Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Table S1 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex **1**. (Ir, ML and POXD denote the iridium atom, main ligand and N-(5-phenyl-1,3,4-oxadiazol-2-yl)-diphenylphosphinic amide ligand, respectively, in the complex.)

MO	Energy	С	Compositions		Assignment
		Ir	ML	POXD	
L+10	0.15	11	83	6	$d^{*}(Ir)+\pi^{*}(ML)$
L+9	0.01	0	2	98	$\pi^*(\text{POXD})$
L+8	-0.07	0	0	100	$\pi^*(\text{POXD})$
L+7	-0.17	0	2	98	$\pi^*(\text{POXD})$
L+6	-0.28	0	1	98	$\pi^*(\text{POXD})$
L+5	-0.77	1	97	2	$\pi^*(ML)$
L+4	-0.87	0	3	97	$\pi^*(\text{POXD})$
L+3	-0.88	0	95	5	$\pi^*(ML)$
L+2	-1.16	0	5	94	$\pi^*(\text{POXD})$
L+1	-1.83	3	96	1	$\pi^*(ML)$
L	-1.91	3	96	2	$\pi^*(ML)$
HOM	D-LUMO	ene	rgy ga	up (3.57 e	eV)
Н	-5.48	41	47	11	$d(Ir)+\pi(ML+POXD)$
H-1	-5.84	31	20	49	$d(Ir)+\pi(ML+POXD)$
H-2	-6.24	46	36	18	$d(Ir)+\pi(ML+POXD)$
H-3	-6.43	24	66	10	$d(Ir)+\pi(ML+POXD)$
H-4	-6.56	16	71	13	$d(Ir)+\pi(ML+POXD)$
H-5	-6.75	9	86	6	$\pi(ML)$
H-6	-6.88	3	94	4	$\pi(ML)$
H-7	-7.01	6	78	16	π (ML+POXD)
H-8	-7.12	22	62	15	$d(Ir)+\pi(ML+POXD)$
H-9	-7.34	2	6	92	$\pi(\text{POXD})$
H-10	-7.43	1	6	93	$\pi(\text{POXD})$

Table S2 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex **2**. (Ir, ML and POXD denote the iridium atom, main ligand and N-(5-phenyl-1,3,4-oxadiazol-2-yl)-diphenylphosphinic amide ligand, respectively, in the complex.)

МО	Energy	С	ompo	sitions	Assignment
		Ir	ML	POXD	
L+10	-0.04	0	94	6	$\pi^*(ML)$
L+9	-0.10	0	1	99	$\pi^*(\text{POXD})$
L+8	-0.14	0	4	95	$\pi^*(\text{POXD})$
L+7	-0.33	0	3	96	$\pi^*(\text{POXD})$
L+6	-0.37	0	1	99	$\pi^*(\text{POXD})$
L+5	-0.79	2	95	3	$\pi^*(ML)$
L+4	-0.91	3	92	6	$\pi^*(ML)$
L+3	-0.98	0	5	95	$\pi^*(\text{POXD})$
L+2	-1.24	0	6	93	$\pi^*(\text{POXD})$
L+1	-1.49	3	93	3	$\pi^*(ML)$
L	-1.59	3	94	2	$\pi^*(ML)$
HOM	D-LUMO	ene	rgy ga	р(3.90 е	eV)
Н	-5.49	43	45	13	$d(Ir)+\pi(ML+POXD)$
H-1	-5.79	30	19	51	$d(Ir)+\pi(ML+POXD)$
H-2	-6.06	42	49	9	$d(Ir)+\pi(ML)$
H-3	-6.18	19	75	5	$d(Ir)+\pi(ML)$
H-4	-6.36	18	80	2	$d(Ir)+\pi(ML)$
H-5	-6.66	36	29	35	$d(Ir)+\pi(ML+POXD)$
H-6	-6.81	7	87	6	$\pi(ML)$
H - 7	-7.25	0	100	0	$\pi(ML)$
H-8	-7.26	0	100	0	$\pi(ML)$
H-9	-7.38	3	53	44	π (ML+POXD)
H-10	-7.42	0	89	10	π (ML+POXD)

Table S3 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex **3**. (Ir, ML and POXD denote the iridium atom, main ligand and N-(5-phenyl-1,3,4-oxadiazol-2-yl)-diphenylphosphinic amide ligand, respectively, in the complex.)

