Dual-responsive cross-linked supramolecular polymer network gel : hierarchical supramolecular self-assembly driven by pillararene-based molecular recognition and metal-ligand interaction

Li Shao, Jie Yang and Bin Hua*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China; Fax and Tel: +86-571-8795-3189; Email: huabin@zju.edu.cn

Electronic Supplementary Information (15 pages)

1.	Materials and methods	S2
2.	Synthesis of 2,2'-bipyridine-bridged pillar[5]arene dimer PD5	S3
3.	Partial DOSY NMR spectra of a mixture of $PD5$ and G in different concentrations	S10
4.	Size distributions of $PD5$ and $PD5 + G$	S13
5.	Partial ¹ H NMR spectra of PD5 and PD5 + G in the presence and absence of Zn^{2+}	
	in CDCl ₃	S14
6.	Reduced viscosity	S15
7.	The rheological properties of the gel	S15
8.	References	S16

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Compounds 1^{S1} and G^{S2} were prepared according to the published procedures. NMR spectra were recorded with a Bruker Avance DMX 600 spectrophotometer or a Bruker Avance DMX 500 spectrophotometer or a Bruker Avance DMX 400 spectrophotometer using the deuterated solvent as the lock and theresidual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra (LRESIMS) were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with a Bruker Daltonics Apex III spectrometer. Viscosity measurements were carried out with a Cannon-Ubbelohde semi-micro dilution viscometer at 298 K in water. Scanning electron microscopy investigations were carried out on a JEOL 6390LV instrument. The melting points were collected on a SHPSIC WRS-2 automatic melting point apparatus. Dynamic light scattering was carried out on a Malvern Nanosizer S instrument at room temperature.

2. Synthesis of 2,2'-bipyridine-bridged pillar[5]arene dimers

Scheme S1. The synthetic route of PD5

Compound **2**: A mixture of **1** (2.00 g, 2.20 mmol) and potassium phthalimide (1.00 g, 5.00 mmol) was stirred in N, N-dimethylformamide at 90 °C for 24 h. The solution

was evaporated under vacuum and the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1, v/v) to afford **2** as a yellow solid (2.00 g, 93%), mp: 122.5–123.1 °C. The ¹H NMR spectrum of compound **2** is shown in Figure S1. ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm): 7.86–7.84 (q, 2H), 7.73–7.71 (q, 2H), 6.82–6.74 (m, 10H), 3.90–3.87 (t, 2H, J = 6.4Hz), 3.80–3.74 (m, 12H), 3.69–3.67 (m, 24H), 3.63 (s, 3H), 1.98–1.91 (m, 2H), 1.89–1.82 (m, 2H). The ¹³C NMR spectrum of **2** is shown in Figure S2. ¹³C NMR (100 MHz, CDCl₃, 298 K) δ (ppm): 168.96, 151.21, 151.17, 151.12, 151.10, 150.25, 134.52, 132.65, 128.89, 128.80, 123.78, 117.08, 115.38, 114.39, 114.31, 114.24, 68.39, 56.39, 56.35, 56.33, 56.27, 56.26, 56.24, 56.18, 38.36, 30.14, 30.05, 29.91, 27.81, 26.15. HRESIMS is shown in Figure S3: m/z calcd for [M + Na]⁺ C₅₆H₅₉NO₁₂Na⁺, 960.3929; found 960.3895, error –4 ppm.

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 2.

Compound **3**: A mixture of **2** (1.00 g, 1.06 mmol) and NH_2NH_2 (10 mL) was heated at reflux in methanol (20 mL) for 12 h. Then the mixture was filtered and the residue was washed with methanol (10 mL × 2) to give **3** as a white solid (0.51 g, 60%), mp: 144.4–145.1 °C. The ¹H NMR spectrum of compound **3** is shown in Figure S4. ¹H

NMR (400 MHz, CDCl₃, 298 K) δ (ppm): 6.82–6.75 (m, 10H), 3.81–3.76 (m, 12H), 3.70–3.64 (m, 27H), 2.13 (s, 2H), 1.58 (s, 2H), 1.21(s, 2H). The ¹³C NMR spectrum of **3** is shown in Figure S5. ¹³C NMR (100 MHz, CDCl₃, 298 K) δ (ppm): 150.88, 150.80, 150.76, 150.72, 150.69, 150.67, 150.65, 150.61, 149.87, 128.61, 128.46, 128.39, 128.34, 128.29, 128.22, 128.15, 128.08, 114.87, 114.50, 114.13, 114.04, 113.95, 113.88, 113.56, 68.65, 56.09, 55.94, 55.88, 55.86, 55.78, 55.71, 55.62, 40.95, 30.06, 29.78, 29.72, 29.59, 29.36, 26.78. LRESIMS is shown in Figure S6: *m/z* 808.6 [M + H]⁺; *m/z* calcd for [M + H]⁺ C₄₈H₅₈NO₁₀⁺, 808.4055; found 808.4026, error –4 ppm.

