table S2. ¹H NMR chemical shift signals (ppm) of tertiary amines after reaction completion.

Amine: DABCO (1 eq.)

Amine: piperidine

Amine: 1-methylimidazole (without naphthalene)

V. Effect of imidazole on the photoreaction of diarylethene 1b

¹H NMR spectra of photoreaction of **1b** (40 mg in 2 ml of MeCN, 1 eq. of imidazole)

¹H NMR spectra of photoreaction of **1b** (40 mg in 2 ml of MeCN)

VI. Photostability of photochromic compounds

Dependence of the normalized optical density at the absorption maximum of photoinduced isomer **B** of diarylethene **5** on the irradiation time without (black points) and with imidazole (red points) (solvent – acetonitrile, $C = 1.4 \cdot 10^{-5}$ M, C(imidazole) = $1.03 \cdot 10^{-3}$ M, $\lambda^{irr} = 365$ nm, T = 293 K).

Dependence of the normalized optical density at the absorption maximum of photoinduced isomer **B** of diarylethene **6** on the irradiation time without (black points) and with imidazole (red points) (solvent – acetonitrile, $C = 1.4 \cdot 10^{-5}$ M, C(imidazole) = $1.03 \cdot 10^{-3}$ M, $\lambda^{irr} = 365$ nm, T = 293 K).

Dependence of the normalized optical density at the absorption maximum of photoinduced isomer **B** of spiropyran **8** on the irradiation time without (black points) and with imidazole (red points) (solvent – acetonitrile, C = $1.4 \cdot 10^{-5}$ M, C(imidazole) = $1.03 \cdot 10^{-3}$ M, $\lambda^{irr} = 365$ nm, T = 293 K).

VII. Copies of NMR spectra

¹H NMR spectrum of compound 3a (CDCl₃)

¹H NMR spectrum of compound 3a (DMSO-d₆)

¹³C NMR spectrum of compound 3a (DMSO-d₆)

¹H NMR spectrum of compound 3b (CDCl₃)

¹³C NMR spectrum of compound 3b (CDCl₃)

¹H NMR spectrum of compound 4

¹H NMR spectrum of compound 5

¹³C NMR spectrum of compound 5

¹³C NMR spectrum of compound 6

VIII. Copies of HRMS spectra

Compound 3a

Compound 3b

Compound 6

