Rhodamine scaffold as real time chemosensor for selective detection of

bisulphite in aqueous medium

Sumit Roy, Ashim Maity, Naren Mudi, Milan Shyamal and Ajay Misra

Department of Chemistry and Chemical Technology, Vidyasagar University,

Midnapore 721102, W.B., India

Corresponding Author

*E-mail: ajay@mail.vidyasagar.ac.in; ajaymsr@yahoo.co.in

Fig S1.: High resolution mass spectrum of L¹.

Fig.S2: ¹H-NMR spectra of L¹ in CDCl₃.

Fig.S3: ¹H-NMR spectra of RAHN in DMSO-d₆.

Fig.S4: ¹³C-NMR spectra of RAHN in DMSO-d₆.

Fig.S5 : IR spectra of RAHN (a) and its corresponding bisulfite adduct (b).

Fig.S6 : High resolution mass spectrum of RAHN.

Fig.S7: Absorption spectra of RAHN (40 μ M) in water-methanol (9:1 v/v) in the presence of bisulphite and others competiting ions of 10 eqv.

Fig.S8: Emission spectra of RAHN (40 μ M) in water-methanol (9:1 v/v) in the presence of bisulphite and others competiting ions of 10 eqv.

Fig.S9: Emission spectra of RAHN in the presence of bisulfite and others competiting metal ions of 10 eqv.

Fig.S10: Time resolved fluorescence decay profile of RAHN in presence of 3 equivalent bisulfite ion ($\lambda_{em} = 556$ nm) with residual plot.

FigS11: Effect of P^H on fluorescence intensity of RAHN (40 μ M) in water-methanol (9:1 v/v) and RAHN-HSO₃⁻ adduct system. Fluorescence intensity in absence of bisulfite (black) and in presence of 6 equivalent of bisulfite (red).

Fig.S12: Plot of Flurescence Intensity vs [HSO₃-].

Binding constant of RAHN and HSO_3^- adduct was calculated using the following equation¹ and it has been included in the revised version of the article. Plot Fluorescence Intensity versus [HSO₃⁻] gives an linear curve up to 760 μ M and then becomes gradually saturated. The linear part was fitted by using the following the equation

$$\mathbf{y} = (\mathbf{a} + \mathbf{b} \times \mathbf{c} \times \mathbf{x}^n) / (1 + \mathbf{c} \times \mathbf{x}^n)$$

where $\mathbf{a} = \text{FI}$ of RAHN, $\mathbf{b} = \text{FI}$ of the RAHN in the presence of excess of HSO₃⁻, $\mathbf{c} = \text{Binding}$ constant, $\mathbf{K}_{\mathbf{f}}$, with the assumption that $\mathbf{1} \gg \mathbf{c} \times \mathbf{x}$ and $\mathbf{n} = \mathbf{1}$. The slope of the curve gives $\mathbf{b} \times \mathbf{c}$, which ultimately gives $\mathbf{c} = \mathbf{K}_{\mathbf{f}} = (1.34 \pm 0.5) \times 10^3 \text{ M}^{-1}$ (taking $\mathbf{b} = 2.78 \times 10^2$ from the fit).

Sample	Spiked (µM)	Found (µM)	Recovery (%)	RSD ^b
	0	ND ^a		
White wine	20	19.41	97.05	1.11
	40	38.95	97.3	1.58

Table S1. Determination of [HSO₃⁻] in white wine

aND: Not detectable; bRSD: Relative standard deviation

References

(a) A. S. M. Islam, R. Bhowmick, K. Pal, A. Katarkar, K. Chaudhuri and M. Ali, *Inorg. Chem.*, 2017, 56, 4324–4331; (b) C. R. Lohani, J. –M. Kim, S. –Y. Chung, J. Yoon, and K. –H. Lee, *Analyst*, 2010, 135, 2079–2084; (c) B. P. Joshi, J. W. Park and K. H. Lee, *Talanta*, 2009, 78, 903–909; (d) B. D. Wagner and G. J. Mcmanus, Anal. Biochem., 2003, 317, 233–239; (e) F. E. O. Suliman, Z. H. Al. Lawati and S. M. Z. Al-Kindy, *J. Fluoresc.*, 2008, 18, 1131–1138.