Electronic Supplementary Information for

Visible Chemosensor Based on Carbohydrazide for Fe(II), Co(II) and Cu(II) in Aqueous Solution

Minuk Yang,^a Ju Byeong Chae,^a Cheal Kim,^a* Roger G. Harrison^b*

^{*a*} Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: chealkim@seoultech.ac.kr.

^b Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602. Fax: 1-801-422-0153; Tel: 1-801-422-8096; E-mail: roger_harrison@byu.edu.

Figure S1. UV-vis spectrum of sensor (30 μ M).

Figure S2. Job plot for the binding of 1 with Fe²⁺. Absorbance at 642 nm was plotted as a functio n of the molar ratio $[1]/([1] + [Fe^{2+}])$. The total concentration of ferrous ion with sensor 1 was 3. 0×10^{-5} M.

Figure S3. Mass spectroscopy data for Fe(II) plus sensor.

Figure S4. Uv-vis absorption of sensor (1) in the presence of Fe(II) and other metal ions. Conditions: aqueous solution of 30 μ M sensor and 1.0 equivalent of Fe(II) and 1.0 equivalent of other metal ion in bis-tris buffer (10 mM) at pH 7.0.

Figure S5. Absorption spectral changes of **1** (30 μ M) after addition of increasing amounts of Cu²⁺ in buffer (bis-tris 10 mM, pH 7.0). Inset: Absorption at 370 nm versus the number of equiv of Cu²⁺ added.

Figure S6. Job plots for the binding of **1** with Co²⁺ and Cu²⁺. Absorbance at 370 nm was plotted as a function of the molar ratio $[1]/([1] + [M^{2^+}])$. The total concentration of cobalt or cupper ion with sensor **1** was 3.0 x 10⁻⁵ M.

Figure S7. Mass spectrum for Co(II) plus sensor.

Figure S8. Mass spectrum for Cu(II) plus sensor.

Figure S9. Absorption spectral changes of **1** and Cu^{2+} (30 μ M) in the absence and presence of 0.5 equiv of different metal ions in buffer (bis-tris 10 mM, pH 7.0).

Figure S10. Reusability of sensor with Fe(II) (a) and Co(II) (b). Conditions: Addition 1 is an aqueous solution of 30 μ M sensor. Addition 2 has 20 mM Fe²⁺ or Co²⁺ solution added to the original solution. Addition 3 has had 2.3 μ L of 20 mM EDTA added to it. Addition 4 has more Fe²⁺ or Co²⁺, addition 5 has more EDTA, and addition 6 has more Fe²⁺ or Cu²⁺ again.

(a)

Figure S11. (a) The theoretical excitation energies and the experimental UV-vis spectrum of sensor. (b) The major electronic transition energies and molecular orbital contributions of sensor (H = HOMO and L = LUMO)

(a)

Excited state 14	Wavelength (nm)	Percent (%)	Main Character	Oscillator strength
$H \rightarrow L+1 (\alpha)$	418.81	23	ICT, LMCT	0.4367
$H\rightarrow L+2 (\beta)$		41	ICT, LMCT	

Figure S12. (a) The theoretical excitation energies and the experimental UV-vis spectrum of Cu(II)-sensor complex. (b) The major electronic transition energies and molecular orbital contributions of Cu(II)-sensor complex (H = HOMO and L = LUMO).

Figure S13. Molecular orbital diagrams of sensor and Cu(II)-sensor complex using TD-DFT.