MO	Energy	Compositions			Assignment
		Ir	ML	POXD	
L+10	-0.08	0	0	100	$\pi^*(\text{POXD})$
L+9	-0.20	1	4	95	$\pi^*(\text{POXD})$
L+8	-0.27	2	44	54	$\pi^*(ML+POXD)$
L+7	-0.28	2	68	30	$\pi^*(ML+POXD)$
L+6	-0.36	3	75	23	$\pi^*(ML+POXD)$
L+5	-0.86	1	43	56	$\pi^*(ML+POXD)$
L+4	-0.89	2	61	37	$\pi^*(ML+POXD)$
L+3	-1.00	3	81	15	$\pi^*(ML+POXD)$
L+2	-1.17	0	9	91	$\pi^*(\text{POXD})$
L+1	-1.57	2	97	1	$\pi^*(ML)$
L	-1.63	2	97	1	$\pi^*(ML)$
HOM	D-LUMO	ene	rgy ga	р(3.79 e	eV)
Η	-5.42	37	59	3	$d(Ir)+\pi(ML)$
H-1	-5.81	30	15	55	$d(Ir)+\pi(ML+POXD)$
H-2	-5.97	9	85	6	$\pi(ML)$
H-3	-6.15	31	62	7	$d(Ir)+\pi(ML)$
H-4	-6.32	33	57	9	$d(Ir)+\pi(ML)$
H-5	-6.52	7	90	3	$\pi(ML)$
H-6	-6.73	43	24	33	$d(Ir)+\pi(ML+POXD)$
H-7	-7.34	4	9	87	$\pi(\text{POXD})$
H-8	-7.39	11	35	54	$d(Ir)+\pi(ML+POXD)$
H - 9	-7.44	0	1	98	π(POXD)
H-10	-7.48	0	0	100	$\pi(\text{POXD})$

Table S4 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex **4**. (Ir, ML and POXD denote the iridium atom, main ligand and N-(5-phenyl-1,3,4-oxadiazol-2-yl)-diphenylphosphinic amide ligand, respectively, in the complex.)

MO	Energy	Compositions			Assignment
		Ir	ML	POXD	
L+10	-0.08	0	0	100	$\pi^*(\text{POXD})$
L+9	-0.17	0	46	53	$\pi^*(ML+POXD)$
L+8	-0.22	1	84	16	$\pi^*(ML+POXD)$
L+7	-0.27	1	51	49	$\pi^*(ML+POXD)$
L+6	-0.3	1	19	81	$\pi^*(ML+POXD)$
L+5	-0.83	2	85	13	$\pi^*(ML+POXD)$
L+4	-0.87	2	55	43	$\pi^*(ML+POXD)$
L+3	-0.9	1	52	46	$\pi^*(ML+POXD)$
L+2	-1.17	0	4	96	$\pi^*(\text{POXD})$
L+1	-1.58	5	93	2	$\pi^*(ML)$
L	-1.65	4	94	2	$\pi^*(ML)$
HOMO	D–LUMO	ene	rgy ga	р(3.76 е	eV)
Н	-5.41	31	67	2	$d(Ir)+\pi(ML)$
H-1	-5.88	24	22	54	$d(Ir)+\pi(ML+POXD)$
H-2	-5.92	5	83	13	$\pi(ML+POXD)$
H-3	-6.27	61	29	10	$d(Ir)+\pi(ML+POXD)$
H-4	-6.39	23	75	2	$d(Ir)+\pi(ML)$
H-5	-6.69	31	42	27	$d(Ir)+\pi(ML+POXD)$
H-6	-6.82	14	75	11	$d(Ir)+\pi(ML+POXD)$
H-7	-7.35	1	2	97	$\pi(\text{POXD})$
H-8	-7.44	1	6	94	π(POXD)
H-9	-7.48	3	32	64	π (ML+POXD)
H-10	-7.49	1	8	91	$\pi(\text{POXD})$

Table S5 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex **5**. (Ir, ML and POXD denote the iridium atom, main ligand and N-(5-phenyl-1,3,4-oxadiazol-2-yl)-diphenylphosphinic amide ligand, respectively, in the complex.)

