**Electronic Supplementary Information for** 

## Maximizing the Symbiosis of Static and Dynamic Bonds in Self-Healing Boronic Ester Networks

Jessica J. Cash, Tomohiro Kubo, Daniel J. Dobbins, Brent S. Sumerlin\*

George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States

E-mail: sumerlin@chem.ufl.edu (B. S. S.)

Table S1. All prepared compositions listed by ratio of the functional groups, thiol for DODT

| DODT | PTMP | VPBE | APD | TEGDVE |
|------|------|------|-----|--------|
| 75   | 25   | 99   | 1   | -      |
| 75   | 25   | 97   | 3   | -      |
| 75   | 25   | 95   | 5   | -      |
| 75   | 25   | 20   | -   | 80     |
| 75   | 25   | 15   | -   | 85     |
| 75   | 25   | 10   | -   | 90     |
| 75   | 25   | 3    | -   | 97     |
| 75   | 25   | 2    | -   | 98     |
| 75   | 25   | 1    | -   | 99     |
| 75   | 25   | 20   | 1   | 79     |
| 75   | 25   | -    | -   | 100    |

and PTMP and vinyl for VPBE, APD, and TEGDVE.

**DODT:** 3,6-dioxa-1,8-octanedithiol; **PTMP:** pentaerythritol tetrakis(3-mercaptopropionate); **VPBE:** 4-((allyloxy)methyl)-2-(4-vinylphenyl)-1,3,2-dioxaborolane; **APD:** 3-allyloxy-1,2-propanediol; **TEGDVE:** tri(ethylene glycol) divinyl ether

Table S2. DSC results of low glass transition temperature polymers showing  $T_g$  values belowroom temperature.

| Free Diol (%) | Permanent<br>x-linker (%) | Tg (°C) |
|---------------|---------------------------|---------|
| 5             | -                         | -25.2   |
| 3             | -                         | -20.0   |
| 1             | -                         | -20.1   |
| -             | 80                        | -55.3   |
| -             | 85                        | -52.6   |
| -             | 90                        | -51.0   |
| 5             | 80                        | -52.0   |



Figure S1. Percent mass change of the network that contained 95:5 VPBE:APD while immersed in water.

## Table S3. Characteristic relaxation times for different sample compositions.

| Free Diol<br>(%) | Permanent<br>x-linker (%) | Humidity<br>(%) | τ (s) |
|------------------|---------------------------|-----------------|-------|
| 5                | -                         | 0               | 25    |
| 3                | -                         | 0               | 100   |
| 1                | -                         | 0               | 110   |
| 0                | 0                         | 0               | 93    |
| -                | 80                        | 0               | 116   |
| -                | 85                        | 0               | 123   |
| -                | 90                        | 0               | 127   |
| -                | 97                        | 0               | 109   |
| -                | 98                        | 0               | 114   |
| -                | 99                        | 0               | 104   |
| 5                | 80                        | 0               | 146   |
| 5                | -                         | 23              | 7.3   |
| 3                | -                         | 23              | 41    |
| 1                | -                         | 23              | 92    |
| 0                | 0                         | 23              | 107   |
| -                | 80                        | 23              | 62    |
| -                | 85                        | 23              | 78    |
| -                | 90                        | 23              | 83    |
| -                | 97                        | 23              | 85    |
| -                | 98                        | 23              | 105   |
| -                | 99                        | 23              | 82    |
| 5                | 80                        | 23              | 69    |
| 5                | -                         | 85              | 1.8   |
| 3                | -                         | 85              | 1.3   |
| 1                | -                         | 85              | 0.7   |
| 0                | 0                         | 85              | 1.9   |
| -                | 80                        | 85              | 2.7   |
| -                | 85                        | 85              | 3.2   |
| -                | 90                        | 85              | 3.4   |
| -                | 97                        | 85              | 6.1   |
| -                | 98                        | 85              | 6.9   |
| -                | 99                        | 85              | 7.4   |
| 5                | 80                        | 85              | 5.0   |

The characteristic relaxation time ( $\tau$ ) was determined via a modified Maxwell model as the time required for the stress ( $\sigma$ ) to reach 37% (1/e) of its original value ( $\sigma_0$ ) after accounting for the stress that the sample cannot physically relax ( $\sigma_{\text{plateau}}$ ) due to any permanent (*i.e.*, non-dynamic) network structure, *i.e.*,  $\tau = (1/e)(\sigma_0 - \sigma_{\text{plateau}})$ . The plateau stress was approximated as the final stress at 300 s. Longer relaxation times have a larger error due to this approximation, but trends remain evident.



Figure S2. Water absorption of samples containing both free diol and permanent crosslinker, 20:79:1 VPBE:TEGDVE:APD.