Figure S6. LRESI mass spectrum of **3**.

Compound PD5: DMAP (catalytic amount) and EDC (0.96 g, 5.00 mmol) were added to a solution of 3 (2.00 g, 2.48 mmol) and 2, 2'-bipyridine-4, 4'-dicarboxylic acid (0.30 g, 1.23 mmol) in chloroform (50 ml), and then the mixture was stirred for 48 h at room temperature. The organic layer was washed with water, saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel eluted with CHCl₃/MeOH of 100:1 to 10:1 ratio (v/v) to afford **PD5** as a pink solid (680 mg, 30%), mp: 187.5–188.5 °C. The ¹H NMR spectrum of compound PD5 is shown in Figure S7. ¹H NMR (400 MHz, CDCl₃, 298 K) δ (ppm): 8.78–8.76 (d, 2H, J = 4.8 Hz), 8.70 (s, 2H), 7.78–7.77 (d, 2H, J = 4.8 Hz), 6.85 (s, 2H), 6.80–6.72 (m, 20H), 3.86 (s, 4H), 3.76-3.74 (m, 20H), 3.66 (m, 36H), 3.62 (m, 12H), 3.59 (s, 6H), 3.54–3.53 (d, 4H), 1.81 (s, 8H). The ¹³C NMR spectrum of **PD5** is shown in Figure S8. ¹³C NMR (100 MHz, CDCl₃, 298 K) δ (ppm): 165.47, 156.02, 151.04, 150.76, 150.69, 150.15, 149.73, 142.96, 128.68, 128.43, 128.31, 128.25, 128.22, 128.15, 128.10, 122.24, 117.54, 114.79, 114.67, 114.15, 114.08, 113.96, 113.94, 113.88, 67.62, 56.43, 55.91, 55.84, 55.80, 55.79, 55.71, 55.69, 53.29, 50.88, 40.01, 29.90, 29.57, 29.49, 27.09, 26.52. LRESIMS is shown in Figure S9: m/z 1846.7 [M + Na]⁺ (50%), m/z 935.5 [M + 2Na]²⁺/2 (100%); m/z calcd for [M + Na]⁺ C₁₀₈H₁₁₈N₄O_{22⁺},

1846.8163; found 1846.8192, error 2 ppm.

Figure S7. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of PD5.

Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of **PD5**.

Figure S9. LRESI mass spectrum of PD5.

3. Partial DOSY NMR spectra of a mixture of **PD5** and **G** in different concentrations.

Figure S10. DOSY NMR spectrum (500 MHz, CDCl₃, 298 K) of PD5 and G at 5.00 mM.

Figure S11. DOSY NMR spectrum (500 MHz, CDCl₃, 298 K) of PD5 and G at 20.0 mM.

Figure S12. DOSY NMR spectrum (500 MHz, CDCl₃, 298 K) of PD5 and G at 30.0 mM.

Figure S14. DOSY NMR spectrum (500 MHz, CDCl₃, 298 K) of PD5 and G at 80.0 mM.

Figure S15 DOSY NMR spectrum (500 MHz, CDCl₃, 298 K) of PD5 and G at 100 mM.

4. Size distributions of **PD5** and **PD5** + **G**.

Figure S16 Size distributions of PD5 and PD5 + G (c = 55.0 mM).

5. Partial ¹H NMR spectra of **PD5** and **PD5** + **G** in the presence and absence of Zn^{2+} in CDCl₃

Figure S17 Partial ¹H NMR spectra (400 MHz, CDCl₃, 298 K) of 5.00 mM **PD5** in the absence (a) and presence (b) of 0.33 equiv. of $Zn(NTf_2)_2$.

Figure S18 Partial ¹H NMR spectra (400 MHz, CDCl₃, 298 K) of 20.0 mM **PD5** and **G** in the absence (a) and presence (b) of 0.33 equiv. of $Zn(NTf_2)_2$.

Figure S19 Reduced viscosity (chloroform 298 K) of a 1:1 molar mixture of PD5 and G (\blacksquare) and 1:3:3 molar mixture of Zn²⁺, PD5 and G (\bigcirc).

0

7. The rheological properties of the gel

Figure S20 Frequency dependency of the storage modulus G' and loss modulus G'' of the gel.

8. References:

S1. J. Yang, Z. Li, Y. Zhou and G. Yu, Polym. Chem., 2014, 5, 6645-6650.

S2. B. Shi, K. Jie, Y. Zhou, D. Xia and Y. Yao, Chem. Commun., 2015, 51, 4503-4506.