MO	Energy	Compositions			Assignment
		Ir	ML	POXD	
L+10	0.00	1	73	26	$\pi^*(ML+POXD)$
L+9	-0.02	1	36	64	$\pi^*(ML+POXD)$
L+8	-0.07	0	0	100	$\pi^*(\text{POXD})$
L+7	-0.20	0	2	97	$\pi^*(\text{POXD})$
L+6	-0.29	0	2	98	$\pi^*(\text{POXD})$
L+5	-0.77	3	93	5	$\pi^*(ML)$
L+4	-0.86	1	38	61	$\pi^*(ML+POXD)$
L+3	-0.90	2	59	39	$\pi^*(ML+POXD)$
L+2	-1.16	0	6	94	$\pi^*(\text{POXD})$
L+1	-1.48	3	95	2	$\pi^*(ML)$
L	-1.56	3	96	2	$\pi^*(ML)$
HOMO	D-LUMO	ene	rgy ga	p (3.85 e	eV)
Н	-5.41	38	58	4	$d(Ir)+\pi(ML)$
H-1	-5.80	29	18	53	$d(Ir)+\pi(ML+POXD)$
H-2	-5.94	7	84	9	$\pi(ML)$
H-3	-6.12	29	67	4	$d(Ir)+\pi(ML)$
H-4	-6.24	48	46	6	$d(Ir)+\pi(ML)$
H-5	-6.62	19	62	19	$d(Ir)+\pi(ML+POXD)$
H-6	-6.71	26	52	22	$d(Ir)+\pi(ML+POXD)$
H - 7	-7.09	1	98	1	$\pi(ML)$
H-8	-7.13	0	99	0	$\pi(ML)$
H-9	-7.34	1	5	94	$\pi(\text{POXD})$
H-10	-7.42	1	25	74	π (ML+POXD)

Table S6 Selected calculated wavelength λ (nm), oscillator strength *f*, major contribution, transition characters, and the available experimental wavelengths (nm) for complexes 1–5. (H and L indicate HOMO and LUMO, respectively.)

	State	$\lambda(nm)/E(eV)$	f	Configuration	Assignment	Nature	Exp. ^a
1	S_1	461/2.688	0.0231	H→L(90%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	453
	S ₁₁	321/3.855	0.1624	H-4→L(76%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
	S ₁₄	311/3.986	0.1011	H-4→L+1(41%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML))$	MLCT/LLCT/ILCT	
				H-1→L+2(30%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT	
	S_{17}	298/4.159	0.1085	H-5→L+1(47%)	$\pi(ML) \rightarrow \pi^*(ML)$	ILCT	
				H-6→L(13%)	$\pi(ML) \rightarrow \pi^*(ML)$	ILCT	
	S_{18}	294/4.215	0.1020	H-1→L+3(59%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
				H-5→L(22%)	$\pi(ML) \rightarrow \pi^*(ML)$	ILCT	
	S ₂₃	285/4.342	0.0804	H-7→L(45%)	$\pi(ML+POXD) \rightarrow \pi^*(ML)$	LLCT/ILCT	
				H-1→L+5(32%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
	S ₃₉	258/4.801	0.1379	H-4→L+2(36%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT	
				H-3→L+3(23%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
2	S_1	418/2.965	0.0382	H→L(94%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
	S_5	350/3.535	0.0838	H-2→L(62%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT	
				H-3→L(11%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT	
	S_{10}	321/3.851	0.2131	H-1→L+2(67%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT	
				H→L+5(12%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
	S ₁₃	310/3.988	0.4552	H-3→L+1(63%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT	
				H-2→L+1(14%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT	
	S_{15}	305/4.063	0.1649	H-1→L+4(74%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
				H-4→L(13%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT	
	S ₂₃	285/4.345	0.1828	H-3→L+2(36%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(POXD)$	MLCT/LLCT	
				H-5→L+1(30%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
3	S_1	422/2.935	0.0225	H→L(94%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT	
	S_{12}	317/3.908	0.1389	H-1→L+2(63%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT	
				H-1→L+3(18%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML+POXD)$	MLCT/LLCT/ILCT	
	S ₁₅	309/4.005	0.3245	H-1→L+3(42%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML+POXD)$	MLCT/LLCT/ILCT	
				H-1→L+2(32%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT	
	S ₂₄	287/4.315	0.1123	H-2→L+3(28%)	$\pi(ML) \rightarrow \pi^*(ML+POXD)$	LLCT/ILCT	
				H-3→L+2(22%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(POXD)$	MLCT/LLCT	
	S_{28}	281/4.407	0.2549	$H-6 \rightarrow L+1(21\%)$	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(ML)$	MLCT/LLCT/ILCT	
				H-3→L+3(20%)	$d(Ir)+\pi(ML) \rightarrow \pi^*(ML+POXD)$	MLCT/LLCT/ILCT	
	S_{41}	258/4.792	0.1425	H-5→L+2(17%)	$\pi(ML) \rightarrow \pi^*(POXD)$	LLCT	
				H-2→L+6(14%)	$\pi(ML) \rightarrow \pi^*(ML+POXD)$	LLCT/ILCT	
4	\mathbf{S}_1	426/2.906	0.0526	H→L(92%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT	
	S_{10}	332/3.731	0.1269	$H-2 \rightarrow L+1(32\%)$	$\pi(ML+POXD) \rightarrow \pi^*(ML)$	LLCT/ILCT	
				H→L+3(27%)	$d(Ir)+\pi(ML) \rightarrow \pi^*(ML+POXD)$	MLCT/LLCT/ILCT	
	S ₁₄	310/3.995	0.3556	$H-1 \rightarrow L+2(71\%)$	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT	
	S ₁₅	305/4.053	0.2103	H-4→L+1(66%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT	
				$H-1 \rightarrow L+2(11\%)$	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT	
	S_{21}	288/4.304	0.0901	H-1→L+5(48%)	$d(Ir)+\pi(ML+POXD) \rightarrow \pi^*(ML+POXD)$	MLCT/LLCT/ILCT	

				H-2→L+5(15%)	$\pi(ML+POXD) \rightarrow \pi^*(ML+POXD)$	LLCT/ILCT
	S ₃₃	268/4.616	0.2617	H→L+9(46%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML+POXD)$	MLCT/LLCT/ILCT
	S_{37}	259/4.781	0.1167	H-4→L+4(31%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML+POXD)$	MLCT/LLCT/ILCT
				H-4→L+3(23%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML+POXD)$	MLCT/LLCT/ILCT
	S_{40}	256/4.841	0.1454	H-5→L+2(61%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT
5	S_1	417/2.968	0.0681	H→L(93%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT
	S_6	343/3.604	0.0924	H-2→L(40%)	$\pi(ML) \rightarrow \pi^*(ML)$	ILCT
				H-3→L(26%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT
	\mathbf{S}_{10}	325/3.810	0.1326	H→L+5(34%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT
	S_{11}	319/3.876	0.2846	H-2→L+1(45%)	$\pi(ML) \rightarrow \pi^*(ML)$	ILCT
				H-3→L+1(24%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT
	S_{14}	313/3.955	0.4721	H-4→L(54%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT
				H-3→L(29%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT
	S ₂₅	281/4.402	0.1679	H-2→L+5(32%)	$\pi(ML) \rightarrow \pi^*(ML)$	ILCT
	S_{31}	271/4.570	0.1160	H-2→L+5(29%)	$\pi(ML) \rightarrow \pi^*(ML)$	ILCT
				H-3→L+5(25%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML)$	MLCT/ILCT
	S ₃₃	268/4.620	0.1118	H→L+10(28%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(ML+POXD)$	MLCT/LLCT/ILCT
				H→L+6(19%)	$d(Ir)+\pi(ML)\rightarrow\pi^*(POXD)$	MLCT/LLCT
	S_{40}	258/4.802	0.2203	H-5→L+2(54%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT
				H-6→L+2(25%)	$d(Ir)+\pi(ML+POXD)\rightarrow\pi^*(POXD)$	MLCT/LLCT/ILCT

^a Ref. 17

	MO	Energy/e V	Composition (%)			Assignment
			Ir	ML	POXD	
1	L	-2.10	4	95	1	$\pi^*(ML)$
	Н	-5.35	40	40	20	$d(Ir)+\pi(ML)$
	H-2	-6.14	33	36	31	$d(Ir)+\pi(ML+POXD)$
2	L+1	-1.57	4	94	2	$\pi^*(ML)$
	L	-1.78	3	95	3	$\pi^*(ML)$
	Η	-5.33	40	45	15	$d(Ir)+\pi(ML+POXD)$
	H-2	-6.02	23	65	11	$d(Ir)+\pi(ML+POXD)$
3	L	-1.83	1	98	1	$\pi^*(ML)$
	Η	-5.30	32	64	3	$d(Ir)+\pi(ML)$
	H-1	-5.69	29	31	40	$d(Ir)+\pi(ML+POXD)$
4	L	-1.88	4	94	2	$\pi^*(ML)$
	Η	-5.20	24	73	3	$d(Ir)+\pi(ML)$
5	L	-1.76	3	96	1	$\pi^*(ML)$
	Η	-5.24	34	58	8	$d(Ir)+\pi(ML)$
	H-1	-5.77	28	33	39	$d(Ir)+\pi(ML+POXD)$

Table S7 Partial frontier molecular orbital composition (%) of complexes 1–5 in thetriplet excited states. (H and L indicate HOMO and LUMO, respectively)